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ABSTRACT: 
 
LIDAR (Light Detection And Ranging) is a mature remote sensing technology which can provide accurate elevation data for both 
topographic surfaces and above-ground objects. Derivation of accurate digital terrain models is one of its important applications, 
especially for complex scenes. In recent years, many different approaches have been developed to separate ground points from 
object points, including mathematical morphology, adaptive and robust filtering, and unsupervised segmentation. Most of these 
algorithms are based on geometric characteristics of LIDAR points. This paper presents an approach to separate vegetation points 
from ground points in a mountainous area. The approach is mostly based on skewness change of LIDAR intensity information from 
both all laser returns. LIDAR data for the study area provided by ISPRS Commission III Working Group 3 are used to test the 
algorithm. Results show that the method can efficiently separate ground points from above-ground points in a forested area. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

A LIDAR (Light Detection And Ranging) system includes a 
Global Positioning System (GPS) and an Inertial Measurement 
Unit (IMU), which complement the LIDAR data with position 
and orientation information respectively. This new remote 
sensing technology is capable of providing both horizontal and 
vertical information. LIDAR is one of the most promising 
remote sensing techniques now available and has been applied 
to 3D building reconstruction, flood modeling, and quantitative 
retrieval of forest structure parameters. For accurate retrieval of 
forest structure information from discrete LIDAR data, it is 
necessary to classify the LIDAR points into ground and object 
points, a procedure commonly called filtering (Kraus and 
Pfeifer, 1998). This filtering is an essential step for digital 
terrain model (DTM) generation because it makes possible the 
estimation of canopy height. 
 
Many algorithms have been developed for generation of DTMs 
using LIDAR data. These algorithms can be classed into two 
categories based on used data type: point clouds and raster 
range image. The first kind of algorithms is used on point 
clouds of LIDAR directly. Many studies about it are developed. 
Kraus and Pfeifer (1998) filter out trees in forested areas by 
fitting an interpolated surface to the data and using an iterative 
least-squares algorithm to reduce the contribution of points 
above the surface. Rottensteiner and Briese (2002) extended 
this method to filter out buildings as well. Based on 
connectivity and a principal components analysis, Roggero 
(2002) clustered points using geometric descriptors such as 
curvature, data anisotropy, and static moments. With the same 
goal, Filin (2002) developed a method for clustering data points 

into surface categories such as low and high vegetation or 
smooth and planar surface. Axelsson (2000) separated terrain 
points from non-terrain points by iterative threshold-dependent 
densification of a triangulated irregular network (TIN). After 
Kilian et al. (1996) first used morphological filtering to remove 
the contribution of non-ground points, different kinds of 
morphological filtering have been developed for distinguishing 
terrain from non-terrain points (Vosselman, 2000; Vosselman 
and Mass, 2001; Zhang et al., 2003; Chen et al., 2007). 
Vosselman (2000) used the height differences between ground 
points to determine the optimal filtering function, and Zhang et 
al. (2003) developed a progressive morphological filter to 
remove non-ground points by gradually increasing the window 
size of the filter and using elevation difference thresholds. In 
the work of Chen et al. (2007) a new morphological filtering 
approach was presented that did not require the assumption 
(Zhang et al., 2003) that the slope is constant and methods for 
filling in missing data and removing outliers were also 
described. In addition to these methods, other algorithms have 
been developed in recent years (Elmqvist, 2001; Elmqvist et al., 
2001; Akel et al., 2003; Brovelli et al., 2002; Krzystek, 2003). 
These algorithms work with a raster image, so the irregularly 
distributed LIDAR point cloud must be gridded and 
interpolated before post-processing with standard image 
processing techniques. To decrease interpolation errors, a few 
researchers have presented other algorithms for processing the 
LIDAR raw data point cloud to generate a DTM. Roggero 
(2001) used raw laser range data only to detect terrain, 
vegetation, and buildings and successfully classified these 
points, but extraction of the DTM has some errors on steep 
slopes. In the work of Zakšek and Pfeifer (2006), a 
morphological filter is used directly for DTM generation from
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 the LIDAR point cloud. Bartels et al. (2006) presented a novel 
unsupervised segmentation algorithm—skewness balancing—to 
separate object and ground points efficiently from high-
resolution LIDAR point cloud.  
 
