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ABSTRACT: 
 
Updated geographic information and 3-D environment models are becoming increasingly important for both military and civilian 
applications such as simulation, mission planning, visualization, landscaping, etc. In order to reduce the time and efforts needed to 
produce accurate and high-resolution models of an area of interest, rapid and highly automatic methods for extracting geographic 
information from sensor data are required. In this paper, we present recent results from the development of methods for processing 
airborne lidar data and aerial imagery, that aim towards rapid and automatic classification of important terrain structures: bare-earth, 
buildings and vegetation. First, an approach for bare-earth estimation is presented that is based on combining two bare-earth 
estimation techniques. Second, a decision-level fusion approach for classification of lidar data is presented.  Third, an approach for 
updating an existing classifcation result using RGB images is described.  
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1. INTRODUCTION 

Realistic high-resolution 3-D environment models are desirable 
in many applications, civilian as well as military, as they can be 
used for visualization, sensor simulation, mission planning and 
rehearsal, etc. In order to produce the models, detailed and up-
to-date geospatial information of the area of interest is needed. 
In many situations, especially in international operations, the 
existence of such information is far from certain. Hence, the 
ability to automatically and accurately extract important 
geospatial information about the terrain from sensor data is a 
valuable asset. In applications within the scope of the Swedish 
Armed Forces, the goal is to be able to perform simulations 
using a high-resolution 3-D model of an area of operation 
within 48 hours from data acquisition. In order to meet this goal, 
fast and accurate data processing techniques are needed, so that 
the amount of tedious manual work, such as verification and 
correction of results, can be decreased. 
 
During the last decade, lidar systems have been extensively 
used for the purpose of extracting 3-D geospatial information, 
as they provide direct and accurate range measurements also 
from partially occluded structures, such as the ground 
underneath tree canopies. One of the most important pieces of 
geospatial information is the bare-earth level, or Digital Terrain 
Model (DTM). Consequently, a number of techniques for bare-
earth estimation using airborne lidar data have been proposed. 
Refer to (Sithole and Vosselman, 2004) for an overview. The 
off-ground data points are typically classified into a number of 
classes, of which buildings and vegetation are two of the most 
common ones. In order to achieve this, lidar-based 
classification often relies on a number of measures designed as 
to capture spatial variation among the data points: maximum 
slope (Maas, 1999), Laplace operator, local curvature (Vögtle 
and Steinle, 2003), multiple echoes, etc. See (Rottensteiner et 
al., 2005) for an overview on lidar features and (Pfeifer et al., 

2007) for a survey of techniques for building detection using 
airborne lidar data. 
 
Although lidar-based classification often provides a good way 
of distinguishing between buildings and trees, it is error-prone 
when the spatial properties of vegetation and buildings become 
very similar. This kind of problem typically occurs with dense, 
trimmed hedges, in sparsely sampled regions, with buildings 
having a weirdly shaped roof, etc. In order to be able to classify 
those objects correctly, more information may have to be used. 
In this paper we consider RGB images acquired from an 
airborne platform as this second source of information, since 
cameras producing such images are very common, relatively 
inexpensive and can be mounted on UAVs, thus desirable to use 
for military purposes. See (Schenk and Csathó, 2002) for a 
discussion on strengths and limitations of lidar data and aerial 
imagery, respectively.  
 
Assuming that some a priori information about the terrain 
exists, possibly as a result of a previous classification step (e.g. 
lidar-based) or in the form of an ordinary map, it is desirable to 
be able to update the results using the available spectral (RGB) 
information together with the existing information about this 
area. The spectral signature in the RGB band is light reflected 
of the objects in the scene, in our case the light originates from 
the sun. For every wavelength the reflection strength varies 
depending on the material of the reflecting object. This gives us 
the possibility to distinguishing different materials from each 
other. This phenomenon has been used together with multi- and 
hyperspectral cameras to discriminate between materials 
created to mimic the real forest (camouflage nets) with good 
results. Refer to (Ahlberg and Renhorn, 2004) for more 
information. The same techniques in a less complex manner 
using the simpler RGB-camera can be used to discriminate 
between materials. By doing so, possible errors in the existing 
geospatial information can be corrected and more accurate and 
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up-to-date knowledge about the terrain is thus obtained. Refer 
to (Schowengerdt, 1997) for an overview of spectral-based 
classification. 
 
