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ABSTRACT: 
 
In this study, we present our benchmark dataset for performance evaluation of shape-from-X algorithms and a test procedure for 
evaluating the reconstruction results. Our aim is to support an objective comparison of different surface reconstruction approaches 
and to provide an informative basis for the combination of reconstruction methods. 
 

1 INTRODUCTION 

The goal of this study is to investigate the performace 
characteristics of various automatic surface reconstruction 
algorithms that of class shape-from-X. These algorithms get a 
collection of calibrated images of an object or a scene and 
extract 2,5D or 3D shape information as result. Here, X denotes 
the cue used to infer shape. A list of the algorithms that are 
under investigation in the framework of this study is given in 
Table 1. 
 

shape-from-X  algorithm  
 

stereo 

trinocular-stereo 
narrow-baseline-stereo 
wide-baseline-stereo 
motion (multiview-stereo) 

photoconsistency 
silhouette (space carving) 
photoconsistency (voxel coloring) 
shadow (shadow carving) 

texture texture 
shading shading 
focus (de)focus 

Table 1: List of Algorithms 
 
Although many robust implementations of each algorithm are 
already available in the literature and in practice, there exist 
hardly any methods to test and compare the performance of 
these algorithms, quantitatively (Foerstner, 1996). The 
experimental setup is challenging due to controversial 
requirements of each algorithm. For instance, the reflectance 
based methods (Klette et al., 1999) deal with curved Lambertian 
surfaces, whereas image matching approaches (Courtney et al., 
1996, Scharstein and Szeliski, 2002, Seitz et al., 2006) in 
general prefer textured and/or piecewise planar objects. A 
comparative study is also difficult due to various reasons. For 
instance, binocular stereo produces dense depth or disparity 
maps of the object; whereas multi-view stereo reconstructs the 
object surface as a 3D polygon mesh or unstructured point cloud 
and finally reflectance-based methods give surface orientations 
instead of depth information. In this study, we established a true 
benchmark dataset for the performance evaluation of 
shape-from-X algorithms, using a combination of diffuse 

objects with different surface geometries and synthetic 
projected textures. We also propose a method for automatically 
evaluating the results obtained through these algorithms. The 
same scene is used to acquire input images for each algorithm. 
So, it enables us to compare 2.5D reconstruction results from 
one reference view to obtain a measure of success and a ranking. 
However, the ranking should not be considered as a direct 
measure of success of one method over another. Instead, it 
allows an objective comparison of different approaches and 
provides an informative basis for the combination of 
reconstruction methods. The limitations of each method are 
already surveyed and can be found in the literature. However, 
our aim in establishing this dataset is to provide researchers 
with a tool, by which they can see how successful or 
unsuccessful their method with respect to other methods is. 
 
The organization of the paper is as follows. In the following 
section, the benchmark dataset is explained in detail. An 
analysis of the surface reconstruction algorithms, which are 
under consideration, is given in Section 3. The evaluation 
methodology and ranking strategies are discussed in Section 4. 
The paper concludes with Section 5 in which we discuss the 
presented study and state possible improvements. 
 

2 BENCHMARK DATA 

Our benchmark dataset consists of 
 360 color images of a real scene, 
 20 synthetic rendered scene images, 
 4 real and 38 synthetic texture patterns, 
 orientation and calibration data for 

- 52 camera positions, 
- a texture-mapping LCD-projector, 
- 3 light source directions, 

 ground truth in terms of 
- a 3D point cloud, 
- a depth map, 
- a surface orientation map. 

 
2.1 Scene 

Finding a single representative object that satisfies the require- 
ments of all reconstruction algorithms is the first challenge in 
creating the benchmark data. The surface of a representative ob- 
ject should consist of smooth curved parts as well as piecewise 
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planar patches; on one hand it should have a Lambertian surface,
on the other enough textural information on it. In addition to
these, the object must be mobile, so that capturing images from
various views, is possible. Therefore, we have assembled various
objects with different surface geometries, in order to obtain the
scene as shown in Figure 1. Object surface is made of white plas-
ter, which gives a good Lambertian surface with perfectly matte
reflectance properties. Texture, which is necessary to solve the
correspondence problem, is projected using an LCD-projector.
This allows analyzing the effect of different texture patterns on
the final result, too. Also, artificial shadows are introduced to pe-
nalize texture-based approaches. As a result, the final scene is
structured enough to rank success of different reconstruction re-
sults, as well as general enough to be used by a large variety of
algorithms.