In addition to LIDAR height information, most discrete LIDAR 
systems also record the intensity (sometimes referred to as the 
amplitude) of each received echo. Depending on the 
wavelength of the used laser some systems operate in the 
visible domain (e.g. SHOALS). The intensity represents the 
reflectance characteristics of the surface in the near infrared 
spectra between wavelengths of 800 nm and 1550 nm. LIDAR 
intensity is also an important information source which can be 
exploited in forest characterization, urban delineation, and other 
applications. Many studies have used LIDAR intensity 
information to classify forest species (Donoghue et al. 2007; 
Holmgren and Persson, 2003; Moffiet et al., 2005; Ørka et al., 
2007; Schreier, 1985). Height- and age-related differences in 
intensity correspond to both structural and compositional 
features of each stand, which has been demonstrated using 
global and local estimates of spatial autocorrelation derived 
from LIDAR intensity information (Langford et al., 2006).  
 
The generation of a DTM is often affected by steep terrain, and 
classification of forest species from intensity information is also 
affected by the ground intensity. Additionally, the simplicity of 
the morphologic filter is the reason for its effectiveness in the 
areas with small elevation differences, but the algorithm is not 
so successful in areas with steep slopes, especially if very dense 
vegetation in present (Zakšek and Pfeifer, 2006). For these 
reasons, a method needs to be developed for separation of 
ground points and vegetation points from LIDAR raw data 
points in dense forest areas with steep slopes. 
 
The aim of this study is to present a new method for separation 
of ground points and above-ground points from LIDAR 
intensity information in a forested area. This method is based 
on intensity differences between ground points and vegetation 
points, and it is especially applicable in steep, wooded areas. 
First, the theory of the algorithm is introduced, and then its use 
for discriminating vegetation points from ground points. A 
DTM can then be generated from the filtered ground points. 
Based on the generation of the digital elevation model (DEM), 
a canopy height model (CHM) can be calculated from the 
digital surface model (DSM) and the DTM. 
 
 

2. STUDY AREA AND DATA 

The LIDAR data used in this paper are free sample data 
provided by the International Society for Photogrammetry and 
Remote Sensing (ISPRS) Commission III Working Group 3. 
The LIDAR data were collected in the second phase of an 
OEEPE (European Organization for Experimental 
Photogrammetric Research) project on laser scanning, and their 
range includes the Vaihingen/Enz test field in southern 
Germany and the Stuttgart city center. The LIDAR data were 
extracted from laser scanning data generated using an Optech 
ALTM1201 laser scanner, FOTONOR AS, and both first and 
last return pulse data were recorded. The application of the 
procedure proposed in this paper is illustrated using the Site 5 
data set from the ISPRS laser scanning test, which covers a 
location with high vegetation on a steep hillside. Figure 1 shows 
an image of the study area and a 3D view of its LIDAR points. 
The red frame in Fig. 1(a) denotes the selected study area. 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 1. Image and LIDAR data of the selected study area in 
Forest Site 5 of the ISPRS LIDAR data set: (a) image of study 
area (from Google Earth); (b) 3D view of LIDAR intensity; (c) 
3D view of LIDAR elevation. 

 
 

3. METHODOLOGY 

As mentioned in the introduction, LIDAR data is commonly 
gridded into a raster image for easier processing. However, due 
to this mapping of the 3D data onto a 2D raster, details are lost, 
which is especially disadvantageous for forest applications. To 
preserve the raw information in LIDAR data, this paper 
proposes a new method for separating ground points and above-
ground points in a mountainous area and generating a DTM and 
a canopy height model (CHM). The process includes three parts: 
 
1. Introduction to the theory of the algorithm. 
2. Use of the method to separate ground points and above-

ground points in a mountainous area. 
3. Generation of DTM, DSM, and CHM. 
 
3.1 Theory and background 

LIDAR intensity is influenced not only by reflectivity, moisture 
content, roughness, and other target surface properties, but also 
by the dynamic geometric relationship between sensor and 
target (Donoghue et al. 2007; Langford et al., 2006). The 
dynamic sensor-target geometry includes the laser path length, 
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which varies with the distance between the sensor and target; 
the orientation of the target relative to the sensor, which varies 
with the laser scan angle or topography; the footprint size, 
which varies with laser beam divergence; and the attenuation in 
the atmosphere (Donoghue et al. 2007). How each of these 
factors influences LIDAR intensity requires further 
investigation. The strength of these influences is unknown, but 
in an experimental situation, the impact of some of these factors 
may be decreased by making assumptions appropriate to the 
situation under study; the laser intensity returns is not affected 
when the scan angle is smaller than 10°(Donoghue et al. 2007). 
So it may be assumed that the laser beam divergence and 
attenuation in the atmosphere in a given study area is constant 
during the same flight and the scan angle has no effects on the 
laser intensity. In this way, the interpretation of LIDAR 
intensity can be simplified. 