In this paper we will outline some work performed at the 
Swedish Defence Research Agency (FOI) on the development 
of methods for processing data from airborne sensors in the 
context of rapid 3-D environment modelling. First, work on 
lidar-based bare-earth estimation and classification is presented. 
Then some initial work on updating classification results using 
RGB image data is reported. 
 
 

2. LIDAR DATA PROCESSING 

In this section, we present an approach for lidar data processing 
aiming towards a highly automated processing framework, from 
raw data to extracted geospatial information. The lidar data 
used in this work have been obtained with the Topeye Mk II 
system (www.blomasa.com/sweden/se/topeye) and the point 
density in the data sets corresponds to about 8-10 points/m2.  
 
2.1 Pre-processing 

The lidar data points from the area under study are first 
organized as tiles (squares) and rasterized onto a grid where 
each cell corresponds to 0.25m, in order to speed up the some 
of the following computations. Each tile represents a region of a 
typical size of 200mx200m plus an additional boundary, i.e. 
overlap between neighbouring tiles, to reduce the boundary 
effects. In each tile, outliers are removed, using the assumption 
that there are less than k% outliers within a small 
neighbourhood (a typical value of k used in this work was 2). 
The data points are sorted according to elevation value and the 
points among the outermost k% that are too far from the rest of 
the points are simply discarded. 
 
2.2 Bare-earth estimation 

The next step is to estimate the bare-earth level. When 
concerned with rapid mapping of large regions using high-
density lidar data, the computational complexity becomes an 
issue. On one hand, the overlap between neighbouring tiles 
should be small in order to speed up computations. On the other 
hand, the overlap should be large to allow for seamless 
integration of adjacent tiles. The problem is that having large 
overlaps leads to significantly increased computational time or, 
even worse, causes problems to store data into the computer’s 
memory. It has been noticed that an overlap of 20m is often a 
reasonable trade-off between computational requirements and 
result quality. 
 
 
2.2.1 Bare-earth estimation techniques: Available to us are 
two techniques developed at FOI, each with its own merits and 
disadvantages. One is computationally attractive as it is based 
on some standard image processing algorithms such as 
watershed segmentation and region growing (Landgård, 2005, 
Tolt et al., 2006). It is particularly useful in urban areas, where 
large connected regions of the ground are clearly visible and the 
ground itself is relatively flat. However, it is typically not as 
successful in dense forest areas, since the ground there often 
appears as fragments that do not form large watershed segments 
which in turn makes it difficult to determine ground seed points 
from which the region growing process starts. The region 
growing process itself relies on a threshold that inhibits the 

ability to climb steep slopes.  
 
The problems with this approach often manifest themselves 
near the boundary of a tile, typically if there is a slope with lots 
of trees on it. This is expected, since if there is hill at the centre 
of tile, the region growing can often find some way to climb it 
(basically it “attacks” the hill from all sides). At the boundary, 
it simply has fewer directions to try. 
 
The second technique is based on the idea of active contours 
(Elmqvist, 2002). It can be seen as surface (a “rubber cloth”) 
that iteratively adapts to the data by optimizing an energy 
criterion that balances the internal forces in the surface (forces 
due to deformations in the surface) with the external forces 
acting on it (attraction forces between the surface and the data 
points). It generally produces good results in complex 
environments such as forests, at the expense of being 
computationally intensive due to the iterative nature of the 
optimization procedure. 
 
2.2.2 The bare-earth estimation approach: The bare-earth 
estimation process starts with applying the fast, region growing-
based technique to all the tiles individually. In order to ensure 
that the resulting DTM does not contain any significant errors, 
the result has to be verified. Performing an inspection of large 
areas “by hand” is time-consuming and it may also be quite 
difficult to spot subtle artefacts. For this purpose, a tool has 
been developed that detects significant errors automatically. 
Here we have focused on the most common source of error, 
referred to as tile mismatch; tiles in which the region-growing 
technique has failed can typically be detected by looking for 
elevation jumps along the boundaries of the tiles (see Figure 1). 
Here we define the tile mismatch measure simply as the 
maximum elevation difference around the tile border. After 
having detected such mismatches automatically, the associated 
tiles are marked as candidates for further analysis.  
 
