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ABSTRACT: 
 
Retrieve the structure of model and the motion of camera is a classical and hot topic in computer vision and photogrammetry. A lot 
of automatic or semiautomatic techniques have been developed to optimize the retrieving processing from accuracy, stability and 
reality perspectives. These techniques are variant from data source, feature selection for matching, feature clustering and 3D model 
representation. The optimization algorithm and a completely automatic system are still under exploring. In this paper, we use some 
image-based algorithms for feature selection and matching of 3D man-made scene reconstruction. We present a robust point 
matching algorithm with RANSAC estimator, and compare two methods of line matching in a complex man-made environment. We 
point out the degeneracy when use epipolar line as a constraint to match line, instead use a global optimization method. Our 
experiments show that the proposed method is robust in a complex man-made scene. 
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1. INTRODUCTION 

Observing the world through the eyes of machines or imitating 
the human ability of perception is the essence of computer 
vision and photogrammetry. Computer vision is an integrated 
subject of computer technology, image processing, pattern 
recognition, and computer graphics. There are many interesting 
research areas in computer vision, for example, robot 
navigation, traffic tracking, face recognition, recovering 3D 
structure of the environment, and so on. Among these research 
areas, recovering architectural 3D models from complex man-
made environment has been a very hot one in recent years. 
Applications of architectural 3D models are, for example, 
tourist navigation and heritage protection. There exist a wide 
variety of methods related to model recovery (Baillard, 2000 
and Cantzler, 2002). The differences between these methods are 
from the manner of getting data to the representation of the 
scene model. The most appropriate model recovery method 
depends on the type of a scene that is to be reconstructed, and 
the application requirements like real-time/unreal-time, detail 
representation degree, and etc.. 
 
Figure.1 is a general flow chart describing the processes of 
model reconstruction. Most of the existing image-based 
methods are based on three-stage process (Bartoli, A., 2007). 
First, sparse features (points, lines, ect.) are extracted and 
matched in multi-view and then 3D features and camera pose 
are reconstructed by using structure from motion techniques. 
The remaining two stages are scene model selection and 
parameter estimating. After these steps we can then represent 
the model in the form of a dense depth map, triangular mesh or 
a set of space planes. 
 
When considering man-made environment, we choose distinct 
points to recover the camera motion and then to achieve plane-
based model by clustering reconstructed line features. This 
plane-based model is motivated by reasons like very 

constrained, compact representation and modify the 
reconstruction easily as described in (Bartoli, 2007; Hartley,  
2000). 
 

 
Figure.1 Flow chart of reconstruction. 

 
Real man-made scenes are usually very complex with occlusion 
and noise. In this paper, we combine several algorithms to 
present a stable and automatic processing for recovery the 
structure of a scene and the motion of the camera with distinct 
features of point and line. We present a robust point matching 
algorithm with RANSAC estimator, and compare two methods 
of line matching. We point out the degeneracy when use 
epipolar line as a constraint to match line, instead use a global 
optimization method. 
 
 The rest of the paper is organized as follows. Point feature 
extracting and matching to recover the motion of the camera are 
described in section 2. The line extracting and matching 
approach with constraints are discussed in section 3. 
Conclusions and future work are presented in section 4. Each 
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section is provided with experiments results of real man-made 
scene. 

2. STRUCTURE FROM MOTION 

As described in (Hartley, 2000) and (Marc, 2004), we can 
recover the structure of scene and the motion of camera from 
single or multi-view. In this paper we consider multi-view. The 
critical problem of reconstruction model in multi-view is to find 
corresponding features in the images. In a complex man-made 
scene, even advanced point extracting algorithm like Scale-
invariant feature transform (SIFT) (Lowe, 2004) still induce a 
lot of wrong matches. In such case, a traditional least-squares 
based approach will fail to compute the fundamental matrix. 
Therefore a robust method is needed. 
 
2.1 Feature extraction and matching 

Typical point extraction and matching approaches make use of 
the Harris operator to extract corner points in multi-view 
separately and then compare them with an intensity constraint 
using dissimilar measurement, e.g. sum-of-square-differences 
(SSD) or zero-mean normalized cross-correlation (ZNCC). 
These measurements are invariant to image translation and are 
difficult to choose measuring window size especially in 
repeated or deficient texture region. Therefore we need an 
advanced approach like SIFT to cope with large variations in 
camera pose. 
 

