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ABSTRACT:

The main purpose of this project was to investigate the possibility of using airborne laser scanning data as a source of information for
supervised land cover classification of Widawa River valley. The project was done for the need of hydrodynamic modeling of flood. Laser
scanning data was used both as a sole and supplementary source of information about land cover. The second approach was based on
non-metric aerial photographs taken during laser data acquisition. Aerial photographs were directly included in vector classification as
RGB channels. They were also applied in GLCM texture features calculation. On the strength of laser scanning data and photographic
features, large numbers of experiments were performed to find the best combination of data set and classification methods. In order to
quantify the quality of the results, a confusion matrix was created for each case. As a quality parameters kappa coefficient, producer and user
accuracy were proposed. These experiments demonstrated that scanning data, as the only source of information, is insufficient for land cover
classification. However, by including altitudes and RGB and texture features in vector classification results improve. The replacement of
differential model estimated on the basis of DSM and DTM with height variance gives comparable results. The inclusion of intensity image
in the feature vector does not reduce false classification rate in a significant way. However this information is useful for water detection even
if it is invisible on aerial photographs. The best results are obtained by an artificial neural network classifier.

1. INTRODUCTION

1.1 Background

Airborne laser scanning data (point cloud) is generally applied in
digital terrain models (DTMs) and digital surface models (DSMs)
generation. Nowadays, it is also used for geoinformation modeling
(trees, buildings, etc.). However, the direct and indirect information
about terrain surface and land use included in laser scanning data
sets also supports the automatic classification of land cover. On the
other hand, categorization of aerial and satellite image contents us-
ing the spectral analysis or other features like textures can be insuf-
ficient in some cases. Classification of land cover, which takes into
consideration vegetation density below the treetop level in the forest
area, can be an example of such problem. Because the laser beam
can penetrate even dense vegetation, it gives some information on
features which are invisible on satellite images or photogrammetric
photographs. In addition to detailed information on geometry, laser
intensity image is recorded, which characterizes the reflectance of
the Earth’s surface. This feature also includes some information on
land cover and can be used in classification process but its usefulness
for afforested areas is still discussed in literature. Original intensity
data has to be calibrated and interpolated into intensity image before
using. In the project only coarse calibration was performed. It was
based on a distance between sensor and scanning point on the reflec-
tive surface. Because the large part of the study area was wooded,
precise calibration on satisfying level was not possible.
Over the last years, flooding has become a huge hazard. The flood
of the Odra river in 1997 was the biggest environmental catastro-
phe in Poland in the XX century. Flood protection and prediction
are becoming very important nowadays. Hydrodynamic models are
one of the most important tools for this studies. These models re-
quire hydrological and geospatial data. The terrain model quality
and land cover characteristics determine the hydrodynamic model
correctness. Modern 2D and 3D hydrodynamic models use Digi-
tal Terrain Model (DTM) for topography description and land cover
classification maps as the source of information on surface rough-
ness.

1.2 Previous Work

Utility of land cover classification was a subject of previous inves-
tigations. Charaniya, Manduchi and Lodha (Charaniya et al., 2004)
used aerial LiDAR data to examine parametric classification of such
land cover classes as road, grass, buildings and trees. They used nor-
malized height of objects from DTM models, height texture feature
computed as a difference between maximum and minimum height
values in a window, difference of first and last return signal, intensity
image and luminance obtained from gray-scale aerial photographs.
As a classifier, they used Maximum likelihood method based on
mixture of Gaussian models for training data modeling. Model pa-
rameters and the posterior probabilities were estimated using Expec-
tation - Maximization (EM) algorithm. Outcomes of the research
were satisfactory. Authors have checked different combinations of
the feature vector. Finally, they recognized the height feature as
very important one for terrain classification. Moreover, inclusion
of luminance and intensity improves recognition accuracy. Katzen-
beisser (Katzenbeisser, 2003) conducted experiments to prove the
utility of reflection intensity in the forest area analysis. His inves-
tigations contains a detailed description of laser impulses registra-
tion for the vegetation area. As an example, he studied intensity
reduction of a single impulse reflection transmitted to the wooden
area. Song (Song et al., 2002) conducted research works whose aim
was to determine land use classes on the basis of information on
reflection intensity. Results were not satisfactory for the classifica-
tion of vegetated areas. Similar intensity of various types of plants
(e.g. grass and trees) which approximates 50% was blamed for these
results. In conclusion, it was stated that the classification quality
should significantly improve the inclusion of height data from laser
scanning.