Now, whether detected errors in the DTM are severe enough to 
actually require further refinement depends on the requirements 
for the application at hand. In fact, even large errors may be 
perfectly acceptable if they occur underneath a building (that 
will cover the mismatch anyway in the final 3-D model). 
Moreover, what specific action that is the most desirable to take 
when an error is detected may also vary. For example, problems 
may be most efficiently solved by correcting the bare-earth 
model manually, by re-running the algorithm with a different 
set of parameters, by defining a larger tile to work on or by 
applying a different bare-earth estimation technique. Here, we 
take advantage of the fact that two bare-earth techniques are 
available to us. Hence, mismatching tiles from the first run are 
subject to bare-earth estimation with the other, more time-
consuming algorithm. The resulting bare-earth estimation 
method, achieved through such a combination of the two 
techniques, is efficient, as the computational resources are spent 
in the most difficult parts of the terrain.  
 
In Figure 1-Figure 3 the approach is illustrated with an example. 
Figure 2 shows the Digital Surface Model (DSM) of this area 
which contains a number of hills with trees on. The resulting 
DTM, shown in Figure 3, consists of a majority of tiles from the 
region-growing technique complemented with a few tiles from 
the iterative approach and now contains no significant 
mismatches. The only elevation differences left between the 
tiles are now mainly due to sensor data noise data and natural 
height variations around the tile borders. 
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Figure 1. The size of the circles corresponds to the degree of 

mismatch (defined here as the maximum elevation 
difference along the tile border) of each tile relative 
to its neighbours. Left: Bare-earth estimation result 
using the region growing technique. The arrows 
indicate the mismatches. Right: Mismatching tiles 
replaced by tiles from the active contour technique, 
producing a bare-earth level without significant 
mismatches. 

 
2.3 Lidar-based object classification 

After the bare-earth estimation is finished, the off-ground lidar 
data points undergo further classification. 
 
2.3.1 Lidar data classification techniques: Some of the 
main interests at FOI concerning processing of lidar data are 
detection and reconstruction of buildings. For this purpose, 
three classification techniques have been developed, each with 
its own merits and disadvantages. One technique (Brandin and 
Hamrén, 2003, Tolt et al., 2006) segments the data using 
multiple echo information and classifies the resulting segments 
using shape and height variation features. Another technique 
(Tolt et al., 2006) detects large regions containing no ground 
hits (using the fact that laser beam often penetrate canopies and 
hits the ground below) and mark the ones containing flat 
surfaces (i.e. roofs) as potential buildings. A third technique 
(Ruhe and Nordin, 2007) performs a connected component 
segmentation of the data and uses features from Principal 
Component Analysis to classify objects.  
 
2.3.2 Decision-level fusion of classifier outputs: The above 
techniques have been all developed using a data from a 
particular system and for a limited geographic region. Hence, 
when applying them to new data, possibly from another system 
and containing previously unseen types of objects, their 
performance may degrade. However, they generally do a quite 
good job at detecting buildings, at least after finetuning/re-
training of the parameters. It has also been noticed that the 
classifiers often make different errors, which is actually not 
unexpected since they are based on different ideas of 
segmentation and feature extraction.  
 

 
Figure 2. Digital Surface Model (DSM) of the region under 

study. 

 
Figure 3. 3-D visualization of the final bare-earth surface model 

(DTM) corresponding to the region in Figure 2.  
 
These observations have led to the idea of fusing the results of 
the individual classifiers to improve the final classification 
result. In this work, a straightforward majority voting technique 
was used, which lead to the cancellation of many of the errors 
(see an example in Figure 4 and Figure 5). 
 

3. REFINING CLASSIFICATION USING AERIAL 
IMAGES 

In this section we present some initial work on updating an 
existing classification result, here obtained through analysis of 
sensor data as discussed above but potentially also in the form 
of a conventional map, using aerial RGB images. In this paper 
we focus on some quite common problems that we encountered 
in the lidar-based classification: to correctly classify flat, 
trimmed vegetation (that may often be mistaken for buildings) 
and buildings with “weird-looking” roofs (whose spatial 
properties may make them escape detection). 
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(a) (b) 

 
(c) (d) 

Figure 4. (a) Elevation image. (b)-(d) The respective outputs of 
the three classifiers for the same area. 

