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ABSTRACT: 
 
This study focuses on the automatic extraction of DTMs from urban DEMs produced by image correlation. Many methods have 
been proposed in the literature yet processing correlation DEMs in any kind of areas remains a challenge. This paper presents a 
hybrid approach that combines complementary aspects of both TIN-based and segmentation-based techniques. Unlike previous work 
involving two complementary modules, the two techniques closely interact during the process. The DEM is first segmented and 
classified into ground and aboveground regions using contextual information. A DTM is then derived from the ground regions using 
a TIN-based technique. The classification and the DTM estimation are finally iteratively performed until stability. The hybrid 
approach for DTM extraction has been tested over several representative data sets and compared with the TIN-based and region-
based approaches applied independently. It clearly shows that coupling complementary approaches improves the quality of the 
resulting DTM, as well in dense urban areas as in rural or hilly areas. 
 
 

1. INTRODUCTION 

The production of Digital Elevation Models in urban areas has 
undergone major advances thanks to the evolution of sensors 
and processing algorithms. Urban DEMs can be acquired using 
two main techniques: LIDAR scanning techniques, providing 
highly accurate DEMs, and image matching techniques, based 
on the correlation of at least two aerial or satellite images, 
providing DEMs at a competitive cost. DEMs can rarely be 
used as such but is a good basis for further analysis. A 
preliminary step to building reconstruction or change detection 
is often the derivation of a Digital Terrain Model, which only 
describes the ground surface.  
 
This study focuses on the automatic extraction of a DTM from a 
high-resolution DEM produced by image correlation in urban or 
rural areas. No external data is used. The method must be easy 
to tune, cost-effective, and able to cope with noise and 
occlusion areas. The resulting DTM should be accurate and 
smooth whilst preserving breaklines. 
 
Section 2 first presents the current state-of-the art for deriving a 
DTM from a correlation or LIDAR DEM. Section 3 then 
focuses on a hybrid method based on two complementary 
techniques. Finally, qualitative results obtained on several data 
sets are presented and analysed in section 4. 
 

2. RELATED WORK 

All filtering algorithms are based on assumptions about input 
elevation data and ground characteristics. Some methods make 
use of external data, like building or vegetation masks. Most 
recent filters have been designed for LIDAR data: a thorough 
study of performance has been carried out in (Sithole, G. and 
Vosselman, G., 2004). We can distinguish several categories of 
methods that can be applied to LIDAR or correlation DEMs.  
The first category of methods is based on local operators. This 
is the case of morphological filters or slope-based operators 
(Weidner, U. and Förstner, W., 1995; Eckstein, W. and Munkelt, 
O., 1995; Schiewe, J., 2000; Roggero, M., 2001; Sithole, G., 

2001; Zhang et. al., 2003). These techniques often encounter 
problems when an aboveground object is disconnected from the 
ground (like a building surrounded by others), and they do not 
always preserve breaklines.  
A second type of techniques relies on the optimisation of a 
piecewise continuous surface representing the ground. The 
DTM is initialised using all the input points then refined within 
an iterative process. A popular method is the hierarchical robust 
interpolation of the bare surface using linear prediction (Pfeifer 
et. al., 2001). The ground surface can also be estimated using 
the principle of active shape models (Elmqvist, M., 2002) or by 
means of a global parametric model (Belli, T. et. al., 2001). In 
(Champion, N. and Boldo, D., 2006), the elastic grid technique 
is coupled with M-estimators to reduce effects of outliers. In 
general, the quality of the resulting DTM depends on the 
initialisation and on the various parameters characterizing the 
surface. The limits of these techniques can be the computing 
time, the number of parameters, and often the difficulty to 
handle terrain discontinuities and sharp ridges. 
The TIN-based approaches can be seen as a particular case of 
the surface-based approaches. The ground surface is modelled 
as a TIN (Triangular Irregular Network) and iteratively 
densified. Seed points chosen from the input DEM initialise the 
TIN, then consistent points are iteratively added to the current 
TIN model (Axelsson, P., 2000; Sohn, G. and Dowman, I., 
2002). These methods provide accurate DTM preserving 
breaklines, however they are very sensitive to errors present in 
the initial TIN. In addition, they do not simultaneously cope 
with extended aboveground objects and steep hills. 
Another category of methods relies on the segmentation and the 
classification of the input DEM. Segmentation can be 
performed using a growing and merging algorithm (Baillard, C. 
and Maître, H., 1999), or profile analysis (Sithole, G. and 
Vosselman, G., 2005). A label is given to each segmented 
region using geometric or contextual criteria. These methods 
provide a classification of the scene but the DTM still needs to 
be estimated. 
Some examples of combinations coupling different techniques 
can be found in the literature. Typically a classification of the 
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scene is first performed, then the ground surface is estimated 
from the ground points only. In (Abo Akel, N., et. al., 2004), 
the road regions are first detected then used to initialize a DTM 
before a robust interpolation based on polynomial polygons. In 
(Van de Woestyne I. et. al., 2004), the scene is segmented using 
3D spheres then a parametric surface model is applied. In 
(Bretar, F. et. al., 2005), the points are first classified using a 
multiple pass classification, then the ground surface is estimated 
using a deformable model where “ground” laser points are 
considered as local attractors.  
 