Figure 1: The scene

2.2 Calibration

2.2.1 Camera Images are captured using a digital single-lens
reflect camera, Canon EOS-1D Mark II, which has a 50 mm lens
and a 28.7×19.1 mm CMOS sensor. Maximum image size is
3504×2336 pixels. For our experiments this resolution is reduced
to 1728×1152, and the captured images are cropped to a region
of interest of 1360×904 pixels. Interior orientation of the camera
is computed with the bundle adjustment software Australis 6.0.
27 images of our control point field from different viewpoints are
used to achieve a reliable camera calibration (see Figure 2). It can
be assumed that the image axes are perfectly orthogonal and the
image aspect ratio is 1.0. The radial distortion with a maximum
displacement of 1.8 pixels is eliminated by resampling all images
using bicubic interpolation.

Figure 2: Control point field for camera calibration and the
KUKA robot arm with the mounted digital camera.

We prefer an algebraic representation of the orientation data in-
stead of the physical model to simplify the transformation from
sensor coordinates to image coordinates (Hartley and Zisserman,
2000). The imaging geometry is modeled in terms of line-preserving
3×4 projection matrices P and a constant calibration matrix K
with a principle distance in pixels:

K =

[
2909.1 0 748.4

0 2909.1 408.7
0 0 1

]
(1)

P is a composite matrix computed from rotation, translation and
calibration matrices. The image coordinates (xi, yi) of a given
3D point (X, Y, Z) is computed as follows.

wi

[
xi

yi

1

]
= P×


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X
Y
Z
1


 (2)

2.2.2 Texture Projector A Sharp XG-P10XE LCD-Projector
with a resolution of 1024×768 pixel is used to map various tex-
tures onto the object (see Figure 3). Calibration of the LCD-
projector is also necessary for some of the surface reconstruction
algorithms such as shape-from-texture (see Section 3.3). The in-
terior orientation is obtained from the technical reference sheet
of the LCD-projector and transformed into pixel metric. The ex-
terior orientation, however, must be computed manually. Again,
we used the Australis software to compute the exterior orienta-
tion by modeling the LCD-projector as a special camera. The
estimated orientation is verified by reprojecting a synthetic chess-
board structure for which the 3D coordinates are already known.

Figure 3: Sharp XG-P10XE LCD-projector and Liesegang
3600AV slide-projector.

2.2.3 Light Projector The LCD-projector produces raster ar-
tifacts with blank texture images. So, an additional slide-projector
is required to obtain images suitable for photogrammetric stereo.
In our setup we use a Liesegang 3600AV model slide-projector to
model a point light source (see Figure 4). Slide-projector posi-
tions are measured manually and verified by analyzing the high-
lights on five spheres, which are placed in the scene for the point
cloud registration of the laser scanner. (see Figure 4)

Figure 4: Styrofoam sphere with the estimated highlight position
to verify the light direction.

2.3 Acquisition

The digital camera is firmly mounted on a KUKA KR C1 indus-
trial robot arm (see Figure 2). Due to various safety reasons,
we have adjusted the camera and captured the images remotely
through a firewire connection between a notebook and the cam-
era. This also prevents the possible vibrations during image ac-
quisition and improves the image quality. The robot enables a
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stable and repeatable camera motion with a relative precision of
0.1 mm. Images are captured at 13 different positions, which
have a horizontal baseline of approximately 1 m and a vertical
baseline of 0.5 m. (see Figure 5).

Figure 5: Orientation of the reference image (red), narrow- and
wide-baseline stereo images (green) and the linear motion se-
quence (yellow).