 

 
Figure 5. Left: Result after decision-level fusion of the classifier 

outputs in Figure 4. Right: Manually corrected 
classification, showing all buildings in the area. By 
fusing the result of the individual classifiers, all 
buildings have been detected and only one small 
misclassified object remains. 

 

As with the lidar data, the RGB images used in this work have 
all been acquired with the Topeye Mk II system. The resolution 
of the images is 10 cm. 
 
3.1 Spectral classification 

By using the RGB spectrum in each pixel we want to 
discriminate between different objects. In this first approach we 
only consider the spectral information within the image. The 
measured spectrum will not only depend on the material but 
also on the current sunlight, the atmosphere and the camera 
used at the moment. Our considered techniques need spectral 
models to compare the measure spectrum with. Considering the 
many parameters affecting the spectrum collected by the 
camera, nearly all of them are unknown and thus we need a 
simplified model to estimate the spectrum. 
 
In order to create a spectral model we need some initial spectral 
information which will make it possible to approximate the 
model. All these parameters are rarely available so we have to 
create a local model and consider them all parameters (except 
the material parameter) fixed. The training data needed can be 
found using the lidar classification of trees and buildings. As 
these data generally contain only a few errors, it will give us a 
good model of the light reflected by the objects. 
 
If a spectrum deviates from our forest spectral model it can be 
considered an anomaly/outlier to the forest class. The spectra 
from buildings and other human-made objects will generally 
deviate from the forest model and will thus be considered an 
anomaly, if the spectral model of the forest is correct. 
 
Many different models can be considered and have been 
evaluated before. In this work we have focused on the models 
consisting of a number of Gaussian components. Each Gaussian 
component consists of a mean vector and a covariance matrix. 
The distance from the model is measured as the Mahalanobis 
distance function. Refer to (Mahalanobis, 1936) for further 
reading. 
 
3.2 Anomaly detection 

First we initialise the model using the result from the previous 
lidar-based classification to select spectra from the areas 
classified as trees. In the same way we can create a spectral 
model buildings using areas classified as buildings. Note that by 
using the lidar-based classification results, spectra 
corresponding to measurements of the ground can be removed, 
as the bare-earth level has been estimated. In this way, spectra 
corresponding to the ground materials (such as grass and 
asphalt), do not influence this spectral classification process. 
 
The training data may contain a small amount of faulty 
spectrums; the outliers are the erroneous classifications. These 
outliers are later identified and reclassified. Since only areas 
illuminated by the sun can reflect a spectrum, we only consider 
pixels with intensity above a threshold. The intersections of 
illuminated and classified pixels create the training sets needed. 
 
Using the training spectrum we now estimate the two models, 
for trees and buildings, respectively. Since all training data 
contains several different materials, each with it own spectrum, 
we have to use a number of Gaussian components to represent 
each complete model. The number of Gaussians used depends 
on the complexity of the training data; buildings usually require 
a model for each type of roofing material. The training 
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algorithm can be used to choose the number of components 
needed. 
 
Assuming a two-class problem involving only trees and 
buildings we proceed as follows. First we compute the distance 
from all illuminated pixels to the forest and building models. 
All pixels that were initially classified as forest but are 
considered outliers to the forest spectral model are now instead 
classified as building pixels. And all pixels that were previously 
classified as building but are considered outliers to the building 
spectral model and inliers in the forest spectral model are now 
instead considered forest. As a last step, a morphological 
opening is applied in order to remove spurious “building pixels”. 
The result is an updated and improved classification of the 
terrain. In Figure 6 and Figure 7 some examples are shown. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) Initial classification result obtained through lidar-
based classification. Note the building pixels 
misclassified as vegetation. (b) Improved 
classification of the area through spectral analysis. 
(c) Aerial image. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. (a) Initial classification result obtained through lidar-
based classification. Note the vegetation pixels 
misclassified as buildings. (b) Improved 
classification of the area through spectral analysis. 
(c) Aerial image. 