3. PRESENTATION OF THE HYBRID METHOD 

Most previous studies focus on LIDAR DEMs. Correlation 
DEMs have different characteristics: height discontinuities are 
less accurately located and data are generally noisier, possibly 
with some occlusion areas that do not contain any 3D 
information. The extraction method must be robust enough to 
deal with noise and outliers.  
A hybrid approach has been designed that combines 
complementary aspects of both TIN-based and segmentation-
based techniques. It stems from the work described in (Baillard, 
C. and Maître, H., 1999), which was extended to cope with 
steep slopes, breaklines and complex shapes. Unlike previous 
work involving two complementary types of techniques, the 
TIN-based and segmentation-based techniques closely interact 
during the process. 
Section 3.1 presents the selected TIN-based method for 
estimating the DTM. Section 3.2 presents the method for 
classifying the scene according to the estimated DTM and 
contextual information using a Markov random field model. 
Section 3.3 shows how the two techniques interact. 
 
3.1 DTM estimation with a TIN-based approach 

The approach is an extension of (Axelsson, P., 2000), which is 
implemented in the commercial software TerraScan. A sparse 
TIN is created from seed points and iteratively densified.  At 
every iteration, points can be added to the TIN if they are below 
data derived thresholds. These thresholds are distances to TIN 
facets and angles to the facet nodes. The original algorithm 
proceeds as follows: 

- Estimation of initial thresholds using all the data; 
- Selection of seed points within a user-defined grid; 
- Iterative densification of the TIN : 

o Updating thresholds using the current TIN 
o Adding to the TIN the points that meet 

constraints on distance and angles. 
The selection of seed points is critical, as they are never 
questioned afterwards. Wrong seed points can be selected in 
case of low outliers in the input DEM, or in the presence of 
large building blocks or wooden areas. Besides, breaklines are 
preserved only if the final TIN density is close to the original 
density of points, which is computationally expensive.  
The original algorithm has therefore been extended. Seed points 
are selected from a grid as the 95% lowest point of each grid 
cell, which makes initialisation more robust to low outliers. 
Selected seed points are used to create a TIN. The slopes of the 
TIN edges are computed. Each seed point is associated to the 
median slope value determined from all the TIN edges 
connected to it. If the slope value is too big (local maximum) or 
too small (local minimum) then the seed point is rejected. In 
order to reduce computational times, the final TIN density can 
be reduced to 1 to 5m according to the application. A new stage 
has therefore been added at the end of the original process: A 
point can be added to the TIN if its height is located between 

the lowest vertex and the highest vertex of the triangle that 
contains it. This post-processing helps in preserving breaklines 
and reduces effects of low outliers in the initial TIN.  
The adapted Axelsson filter offers very interesting results in 
terms of computation time and breaklines, although particular 
attention must still be paid to the initialisation of the TIN. 
 
3.2 Scene classification with a region-based approach 

The method was originally proposed in (Baillard, C. and Maître, 
H., 1999). The input DEM is segmented into ground and 
aboveground regions using a Markov random field model. It 
relies on the following definitions: an aboveground region is a 
homogeneous part of the scene higher than the surrounding 
ground, from a critical value δ0. More precisely, the original 
technique can be described as follows: 

- Segmentation of the input DEM into homogeneous 
regions using a growing and merging algorithm; 
creation of the corresponding adjacency graph, called 
“3D graph”;  

- Initialisation: each node s (region) is associated to the 
label  “ground”; 