1.3 Investigation area

The study area was situated in the Widawa floodplain. The Widawa
river, situated in the southern Poland (Lower Silesia), is a right-bank
tributary of the Odra River. The airborne remote sensing data was
collected in the strip of land along the river which was over 10 km
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long and approximately 2 km wide. This strip can be divided into
three sectors: the mouth sector covered with forests, the middle,
agricultural sector and the upper, partly urbanized sector. The mo-
saic of aerial photographs of the study area covers a part of Widawa
River valley in Lower Silesia, Poland. Field photographs show ex-
amples of the land cover types of the discussed floodplain.

Figure 1: Mosaic of aerial photographs of the investigation area, a
part of Widawa River valley in Lower Silesia, Poland. Field pho-
tograps show examples of land cover type of floodplain

2. FEATURE EXTRACTION

A continuous-wave (CW) ScaLars laser system was used to capture
LIDAR data. On the basis of laser data, four types of information
were obtained:

• differential model of height of land cover based on digital sur-
face model (DSM) and digital terrain model (DTM),

• model of height dispersion represented by variance of mea-
sured points height in a regular grid,

• intensity image,

• model of vegetation density, the point cloud was divided us-
ing DTM into levels showing vegetation density change along
vertical section in equal (1m) distance over the land surface.

As a supplementary data source aerial photographs were used. After
calibration the color aerial photographs were decomposed to RGB
channels. On the basis of images converted to grayscale mode, the
GLCM (Gray level co-occurrence matrices) texture features were
calculated. All data types were integrated with spatial resolution of
1m.

2.1 Aerial LIDAR height data

The experiments were carried out using information collected with
ScaLARS system. This system uses Continuous-Wave (CW) laser
scanner. After non-terrain points elimination using raw data, the
digital terrain model and digital surface model were interpolated us-
ing the grid model. The resolution of grid was 1m. To interpolate
DTM and DSM from a point cloud, a moving polynomial method
was used. The differential model of height obtained on the basis of
DTM and DSM is shown in the Figure 2. Generation of DSM and
DTM is a time consuming process. Thus, as an alternative for height
differential model, a height variance of raw laser scanning data was
suggested. This feature refers to the regular, 1m grid and as a surface
unit, 3m square mask was experimentally chosen. The visualization
of height variance of measured points is presented in the Figure 3.
Raw laser scanning data contains many survey points, which are re-

Figure 2: A part of differential model of height

flections from different types of land covers. In the wooden areas,
one group of registered points is represented by points which are
reflections from the surface and the other group is represented by
points which are reflections from vegetation. Due to the fact that
laser rays can penetrate wooden areas, tree-coverage density may
be assessed on the strength of the amount of laser reflections (num-
ber of points) on particular levels over the surface. The model of
vegetation density was generated by dividing the cloud point reg-
istered with a scanner with planes that occur every 1 meter. If at
least one reflection was registered in a given section, it was marked
with a point (1m grid). Then, on the basis of previously created
DTM, plains were transformed into surfaces that were parallel to
the earth surface. In this way, binary information on the reflection
height was obtained. In total, 30 sections that occur every 1 meter
were obtained (the maximum height of tree crowns was about 30m).
The visualization of the fragment of vegetation density model is pre-
sented in the Figure 4.

2.2 Intensity image

In addition to geometrical coordinates, laser scanning systems also
give the intensity of laser beam reflected from the surface. This fea-
ture includes some information on the land cover and can be used in
classification process. However, its usefulness in afforested areas is
still the subject of discussion in literature (Hofle and Pfeifer, 2007).
In recent years we can observe growing interest in this field and at-
tempts to extend its application. For instant, it was observed that
for some mountainous areas, where luminance conditions are poor,
the only information about texture can be laser scanning image in-
tensity. Original intensity data has to be calibrated and interpolated
into intensity image before using. In the project only coarse cali-
bration was performed, based on a distance between the sensor and
scanning point on the reflective surface (Hofle and Pfeifer, 2007):

I(Ds) =
I ·D2

Ds
(1)

where I is registered intensity for single point, D is a distance be-
tween sensor and measured point and Ds is a standard distance.
Because large part of study area was wooded, precise calibration
on satisfying level was not possible. In the Figure 5 normalized
intensity image was shown for a part of investigation area. Despite
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Figure 3: A part of height dispersion model

Figure 4: A part of vegetation density model

calibration drawbacks (the borders of particular scans are vivid), one
can notice water and borders of afforested areas or floodbanks. Nev-
ertheless this image was used in classification. It was assumed that it
would improve identification of objects and noticeable borders be-
tween scans, which may contribute to administration of additional
classes, will be classified as a noise if they coincide with other com-
ponents of the feature vector.