 
 

4. CONCLUSIONS 

With a goal of producing 3-D models of areas of operation 
within 48 hours, having fast and automatic data processing 
methods available is crucial. In this paper, a number of tools for 
classification of airborne lidar data and aerial images have been 
presented, starting with bare-earth extraction and classification 
using lidar data, followed by an approach for classification 
using RGB images. 
 
First, an approach for bare-earth estimation was presented. It is 
based on applying a fast bare-earth estimation technique to the 
data and then check for suspicious-looking artefacts in the 
resulting bare-earth model. For this purpose, a tool for verifying 
bare-earth level results was presented, that aims at reducing the 
amount of time that a user has to spend on inspecting the result 
and determining which (if any) regions have to be re-processed. 
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So far, the focus has been on the most frequent type of error, 
elevation jumps at the border of adjacent tiles, but checks for 
other errors could also be added, if needed. 
 
Second, a decision-level fusion technique for combining the 
outputs of several individual classifiers was presented. It is 
based on the idea that each classifier does a pretty good job in 
detecting most objects (in this case, building) and that they 
make different errors. By combining the outputs of the 
classifiers, many of these errors cancel out. So far, this work 
has been limited to illustrating the potential the benefits of 
using such an approach. Plans for future work in this area 
include assessing classification performance using ground truth 
data, as well as improving the classification techniques 
themselves. 
 
Third, a technique for updating existing classification results 
using aerial imagery was presented. It is based on the 
assumption that an existing classification map is mostly correct 
(e.g. after lidar-based classification), but may contain errors. In 
this paper, the focus has been on some of the most common 
types of errors found in lidar-based classification, i.e. 
misclassification of flat, trimmed vegetation into buildings and 
buildings missed by lidar methods. By using Gaussian models 
of the simple RGB spectral information it is shown that spectral 
information can affect the confidence of the classification. 
Future plans include studying more ways of combining data and 
information from different sensors (on signal-level, decision-
level, etc.), for improving the terrain classification performance 
further. 
 
 

ACKNOWLEDGEMENTS 

The sensor data used in this work were provided by the Swedish 
Land Warfare Center in Kvarn, Sweden. 
 
 

REFERENCES 

Ahlberg, J., Renhorn, I., 2004. Multi- and Hyperspectral Target 
and Anomaly Detection. Scientific report, Swedish Defence 
Research Agency, FOI-R--1526--SE. 

Brandin, M., Hamrén, R., 2003. Classification of Ground 
Objects Using Laser Radar Data. Master Thesis, Linköping 
University, Sweden, LITH-ISY-EX-3372-2003. 

Elmqvist, M., 2002. Ground surface estimation from airborne 
laser scanner data using active shape models. In: 
Photogrammetric Computer Vision – ISPRS Commission III 
Symposium, vol. XXXIV, part A, pp. 114-118. 

Haala, N., Brenner, C., 1999. Extraction of buildings and trees 
in urban environments. ISPRS Journal of Photogrammetry & 
Remote Sensing, 54, pp. 130-137. 

Landgård, J., 2005. Segmentering och klassificering av Lidar-
data. Master Thesis, Linköping University, Sweden, LITH-ISY-
EX-YY/3729-SE. 

Maas, H.-G., 1999. Fast determination of parametric house 
models from dense airborne laserscanner data. In: The 
International Archives of the Photogrammetry and Remote 
Sensing, Bangkok, Thailand, Vol. XXXII, 2/W1, pp. 1–6. 

Mahalanobis, P .C., 1936. On the generalized distance in 
statistics, In: Proceedings of the National Institute of Science of 
India 12, pp 49-55. 

Pfeifer, N., Rutzinger, M., Rottensteiner, F., Muecke, W., 
Hollaus, M., 2007. Extraction of building footprints from 
airborne laser scanning: Comparison and validaton techniques. 
In: Proc. of Urban Remote Sensing Joint Event, Paris, France, 
pp. 1- 9. 

Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., 2005. Using 
the Dempster–Shafer method for the fusion of LIDAR data and 
multi-spectral images for building detection. Information 
Fusion, 6(4), pp. 283-300. 

Ruhe, J., Nordin, J., 2007. Classification of Points Acquired by 
Airborne Laser Systems. Master Thesis, Linköping University, 
Sweden, LITH-ISY-EX--07/3874--SE. 