 
Under the following assumptions (Höfle and Pfeifer, 2007): (1) 
the entire footprint is reflected onto one surface (the extended 
target) and the target area As is circular, hence defined by the 
laser beam width βt and the range R, and (2) the target has a 
solid angle of π steradians (Ω=2*π for scattering into a half 
sphere), the received laser power can be expressed in the form 
(Wagner et al., 2006): 
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where Pr and Pt are the received and transmitted laser energy 
respectively, R is the distance between sensor and target, βt is 
the laser-beam divergence, Dr is the diameter of the receiver 
aperture, Ω is the scattering solid angle of the target, ρ is the 
reflectivity of the target surface, As is the target area, and ηsys 
and ηatm are the system and atmospheric transmission factor 
respectively.  
 
Equation (1) represents the area of an extended diffuse target. 
The areas of non-extended diffuse targets show different range 
dependencies; for example, point targets (e.g., a leaf) with an 
area smaller than the footprint are range-independent (Höfle 
and Pfeifer, 2007). Consequently, the received power reflected 
from point targets is represented by an inverse higher-order 
range-dependent function (1/R4): 
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where dA is the area of the point target. 
Let Af be the area of the LIDAR footprint at the target elevation. 
Then the received signal power at the extended target and the 
point target can respectively be expressed as:  
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LIDAR intensity is the ratio of received to transmitted laser 
energy (Langford et al., 2006). From Equations (3) and (4), it is 
apparent that the LIDAR intensity increases with the 
reflectivity of the target and decreases with the distance 
between sensor and target. In a forested area, there are 
differences between vegetation and ground soil in both 
reflectivity and height.Because the reflectivity of vegetation is 
higher than that of ground soil at the 1064-nm wavelength and 
the elevation of vegetation is higher than that of the ground in a 
small local area, the LIDAR intensity from vegetation should be 
more than the intensity from ground, other things being equal. 
However, it can be seen from Fig. 1(b) that the intensity of the 
vegetation is much less than that of the ground. The reason is 
that the area of each point target (e.g., a leaf) is much smaller 
than the footprint area, that is the ratio of dA and Af is much 
smaller than 1. Based of equation (3) and (4), the difference 
between Pextented and Ppoint can be thought as large enough to 
discriminate. With such a theory, it is possible to separate most, 
if not all, vegetation points from ground points-- especially in 
conifer forest areas.  
 
3.2 Separation of ground points and above-ground points 

In this work, statistical approaches have been used to filter 
ground points based on intensity relationships in the LIDAR 
point cloud. Based on the central limit theorem, naturally 
measured samples will follow a normal distribution. The object 
points may disturb the normal distribution (Bartels et al., 2006). 
The skewness and kurtosis of this distribution are two 
characteristics, used in many statistical analyses, which can be 
used to describe the distribution of LIDAR points. The 
algorithm works as follows: first, the skewness and kurtosis of 
the LIDAR intensity data are calculated. After the peak points 
are removed, the skewness and kurtosis of the remaining points 
are calculated again till the last point. Then two change curves 
are drafted on these skewness and kurtosis values. As shown in 
Figure 2, the skewness and kurtosis have different changes 
against vegetation and ground. And seen from these curves, the 
changes of skewness and kurtosis are based on change of points 
in the scene. When points in a flat ground scene only have 
ground points, the change of skewness or kurtosis should be 
smooth. The last inflexion is often viewed as the true point 
separating object points from ground points. So the location of 
A in the skewness curve and location of B in the kurtosis curve 
should become inflexions between ground points and object 
points. The ground points and vegetation points in steep 
mountainous areas are separated based on the principle. 
 
Bartels et al. (2006) used a skewness balancing algorithm to 
remove object points from ground points and thus obtain a 
normal distribution. Bao et al. (2007) improved this algorithm 
to address more complex scenes. In this study, the improved 
algorithm was used to process the LIDAR intensity and 
elevation data and to separate vegetation points from ground 
points. From Figure 1(a), it can be seen that the selected study 
area includes flat areas with vegetation and steep terrain with 
vegetation. For the flat area, the skewness algorithm (Bartels et 
al., 2006; Bao et al., 2007) was used to classify points as ground 
and non-ground points on the basis of height information. For 
the steep terrain, the skewness change algorithm was used to 
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separate ground points from above-ground points based on 
intensity information. 
 