A computer-controlled MICOS Pollux high resolution position-
ing device (turntable) is configured to simulate a camera mo-
tion around the scene. Rotating the turntable in 9-degrees-steps,
we acquired 40 images of the object (see Figure 6). It was not
possible to rotate the LCD-projector and the slide-projector syn-
chronous with the turntable, so we used the ambient light in the
room and projected no texture on the object for the camera ring
images.

Figure 6: Overview of the imaging geometry. The ring (blue) is
simulated using a computer controlled turntable.

2.4 Ground Truth

A Mensi S25 short range triangulation laser scanner (Böhler and
Marbs, 2002) is used to generate the independent ground truth
information (see Figure 7). The accuracy of the scanner is about
0.8 mm vertical and 0.2 mm horizontal at a distance of 4 m or-
thogonal to range. The depth accuracy at this distance (4 m) is
about 0.4 mm.

Figure 7: Triangulation principle of Mensi S25 laser scanner.

The ground truth is acquired from 7 viewing directions in order
to generate a dense 3D point cloud for the entire scene. Having
registered the individual views, background and noisy points are
manually removed. The registered and segmented 3D point cloud
has a resolution of 2-3 mm (see Figure 8). Based on the scanned

Figure 8: Laser scanner point cloud of the ground truth.

3D data, we derived two ground truth data maps for the reference
image: a normalized depth map, where the gray value of each
pixel is related to a depth value of the scene, and a color-coded
surface orientation map, where the color of each pixel is related
to an orientation vector (see Figure 9).

(a) Normalized depth map (b) Surface orientation map

Figure 9: Ground truth data for the reference image.

3 SHAPE-FROM-X ALGORITHMS

The basic idea of all image-based surface reconstruction tech-
niques is that the color of light coming from a particular point
in a scene can be rewritten as a function of the environment pa-
rameters, such as settings and the positioning of camera, lighting
conditions, reflectance properties of surface and background, etc.
In the following sections, we explain briefly the investigated sur-
face reconstruction methods.

3.1 Shape-from-Stereo

Stereo is a well-known technique and works analogue to human
vision. The scene must be observed from different viewpoints
and for corresponding homologous image points the 3D object
point is computed using the orientation information. This pro-
cess is called triangulation. The correspondence problem is the
most challenging part of this algorithm, especially for untextured
and occluded areas. Various global optimization strategies, e.g.
dynamic programming (Lei et al., n.d.), graph cuts (Kolmogorov
and Zabih, 2001), belief propagation (Klaus et al., 2006) or semi-
global matching (Hirschmüller, 2006), are used to achieve state-
of-the-art results. Standardized test data for binocular stereo is
already available (Scharstein and Szeliski, 2002, Courtney et al.,
1996) including a comfortable online evaluation of the results.

3.1.1 Trinocular Stereo A binocular image match can be ver-
ified using a third image. Given two corresponding points the
position in the third image can be predicted. The similarity of
this point may support or reject the match. The convergent stereo
triplets of our benchmark dataset are rectified, so that they corre-
spond to the stereo normal case (Heinrichs and Rodehorst, 2006).
The important advantage of this method is that the correspon-
dence analysis is simplified to a linear search along one of the
image axes (see Figure 10-11). An additional property is that
the differences (disparities) between horizontal and vertical cor-
responding points are equal.
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Figure 10: Example of a rectified narrow-baseline triplet with
overlaid epipolar lines (23 textured image triplets)

3.1.2 Narrow-baseline Stereo A smaller distance between the
cameras leads to very similar images and simplifies the corre-
spondence analysis. However, as the triangulation angle gets
smaller, accurate spatial intersection gets harder. This phenomenon
is also called glancing intersection (see Figure 10).

3.1.3 Wide-baseline Stereo A larger distance between the cam-
eras makes the spatial intersection easier. But, in this case, per-
spective distortions and stronger occlusions make the correspon-
dence analysis more difficult (see Figure 11).