Schenk, T., Csathó, B. 2002. Fusion of LIDAR data and aerial 
imagery for a more complete surface description. In: The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, Vol. XXXIV 3/W6 pp. 310–
317. 

Schowengerdt, R. A., 1997. Remote Sensing Models and 
methods for image processing (Second Edition). Academic 
Press. 
 
Sithole G., Vosselman, G., 2004. Experimental comparison of 
filter algorithms for bare-Earth extraction from airborne laser 
scanning point clouds. In: ISPRS Journal of Photogrammetry & 
Remote Sensing 59, pp. 85 –101 
 
Tolt, G., Persson, Å., Landgård, J., Söderman, U., 2006. 
Segmentation and classification of airborne laser scanner data 
for ground and building detection. In: Proceedings of SPIE 
Defense and Security Symposium, Orlando, FL, Vol. 6214, 
Laser Radar Technology and Applications XI.  

Tóvári, D., Vögtle, T., 2004. Object Classification in 
Laserscanning Data. In: International Archives of 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, Freiburg, Germany, Vol. XXXVI, Part 8/W2, pp. 45-
49 

Voegtle, T., Steinle, E., 2003. On the quality of object 
classification and automated building modeling based on 
laserscanning data. In: The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, Dresden, Germany, Vol. XXXIV, 3/W13, pp. 149–
155. 

266

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4234358

	1. INTRODUCTION
	2. LIDAR DATA PROCESSING
	2.1 Pre-processing
	2.2 Bare-earth estimation
	2.2.1 Bare-earth estimation techniques: Available to us are two techniques developed at FOI, each with its own merits and disadvantages. One is computationally attractive as it is based on some standard image processing algorithms such as watershed segmentation and region growing (Landgård, 2005, Tolt et al., 2006). It is particularly useful in urban areas, where large connected regions of the ground are clearly visible and the ground itself is relatively flat. However, it is typically not as successful in dense forest areas, since the ground there often appears as fragments that do not form large watershed segments which in turn makes it difficult to determine ground seed points from which the region growing process starts. The region growing process itself relies on a threshold that inhibits the ability to climb steep slopes. 
	2.2.2 The bare-earth estimation approach: The bare-earth estimation process starts with applying the fast, region growing-based technique to all the tiles individually. In order to ensure that the resulting DTM does not contain any significant errors, the result has to be verified. Performing an inspection of large areas “by hand” is time-consuming and it may also be quite difficult to spot subtle artefacts. For this purpose, a tool has been developed that detects significant errors automatically. Here we have focused on the most common source of error, referred to as tile mismatch; tiles in which the region-growing technique has failed can typically be detected by looking for elevation jumps along the boundaries of the tiles (see Figure 1). Here we define the tile mismatch measure simply as the maximum elevation difference around the tile border. After having detected such mismatches automatically, the associated tiles are marked as candidates for further analysis. 

	2.3 Lidar-based object classification
	2.3.1 Lidar data classification techniques: Some of the main interests at FOI concerning processing of lidar data are detection and reconstruction of buildings. For this purpose, three classification techniques have been developed, each with its own merits and disadvantages. One technique (Brandin and Hamrén, 2003, Tolt et al., 2006) segments the data using multiple echo information and classifies the resulting segments using shape and height variation features. Another technique (Tolt et al., 2006) detects large regions containing no ground hits (using the fact that laser beam often penetrate canopies and hits the ground below) and mark the ones containing flat surfaces (i.e. roofs) as potential buildings. A third technique (Ruhe and Nordin, 2007) performs a connected component segmentation of the data and uses features from Principal Component Analysis to classify objects. 
	2.3.2 Decision-level fusion of classifier outputs: The above techniques have been all developed using a data from a particular system and for a limited geographic region. Hence, when applying them to new data, possibly from another system and containing previously unseen types of objects, their performance may degrade. However, they generally do a quite good job at detecting buildings, at least after finetuning/re-training of the parameters. It has also been noticed that the classifiers often make different errors, which is actually not unexpected since they are based on different ideas of segmentation and feature extraction. 


	3. REFINING CLASSIFICATION USING AERIAL IMAGES
	3.1 Spectral classification
	3.2 Anomaly detection

	4. CONCLUSIONS