2.3 Aerial images

During laser scanning data capturing, the image of the scanned area
is often recorded as a video or as pictures for interpretation pur-
poses. A number of non-metric pictures were taken with the Nikon
d70W digital camera. These pictures underwent geometric correc-
tion which depended on registration of these pictures in a coordinate
system using projection transformation based on Nearest Neighbour
resampling method. Images were transformed with control points
identified on the basis of topographic map in scale 1: 10000. On av-
erage, 10 control points were applied for a single picture. The RMS
error was approximately 4m. Big errors of adjustment were caused
by amateur method of taking pictures. It does not influence classifi-
cation methodology but it affects its quality. In the mosaic creation
process, the standard method of tone equalization was used. It was
assessed that the spatial density of a pixel was 1m.

Figure 5: A part of intensity image

The extraction of texture features was carried out to fully use infor-
mation included on the aerial pictures. The Neighbour Matrix of
Grey Level Co-occurrence Matrix (GLCM) was used for this pur-
pose. This matrix represents the statistics of occurring different-tone
pixels in a fixed distance. This distance is defined as follows:

Vl,α(i, j) = |{((r, s), (t, v)) : I(r, s) = i, I(t, v) = j}| (2)

where i, j = 0, . . . , N − 1, N - grey levels of points in the picture,
l, α - distance and direction angle, I(x, y)- image pixel at position
(x, y) in the picture, (t, v) = (r + l cosα, s + l sinα). GLCM
matrix must be symmetric:

V̄l,α =
Vl,α + V Tl,α

2
, (3)

and normalized:

Pi,j =
V̄l,α(i, j)

N−1∑
i,j=0

V̄l,α(i, j)

(4)

The following parameters were computed on the strength of GLCM
matrix:
contrast:

N−1∑
i,j=0

Pi,j(i− j)2 (5)

dissimilarity:
N−1∑
i,j=0

Pi,j |i− j| (6)

similarity:
N−1∑
i,j=0

Pi,j
1 + (i− j)2 (7)

max Pi,j :
Max(Pi,j) (8)
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Angular Second Moment(ASM):

N−1∑
i,j=0

P 2
i,j (9)

energy: √
ASM (10)

entropy:
N−1∑
i,j=0

Pi,j(−lnPi,j) (11)

This feature both with RBG channel were included in the classifica-
tion vector for each pixel.

3. CLASSIFICATION AND QUALITY MEASURE

3.1 Classification algorithms and feature vector combinations

The classification of surface roughness involves identification of dis-
tinctive classes that correspond to different land surface types and
allocation of a particular class membership to each pixel (per-pixel
classification). Laser scanning data was used both as the only and
supplementary source of information on the land cover. All data
types were integrated and numbers of experiments were performed
to find the best combination of data set. Three classification methods
were tested:

• multilayer neural networks,

• maximum likelihood classifier,

• k-nearest neighbour method.

On the strength of reconnaissance, 17 classes of land cover were
determined on the study area. Then, their hydraulic features were
evaluated using the sample area at the size of 100x100m. These
classes were found in the terrain and were used as a training data for
classifiers.

Artificial neural networks (ANN)

The application of artificial neural networks for solving problems in
remote sensing has been already well-established (Liu et al., 2002,
Miller et al., 1995, German and Gahegan, 1996). The networks
applied were a feed-forward, multi-layer ones trained by means of
Standard Back-propagation method using hand-crafted reference data.
Neural classifier consists of number of neurons combined together.
The input layer size is determined by the feature vector size and
the output layer is determined by the number of classes. The ar-
chitecture of the hidden layer influences classification result. The
topology of network which would optimally resolve classification
problem was found through experiments.

Maximum likelihood method (MLM)

Maximum likelihood classifier combines probability model with a
decision rule, which is specified as the choice of the most probable
hypothesis. This rule is called maximum a posteriori rule:

Ψ∗(x) = j ⇒ pjfj(x) = maxk∈Mpkfk(x), (12)

where: x = [x1...xn] is a vector of features, j, k are labels of
classes, pj - probability, that observed case belongs to the class j(a

priori probability), fj(x) density function. A priori probability pj
was approximated using formula:

p̃j =
Nj
N
, j ∈M, (13)

where: Nj is a number of objects in class j and N is a number of
all objects. The density function fj(x) was approximated by the
multidimensional normal distributions:

fj(x) =
1

(2π)
k
2 |Ej |

1
2
e

[
− 1

2 (x−mj)T
E−1

j (x−mj)
]
, (14)

where: mj - mean value vector, Ej - feature covariance matrix.