3.1.4 Multi-view Stereo (Shape-from-Motion) Multi-view stereo
combines the advantages of narrow- and wide-baseline stereo.
Using neighboring images, the correspondence analysis is sim-
plified, and the baseline for a spatial intersection is extended by
using feature tracking. In (Seitz et al., 2006) standardized test
data for multi-view stereo with an online evaluation was made
available.

3.2 Shape-from-Photoconsistency

3.2.1 Shape-from-Silhouette (Space Carving) Shape-from-
silhouette is a surface reconstruction method which constructs a
3D shape estimate of an object using multiple contour images of
the object. The output is known as the visual hull. This technique
still suffers from concavities and insufficient views. A simple ap-
proach is the volumetric reconstruction using voxel space carv-
ing (Martin and Aggarwal, 1983). The final reconstruction is still
coarse. A more accurate representation is possible with march-
ing intersections (Tarini et al., 2002) or polygonal reconstructions
using generalized cone intersections (Matusik et al., 2000).

3.2.2 Shape-from-Photoconsistency (Voxel Coloring) The
analysis of consistent scene colors and texture can be used to re-
fine the visual hull (Seitz and Dyer, 1999). Assuming Lambertian
reflection and textured surfaces a reconstruction of concave areas
is possible.

3.2.3 Shape-from-Shadow (Shadow Carving) This approach
analyzes self-shadows on the surface which may indicate concav-
ities (Savarese et al., n.d.). Here, the illumination direction has to
be given, and the detection as well as the categorization of shad-
ows is difficult.

Figure 11: Example of a rectified wide-baseline triplet (23 image
textured triplets)

Figure 12: Examples of the image sequence acquired with a lin-
ear camera motion (253 textured images)

3.3 Shape-from-Texture

In shape-from-texture, known texture patterns are projected onto
the scene, and surface of the scene is estimated by observing the
distortions of these patterns in the acquired images. Structured
light is one of the commonly used cases of this method (Scharstein
and Szeliski, 2003). It is based on active triangulation by replac-
ing the second stereo camera with a calibrated LCD-projector.
Multiple stripes are projected onto the scene, in order to distin-
guish between stripes they are coded either with different bright-
ness or different colors (see Figure 14-15). Therefore, correspon-
dence problem marginally solved. The depth information can be
computed out of the distortion along the detected profiles.

We projected a standard binary pattern and a rainbow like color
spectrum onto the scene. Every stripe of length n in the color
spectrum SRGB is generated using the below equations, where i
denotes the raster position in the spectrum image and GMAX de-
notes the maximum intensity value in every color channel (Koschan
and Rodehorst, 1997).

SR = sin( i
n
· π) · (GMAX

2
− 1) + GMAX

2

SG = sin(( 2
3

+ i
n
) · π) · (GMAX

2
− 1) + GMAX

2
, i = {0, .., n}

SB = sin(( 4
3

+ i
n
) · π) · (GMAX

2
− 1) + GMAX

2
(3)

3.4 Shape-from-Shading

Shape-from-shading (Horn and Brook, 1989) is a single image
technique to estimate a 3D surface with Lambertian reflectance
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Figure 13: Examples of the turntable sequence with segmented
contour images (40 images)

Figure 14: Examples of binary coded textures (9 images with
horizontal and 10 images with vertical stripes)

properties from a known illumination direction. Photometric stereo
is an extension that uses at least three monoscopic images with
different illumination directions to achieve a unique result (Klette
et al., 1999). These reflectance based methods determine surface
orientations instead of depth information.

3.5 Shape-from-(De-)Focus

The last approach uses monoscopic image sequences with vary-
ing focal length (Favaro and Soatto, 2005). A segmentation of
sharp and blurred image parts provides information about the ac-
tual focused depth. This method requires special sensor proper-
ties with an extreme small depth of field (e.g. microscope).