 

    
        (a)       

 
      (b) 

Figure. 2. Change curves of Skewness and Kurtosis of LIDAR 
intensity data (A point on the change curve of Skewness in (a) 
is the location differencing ground and vegetation points; B 
point on the change curve of Kurtosis in (b) is the location 
differencing ground and vegetation points). 
 
3.3 Generation of DTM, DSM, and CHM 

A digital terrain model (DTM) can be constructed from the 
ground points, and a digital surface model (DSM) can be 
derived from the highest points within a defined grid box 
(Hollaus et al., 2006). The canopy height model (CHM) can be 
calculated by subtracting the DTM from the DSM. First a 
triangulated irregular network (TIN) is constructed for the point 
cloud, based on a Delaunay triangulation of its elevation data. 
Then a rectangular grid of pixels is extracted from each TIN 
using linear interpolation with a constant sampling interval of 
one meter. Finally, the raster DTM and DSM of one-square-
meter spatial resolution are generated. The raster DTM and 
DSM can be used to generate a grid-based canopy height model 
with one-square-meter spatial resolution. 
 
 

4. RESULTS AND DISCUSSION 

4.1 Separation of ground points and above-ground points 

The Forest Site 5 data set from the ISPRS laser scanning test 
was used to test the method. Figure 3 illustrates the results 
obtained. In Figure 3, part (a) shows the LIDAR raw data points, 
part (b) the filtered ground points, and parts (c) and (d) show 
the profiles  corresponding to the blue lines in (a) and (b) 
respectively. Comparing the profiles in Figure 3(c) and 3(d), it 
is clear that vegetation points in the flat area are well 
distinguished from ground points. In steep terrain, most of the 
higher vegetation points are separated from ground points, but a 
few higher vegetation points are still classified as ground, and 
the classification of low vegetation is not satisfactory. These 
results show that the proposed method can separate higher 
vegetation from ground and that few higher vegetation points 
are falsely classified. For the separated vegetation points, a new 

algorithm needs to be developed to retrieve vegetation 
structural parameters. 
 
4.2 Generation of DTM, DSM, and CHM 

Using the method described above, the raster DTM and DSM of 
one-square-meter spatial resolution are generated. The canopy 
height model can then be calculated by subtracting the DTM 
from the DSM. In other words, a grid-based canopy height 
model with one-square-meter spatial resolution can be 
generated from the raster DTM and DSM. Figure 4 shows the 
shaded relief images of DTM, DSM, and CHM. From Figure 
4(b), it is apparent that because of low vegetation on steep 
terrain, the generation of the DTM has been affected. The other 
algorithm could be integrated to separate low vegetation points. 
 

 
(a) 

  
(b) 

  
(c) 

 
(d) 

 
Figure 3. LIDAR point cloud and corresponding profile for 
each data set: (a) raw data points, (b) separated ground points, 
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(c) profile corresponding to (a), (d) profile corresponding to (b). 
The blue lines in (a) and (b) show the direction of the profile. 
 
 

5. CONCLUSIONS AND FUTURE WORK 

Many algorithms have been developed for distinguishing 
between ground reflections and above-ground points, but a 
number of these algorithms fail in forested areas with steep 
terrain or require excessive computation time. This paper 
presents a statistical algorithm for quick separation of ground 
and above-ground points in a forested area. This method is 
based on LIDAR intensity information and on theoretical 
considerations about the interaction of the laser beam with 
different targets. Laser interaction with an extended target is 
different in many ways from interaction with point targets. 
Because LIDAR intensity also changes with elevation, few 
vegetation points with higher intensity are classified as ground 
points, and few ground points are classified as above-ground 
points. Future work will focus on enhancing precision using 
both LIDAR intensity and height information. The validation of 
the canopy height profile will also be done in other study areas 
using field measurements. In addition, the vegetation points 
separated from the full set of LIDAR points could be used for 
further research, such as retrieval of forest structure parameters 
and classification of forest species.  

 

 
(a) DSM 

 
(b) DTM 

 
(c) CHM 

Figure 3. Shaded relief images of DSM, DTM, and CHM. 
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