- Iterative classification of the node labels as “ground” 
or “aboveground” (see Figure 1): 

o Estimation of a DTM from the “ground” 
labelled nodes, using basic sampling within 
a 25m grid; 

o New estimation of the node labels using a 
Markov random field model  

The process stops when the classification is stable. 
 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 

3D graph 

Label initialisation 
(all labels set to « ground ») 

Labelled 
3D graph 

Label estimation DTM estimation 
(energy minimisation) (grid sampling) 

DTM 

Figure 1: Iterative process for the region-based approach 
 
The estimation of the labels is formulated as the minimization 
of a potential function UG given by:  
 
 UG = α . Ud + β . Uc   (1) 

 
The potential Ud is the data related potential linking elevation 
and label at each node. It is dependent on the current DTM.  
The potential Uc is the contextual potential depending on the 
difference in height between each pair of neighbouring nodes.  
Weighting parameters α and β are defined such as α + β = 1. 
The potential functions are made of arcs of a Gaussian and need 
only one user-defined parameter δ0, which is the maximal 
difference in height between two neighbouring “ground” nodes. 
The potential values computed at a given site are comprised 
between –1 and +1. A value equal to –1 indicates a possible 
configuration, whilst positive values correspond to unlikely 
configurations. 
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More precisely, the potentials are defined as follows: 
 
• ∑=
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where Vd(s) is the data related potential function at node s and       
N is the number of nodes.  
Figure 2 shows the appearance of Vd(s) for a “ground” node 
and an “aboveground” node, as a function of the relative height 
h(s) = z(s) – zdtm(s).  
 
 
 
 
 
 
 

Figure 2: Data related potential functions 
 
The functions are parameterised by data-derived parameters 
h0(s), h1(s) and h2(s) defined by: 

o h0 = zdtmAvg(s) + δ0  
o h1 = MIN(zdtmMin(s) + δ0, zdtmAvg(s)) 
o h2 = MAX(zdtmMax(s) + δ0, zdtmAvg(s)+2 δ0) 

where zdtmAvg(s), zdtmMin(s) and zdtmMax(s) are respectively 
the average, the minimum and the maximum elevations of the 
DTM over the node s. The elevation h0 is the critical value 
above which Vd(s) is favourable to aboveground label. 
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where Vc(s,s’) is the contextual potential function at pair (s,s’),       
ω(s,s’) is a weighting function, and M a normalization constant 
defined by:  
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Figure 3 shows the appearance of Vc(s,s’) for the four possible 
configurations of labels, as a function of the difference in height 
δ = z(s) – z(s’).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Contextual potential functions 
 
The parameter δ0 is the critical difference in height mentioned 
earlier. The standard deviations of the Gaussians are derived 
from the data.  
The original method was modified in order to better deal with 
steep slopes or disconnected regions. The standard deviations 
were made dependent on the local slope of the input DEM. If 
θ is the local slope of the DEM computed between [0;π/2], then 
the standard deviations are defined by: 
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The standard deviations are inversely proportional to the slope. 
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Additionally, the weighting function ω(s,s’) is equal to the 
length of the borderline between two neighbouring regions to 
limit the effect of small outliers.  
These new potentials have a better behaviour in case of slope or 
extended aboveground areas. However low aboveground 
objects are not always detected, and the resulting DTM is 
irregular because no consistency is taken into account between 
the sampled points (basic sampling within a 25m grid). 
 
3.3 Global optimisation with a hybrid approach 

In order to cope with the limitations of both methods, a hybrid 
combination has been designed. The scene is first segmented 
and classified with the region-based approach using contextual 
information only (no DTM estimation is involved). Then the 
classification and the TIN-based DTM estimation are iteratively 
performed until stability (see Figure 4). The two techniques 
closely interact during the process: the region classification is 

 to filter non-ground points before the DTM estimation; the 
DTM estimation is used to compute the data related potential 
related to the graph. 

used

Unlike the work previously described in (Baillard, C. and 
Maître, H., 1999), the DTM is finely estimated at each iteration 
of the process resulting in a accurate and consistent description 
of the ground elevation and the scene content. The first 
estimation stage based on contextual energy makes the TIN 
densification less dependent on initialisation because it is 
always based on a realistic classification.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4: Iterative process for the hybrid approach 
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4. EXPERIMENTATION AND DISCUSSION 

The hybrid approach for DTM extraction has been tested over 
several representative data sets and compared with the TIN-
based and region-based approaches applied independently. 
 