4 EVALUATION AND RESULTS

The surface reconstruction methods, which are investigated in
this study, have various output formats such as disparity maps,
depth maps, volumetric data or surface orientation maps (see Ta-
ble 2). In order to compare these different outcomes quantita-
tively, one should first convert them to a comparable form. For-
tunately, except for the surface orientation map, all other formats
can easily be converted to a depth map, if image orientation is
available. As we already provide the image orientation, quan-
titative comparison can be performed through depth maps. So,
for evaluating reflectance based methods the surface orientation
maps are used, whereas for the other methods depth maps are
preferred. Once the reconstruction outcome is converted into a
depth/orientation map, it is possible to compare it with the ground
truth depth/orientation map. This comparison is done accord-
ing to two criteria. The first criterion is accuracy. Accuracy is
a measure of closeness of the values of the reconstruction and the
ground truth. Second criterion is completeness. It is a measure of
overall success of the algorithm. The more the scene is modeled,
the more complete is the reconstruction.

Method Output
Stereo Disparity map, depth map
Motion Polyhedron, point cloud
Silhouette Volumetric data, polyhedron
Texture Disparity map, depth map
Shading Surface orientation, needle map
Focus Depth map

Table 2: Output of investigated methods.

Figure 15: Examples of color spectrum textures (9 images with
horizontal and 10 images with vertical pattern)

(a) Left (b) Top (c) Right

Figure 16: Reference image under different illumination config-
urations (3 Lambertian-like images)

Let us denote the ground truth map with G and the reconstructed
map with R. The accuracy of the reconstruction is computed us-
ing the difference between these two maps as shown in Equa-
tion 4. In this equation M is the set of pixels used in evaluation,
n is the total number of pixels in M , and g is the normalization
factor. Normalization factor is either the maximum depth value
(i.e. g = 255) or the maximum norm of the difference vector
given in the equation (i. e. g = 2).

aR,M = 1− 1

n
×

∑
i,jεM

(
|R(i, j)−G(i, j)|

g

)
(4)

The accuracy term can be used to rank different reconstruction re-
sults. However, accuracy alone would not be a sufficient for a fair
ranking. If there are pixels on the map, whose depth/orientation
values cannot be correctly reconstructed, this should also be taken
into consideration. Completeness is defined as the ratio of well-
reconstructed pixels to all pixels as given in Equation 5. δ is a
threshold for error tolerance. The accuracy and completeness of
an implementation of the space carving algorithm is given in Ta-
ble 3 as an example. Reconstruction result of an implementation
of the narrow-baseline stereo algorithm is illustrated in Figure 18

cR,M =
1

n
×

∑
i,jεM

(
|R(i, j)−G(i, j)|

g
< δ

)
(5)

Using the formulas provided above it is possible to measure the
accuracy and the completeness of a reconstruction at specific re-
gions. This allows us to investigate the success of each method
in reconstructing challenging cases, such as self occlusion, con-
cavities, sharp surface discontinuities etc. Thus, mostly inspired
by (Courtney et al., 1996), we provide masks (see Figure 17),
which can be used to compute the accuracy and completeness ac-
cording to the following criteria.

Uniformity: Regions where the deviation of gradients of the pix-
els is less than a given threshold.

Occlusion: Regions that are occluded in the matching image.

Depth discontinuity: Regions where the deviation of depth val-
ues of the pixels is less than a given threshold.
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(a) Object mask (b) Object without shadows

(c) Uniformity mask (d) Depth discontinuity mask

Figure 17: Masks for investigating detailed aspects.

Mask Accuracy Completeness
δ = 0.10

Object 0.9787 0.6998
Object without shadows 0.9883 0.7255

Uniformity mask 0.9864 0.7272
Depth discontinuity 0.9185 0.6557

Table 3: Accuracy and completeness of an implementation of the
space carving algorithm

5 CONCLUSIONS AND FUTURE WORK

In this study, we introduce a true benchmark dataset for perfor-
mance evaluation of shape-from-X algorithms and a test proce-
dure for evaluating the reconstruction results. Our aim in this
work is to support an objective comparison of different approaches
and to provide an informative basis for the combination of re-
construction methods. Researchers are invited to download this
benchmark dataset data from our web server and return their re-
sults to see how successful or unsuccessful their method with re-
spect to other methods is.

REFERENCES
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