 
 

 
 
Figure.2 Distinct points extracted by Harris (top) and SIFT 

(bottom). 
 
 
Figure.2shows a comparison of results from Harris and SIFT 
extracting operators. The top image uses Harris operator, and 
the extracted corner points are of high precision. However, 
some points on the tree are also extracted. These points are not 
needed, because they can not be differentiated from their 
neighbourhood region, and then induce wrong matching. We 
need to delete these points before further processing, otherwise, 

this set of points will result a lot of outliers. The bottom image 
uses SIFT operator to extract points which are almost on the 
main building. We don’t need a pre processing step compared 
with using Harris operator. Points extracted by SIFT are highly 
distinctive. This is because the SIFT operator takes advantage 
of scale-space extrema detection, and detected points are local 
xtrema with respect to both space and scale. 

2.2 Computation of fundamental matrix  

The gener

e
 

 

The fundamental matrix expresses the geometry structure 
between two views. al method needs at least 8 
corresponding points, i imm ′↔ , to solve linearly

squares approach minimizes the cost 
nction in equation (1) 

 

 matrix F 

which satisfies the condition 0=′ iiFmm . With more than 8 
pairs of points, a least-
fu
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igure.3. Each figure is superimposed by two views, and the 
two end points of each red line in the figure denote a 
corresponding point pair. 
 

 
When the outliers are more than 50%, the least-squares 

approach will fail. We use a well-developed 
estimation method, RANdom Sample Consensus 
(RANSAC) (Fischler, 1981), to detect outliers. The 
results before and after outliers deleting are shown 
in  

F

 
 

 
 
Figure.3 The top image with outliers and the bottom image 

without. 
 

 in space 

atio The camera matrice

2.3 Computation of the camera matrices and computation 
of points

A perspective camera is modeled through the projection 
equ M s P corresponding to a n Pm ~ .

652

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 



fundamental matrix F may be chosen 
as [P = ]0|I and ]|][[ eFeP × (Hartley, 2000). The 
reconstructed points will be shown in Figure.8 in the n

′′=′
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shows the geometric constrai
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ometry and intensity 
t we try to use 

candidate line with 
neighbourhood of the original line to 

 

section. 
3. LINE MATCHING AND RECONSTRUCTION 

When line features are extracted by a detection operator like 
Canny, many variant methods can be used for matching. A fast 
and stable matching method should satisfy two critical 
requirements: appropriate search range and distinct dissimilar 

easurement. Usually, epipolar linm
information are two effective constraints. So firs
these two constraints to match lines. 
 
3.1 Epipolar line constraint and degeneracy 

Figure.4 nt described as epipolar 
line. The two end-points of a line segment generate two 
epipolar lines in the other image. These two lines intersect at 
epipole e′ . The corresponding line segment should be 
necessarily intersected or contained in the shadow range of the 
right figure in Figure.4. Perhaps more than one line are 
contained in this range. These lines are all regarded as 
candidate corresponding lines. Then we compare the similarity 

f the intensity neighbo
respect to the 
match them uniquely

 
Fi earch space 

 
 

gure.4 Applying the epipolar line to reduce the s
of candidate lines. 

 
 

 
p row pictures show the epipolar line constraint for 
a vertical line, while bottom row pictures show this 
constraint for a horizonta

Figure.5 To

l line. In four pictures, red 

is a 
ig problem when use eoipolar line as constraint condition for 

d to find a better solution. 
 

lines represent extracted feature lines and blue lines 
represent epipolar lines. 