4.1 Input Data 

Four data sets are presented in this paper. The DEMs of Borup, 
Marseille1 and Marseille2 are shown in Figure 5a, 6a and 7a. 
They were computed by image correlation with software 
developed at Siradel and presented in (Baillard, C., 2003). The 
data was derived from stereo images with 60% overlap and 
includes noise and occlusion areas. The DEM over Lyngby is 
shown in Figure 8a. It was provided via EuroSDR 
(http://buildingsdetection.free.fr/) by the Danish National 
Survey and Cadastre (KMS) and was computed using LIDAR 
data. Table 1 summarizes the characteristics of the input DEMs. 
 

Name  DEM 
Res (m) 

Area size  
(m²) 

ΔZ Type 

Borup 1 1000x1000 35 Peri-urban 
Marseille1 0.37 464x655 55 Urban 
Marseille2 0.37 591x653 35 Dense urban 
Lyngby 1 1000x1000 45 Urban 

Table 1. Characteristics of the input DEMs. 
 

All the DEMs were processed with the same set of parameters. 
The final sampling resolution of the DTM is 5m for the three 
methods. 
 
4.2 Qualitative results 

Figure 5 and 6 show the results over Borup and Marseille1. The 
DTM was computed with different methods: TIN densification 
(Figures 5b and 6b), region classification and basic sampling 
(Figures 5c and 6c), and hybrid method (Figures 5d and 6d). It 
is clear that the TIN-based method tends to erode the top of 
hills (see Marseille1) and does not cope with extended 
aboveground regions (see forest of Borup). The region-based 
approach has a better behaviour with these objects however 
fails at detecting low above-ground objects (see south part of 
Borup). The hybrid approach takes advantage from both 
methods. Low aboveground objects as well as extended ones 
are correctly detected, and the relief is preserved even in case of 
strong slope. Even when classification fails, the robust TIN 
densification allows producing a correct DTM.  
More examples can be found in Figure 7 and 8 on the areas of 
Marseille2 and Lyngby. On Marseille2 raised car parks have 
been correctly rendered. On Lyngby most ground features are 
correctly represented, and the breaklines are preserved. Only 
the raised road has been partially removed from the DTM. This 
shows a limit of the method that cannot distinguish between a 
raised road and a low and large building despite the global 
optimisation of the potentials. Some errors can also occur at low 
building or vegetation areas disconnected from the ground, 
which can be included in the final DTM. 
The average computation time was 30s with the TIN-based 
method, 1mn30s for the region-based method, and 2mn30s for 
the hybrid method. The hybrid method is obviously more 
expensive than the other ones because classification and TIN 
estimation are iteratively performed, but the computation time 
is still acceptable for operational DTM production.  
 

5. CONCLUSION 

In this paper, we have presented a hybrid method for deriving 
DTMs from urban DEMs. TIN-based DTM estimation and 
region-based classification closely interact during the process. 
Improvement has been qualitatively demonstrated over several 
data sets. The method needs no tuning and is able to cope with 
noise and occlusion areas. Resulting DTMs are accurate and 
preserving breaklines. The method can be applied to correlation 
DEMs or LIDAR DEMS. The good results show the feasibility 
of such a method for the operational production of DTM over 
various kinds of areas: dense urban cities, suburban areas with 
forests, hilly areas, etc. A quantitative analysis must be 
performed to complete the study. 
Residual errors often come from low buildings disconnected 
from the ground, which should be corrected by detecting 
isolated maxima in the final TIN. A pre-processing step 
detecting road regions as proposed in (Abo Akel, N., et. al., 
2004) could solve the delicate problem of raised roads and 
bridges. The main drawback of the method stems from the TIN 
representation itself, which is not smooth enough between 
breaklines. Further studies will focus on the final estimation of 
the DTM using a surface-based technique. 
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Figure 5: Borut; (a) = Input DEM;  (b) = DTM from TIN-based 
method; (c) = DTM from region-based method; (d) 

= DTM from hybrid method 
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(d) 

Figure 6: Marseille1; (a) = Input DEM; (b) = DTM from TIN-
based method; (c) = DTM from region-based 

method; (d)=DTM from hybrid method 
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Figure 8: Lyngby Figure 7: Marseille2   
(a) = Input DEM; (d) = DTM from hybrid method (a) = Input DEM; (b) = DTM from hybrid method 
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