K-nearest neighbour method (k-NN)

K-nearest neighbour method belongs to the most simple classifica-
tion algorithms. An object is classified by a majority vote to the
most common class amongst its k-nearest neighbours in the learn-
ing set. In this project k parameter was experimentally established
as 5.

3.2 Quality measure

In literature (Brivio et al., 2002) to quantify the quality of the results
in an automatic manner a confusion matrix A = [aij ] method is
postulated. This matrix represents a statistics of points that belong
to class j, which were classified as points from class i. A confusion
matrix can be defined as shown in table 1 (Iwaniak et al., 2005).
Elements of A matrix, describe a number of sample pixels from the

pattern
1 2 . . . M

classification

1 a11 a12 . . . a1M

2 a21 a22 . . . a2M

. . . . . . . . . . . . . . .
M aM1 aM2 . . . aMM

Table 1: A confusion matrix

j− th class that were classified as pixels which belong to the i− th
class. The following measures calculated on the basis of confusion
matrix were proposed to quantify results of this experiments:

• user accuracy of class i:

ui =
aii
ari

, (15)

where: ari =
∑

i
ai. (sum of i-th row entries);

• producer accuracy of class i:

pi =
aii
aci

, (16)

where: aci =
∑

i
ai. (sum of i-th column entries);

• overall accuracy d:

d =

∑
i
aii

at
, (17)

where: at =
∑

i
aci =

∑
i
ari (sum of all elements);

• Kappa coefficient:

κ̂ =
Po − Pe
1− Pe

(18)

where: Po =

∑
i
aii

at
and Pe =

∑
i
ariaci

a2
t
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Table 2: Visualisation of the most important results (Part 1)
No. Alg. Feature vector Visualisation

1 ANN Intensity

2 MLM Intensity

3 ANN

Intensity,
Height

dispersion
model

4 ANN

Intensity,
Height

differential
model

5 ANN

RGB, GLCM,
Intensity,
Height

dispersion
model

6 ANN
RGB, GLCM,

Intensity

Table 3: Visualisation of the most important results (Part 2)
No. Alg. Feature vector Visualisation

7 ANN

RGB, GLCM,
Intensity,
Height

differential
model

8 ANN RGB, GLCM

9 MLM RGB, GLCM

10 MLM
RGB, GLCM,

Intensity

11
k-

NN

RGB, GLCM,
Intensity,
Height

differential
model

12 ANN

RGB, GLCM,
Intensity,
Height

differential
model, Model
of vegetation

density
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Table 4: Quality measures of the best result

Class
Id

Quality measure
pi ui d κ̂

1 0.290835 0.757025

0.738917 0.670305

2 0.626177 0.644681
3 0.498922 0.768419
4 0.887319 0.665853
5 0.803451 0.887200
6 0.943158 0.920079
7 0.648010 0.635595
8 0.979317 0.944988

Figure 6: Quality measure comparison for the main results

4. RESULTS

Tables 2 and 3 present the most important results. Qualitative, visual
evaluation of conformity of the classification to the pattern shows
that the best results were obtained for the method of artificial neu-
ron networks for the feature vector that consists of RGB channels,
GLCM properties, intensity and differential model of height and
vegetation density model. The accuracy evaluation was made by
comparison of the results with the pattern which was manually crafted.
The accuracy measures for the best pattern are presented in the Ta-
ble 4. Comparison of κ̂ and d coefficients for the results included in
the Tables 2 and 3 is presented in the chart in the Figure 6.

5. CONCLUSIONS

Experiments demonstrated that scanning data as the only source of
information is insufficient for land cover classification, especially in
vegetated areas. However, inclusion of height information (differ-
ential model or height variance) in classification vector along with
RGB and texture features reduces errors (for example caused by the
imperfection of tone equalization). Using variance of height instead
of differential model estimated on the basis of DSM and DTM gives
comparable results. Moreover, in comparison to DTM and DSM
generation it is easy and fast to obtain this feature. Inclusion of
intensity image in the feature vector does not reduce false classifica-
tion rate to an appreciable degree. However, this information is use-
ful for water detection even if it is invisible on aerial photographs.
The best results are obtained by artificial neural network classifier.
The maximum likelihood method usually gives similar quality, but
the normal distribution model is unsuitable for height models (lack
of distribution in some classes). The k-nearest neighbour method

gives unacceptable results (when taking into account visual evalua-
tion of conformity).
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