 
However, there might be degeneracy, that as described in 
(Hartley, 2000), lines in 3-space lying on epipolar planes cannot 
be determined from their images in two views. The degeneracy 

usually occurs when we get images what are almost parallel to 
the space object surface. For example, in the first row of 
Figure.5, the search range is clear and doubtless for the vertical 
lines, but for the horizontal lines in the second row, the search 
range becomes narrower and is difficult to confirm. This 
b
line matching. Therefore, we nee

3.2 Homography constraint  

The projective geometry of two cameras is described 
as Hmm ~′ , where H is the homography plane. Although the 
object building is not a plane, when compared to the distance 
between the camera center and the object, we can regard a 
facade as an approximate plane. Since we just need 
homography condition to restrict the matching search range, we 
don’t need very high precision. Figure.6illustrates the relation 
between homo eom y. From the figure, 
we can see that, if the space point i ut of the homography 
plane

graphy and epipolar g etr
s o

π , then Hmm ≠′ , where m and m′ are a pair of points 
corresponding to a same space point M . We try to determine 
H in two different ways. The first way is using redundant 
corresponding points to find an optimal solution with a least-
squares approach. The second one is featureless based on a 
global optimization method inspired by the differential 
volution (DE) algorithm (Price, 2005). This method has been 

successfully used for image registration (Karimi, 2008). 
 

e

 
elation etween homography and epipolar geometr
Any  mapped by the homography

Figure.6 R  b y. 
space point M  

planeπ lies on its corresponding epipolar line el′ . 
 
Using redundant corresponding points, a least-squares approach 

inimizes the energy function in equation (2) 
 
 

                 

m
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s a global search in the param
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The DE algorithm perform eter 
space, using N vectors { }1,2,1,0|, −= Nix  as a 

population for each generation G, 

where T
Dxxxxx ],,,[ 1210 −= is a D-dimensional 

parameter vector. The initial population of DE is chosen 
randomly. DE genera

Gi

tes new parameter vectors by adding the 
weighted difference between two population vecto
vector according to  

rs to a third 

)( ,,,1, 321 GrGrGrGi xxFxv −+=+              (3

 

) 

653

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 



 
where ]1,0[,, 321 −∈ Nrrr are randomly chosen integers. A 
given energy function can determine whether the old vector 
should be replaced by the new vector. When processing 
terminates, the final parameters correspond to a global 

inimum energy value. 

 the case of H matrix, we give an energy function as follows: 

 

     (4

where n t

alue of p in the age 

 is calculated from

The transfo

alue concentrates to a 
obal minimum with enough generation. 

D lines and the 
reconstructed 3D lines compared with the 
reconstructed 3D points are shown in  Figure.8

 

 
 

m
 
In
 

∑ ∑ ′′−= + nyxIyxIe iiyx /)),(),((min 2
1   ) 

 
 

) is the pixel value of point m he image i and 

) is the pixel v oin
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Figure.7shows the difference between the original and the 
transformed images. rmed image satisfies the 

constraint condition Hmm ~′ . Image (a) shows the 
difference between two original images. In image (b), the 
transformed image comes from H matrix which is calculated 
using redundant corresponding points. These point pairs are 
obtained from SIFT extraction operator described in section 2.1. 
Since the points congregate at the top of the image, the bottom 
part of the image is out of control. Result using DE is shown in 
image (c). The bottom part still has corresponding problem 
because it has comparative depth different with the surface of 
the object building. But for the top part, the result is good 
enough for the reason of constraint matching search. Image (d) 
shows that, in DE algorithm, the energy v
gl
  
Using homography and intensity constraints, it is easy to match 

corresponding lines in two adjacent images. Using 
the camera matrices got from section 2.3, we can get 
the reconstructed 3D lines from the matched 
corresponding lines. The extracted 2

 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
 (d) 

 Figure.7 Homography matrix got from redundant 
corresponding points and differential evolution. 
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Figure.8 Extracted lines in adjacent images and reconstructed 

3D lines compared with reconstructed 3D points.  
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4. CONCLUSION AND EXTENDED WORK 

In this paper, we described robust points matching algorithm 
with RANSAC estimator, and compared two methods of line 
matching in a complex man-made environment. Through 
comparion, we conclude that, differential evolution is a global 
optimization method and it tolerates complex man-made scene 
which usually has a mass of noise. To represent reconstructed 
model with planes, further work includes clustering 
reconstructed 3D lines into planes and evaluating model 
parameters.  

Price, K. V., Storn, R. M. and Lampinen, J.A.,2005. 
Differential Evolution: A Practical Approach to Global 
Optimization. First edn, Springer. 
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