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ABSTRACT: 
 
This paper deals with lidar point cloud filtering and classification for modelling the Terrain and more generally for scene 
segmentation. In this study, we propose to use the well-known K-means clustering algorithm that filters and segments (point cloud) 
data. The Kmeans clustering is well adapted to lidar data processing, since different feature attributes can be used depending on the 
desired classes. Attributes may be geometric or textural when processing only 3D-point cloud but also spectral in case of joint use of 
optical images and lidar data. The algorithm is based on a fixed neighborhood size that can deal with steep relief covered by dense 
vegetation, mountainous area and terrains which present microrelieves. The novelty of our algorithm consists in providing a 
hierarchical splitting clustering to extract ground points. The number of cluster splits is used to qualify automatically the 
classification reliability. This point is rarely treated in previous works. Moreover landscape predictors such as slope map are used to 
locally refine the classification. Finally, the methodology is extended to a multiscale framework. The hierarchical clustering is 
processed from coarse DTM resolution to finer one. This implementation improves the algorithm robustness and ensures reliable 
ground estimation. Quantitative and qualitative results are presented on the ISPRS data set. 
 
 

1. INTRODUCTION 

Representing the Earth’s topography, that is the vegetation, the 
true terrain, buildings as well as any human-made 
infrastructures from aerial remote sensors in a 3D virtual 
environment has been a challenging task for scientists for many 
years. Recent years have seen the development of airborne 
scanner systems which provide dense 3D point cloud of the 
surface topography. This massive amount of data has to be 
analyzed and classified to extract pertinent informations. A 
Digital Terrain Model (DTM) is a fundamental layer for any 
application in a 3D virtual environment, and as a matter of 
course, plays a main role when dealing with natural risk 
management. Several methods have been developed for 
filtering lidar data to generate Digital Terrain Models. 
Algorithms have to process large data volumes on various and 
complex landscapes such as urban areas Dell’Aqua et al. (2001), 
forest areas Kraus and Pfeifer (1998); Haugerud and Harding 
(2001) 
or mountainous areas Wack and Stelzl (2005). Many algorithms 
have been implemented and tested so far, but no generic 
solution appeared Sithole and Vosselman (2003). Existing 
works on lidar data labelling can be divided into three major 
approaches that will be briefly detailed hereby: 
1. Morphological filters These filters are based on a series of 
3D morphological closings and openings. Robust methods 
against measurement errors were proposed using a dual rank 
filter Eckstein and Munkelt (1995). The filter parameters highly 
depend on the terrain slope as well as on the relevancy of laser 
points to belong to the terrain: last pulse is not always a true 
ground point, especially in presence of dense vegetation 
coverage. Vosselman (2000); Sithole (2001) proposed a slope 
based filtering. In Kraus and Pfeifer (1998), authors have 
proposed an iterative linear prediction scheme to remove 

vegetation points in forest areas. The potential of morphological 
filters to provide a good estimate of the ground depends on the 
filtering window size. A small window size leads to a fine local 
topography provided that there are enough true ground points 
within the neighborhood. On the contrary, a large window size 
tends to smooth the final DTM. To overcome these effects, 
some authors refine locally the window size of the filter Kilian 
et al. (1996); Bretar and Chehata (2007). Zhang et al. (2003) 
have used an iterative technique using progressive 
morphological filters by varying the window size to estimate 
different height thresholds in local regions. Others propose a 
repetitive interpolation of DTM in forest areas Filin and Pfeifer 
(2006); Kobler et al. (2007) to improve the algorithm 
robustness. The advantage of the morphological filters is the 
short computing time but they need an accurate a-priori 
knowledge about the terrain topology. 
2. Progressive TIN densification Some points are identified as 
ground points and based on those, new points will be added to 
the ground class Sohn and Dowman (2002). In Axelsson (2000), 
the authors present an iterative Triangular Irregular Network 
generation. From a coarse triangulated surface based on the 
lowest points, new lidar points are integrated in a Delaunay 
triangulation under strong angle and distance constraints. The 
advantages of triangulation based methods are the short 
computing time and the robustness. However, the TIN surface 
is very sensitive to negative outliers that may shift the surface 
downwards. 
3. Surface model filters These filters are based on robust 
interpolation of ground points Kraus and Pfeifer (1998). A 
coarse surface is estimated. All points are weighted by a power 
function of their residuals to the approximated surface. The 
surface converges toward points with negative residuals. In 
Elmqvist (2002), the ground is estimated by an active shape 
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model. The drawback of this approach is that it is controlled 
with many parameters and is sensitive to negative outliers. 
In addition to the filtering process, many authors tried to 
organize the 3D cloud into multiple classes, using essentially 
unsupervised classification methods. The input data can be only 
3D point cloud. Geometric or textural attributes are used. In 
Elmqvist et al. (2001), the height texture is the maximal local 
slope and the second derivative of the pixel and the 8-
neighbouring pixels. Multiple echos allow the distinction 
between buildings and vegetation. Height texture is often 
processed over a regular interpolated grid. Suitable results can 
be obtained by Laplace Operator Maas (1999) or by local 
curvature Steinle and Vogtle (2001). Standard deviation of 
heights is also used. It can be processed in 3D or in 2.5D, over a 
titled plane or over a horizontal plane Tovari (2006). 
In Charaniya et al. (2004), lidar intensity is used with geometric 
features to provide four classes: road, grass, building and 
vegetation. Other methods are based on a joint use of lidar data 
and optical images. Spectral and geometric attributes are then 
used. Spectral attributes are computed to qualify vegetation 
such as NDVI Steinle and Vogtle (2001), HNDVI Bretar (2007) 
and buildings Rottensteiner et al. (2007). 
 
Existing methods provide adaptative solutions to specific areas 
or may be sensitive to negative outliers. All methods do not 
offer an automatic qualification of class reliability. In this study, 
we propose to use of the well-known K-means clustering in a 
hierarchical approach to filter lidar data. We propose a 
methodology that is based only on 3D point cloud. It is a point-
based classification with regard to a fixed local neighborhood. 
It is especially dedicated to vegetated areas where ground 
points are sparse. It can deal with steep relief covered by dense 
vegetation, mountainous area and terrains which present 
microrelieves. Moreover, many algorithms depend on the 
neighborhood window size and try to adapt it provided a priori 
knowledge about the terrain topology. To overcome this 
problem, we propose a multi-scale framework that is processed 
in a coarse-to-fine way. It improves the algorithm robustness to 
the window size and provides reliable ground estimation. 
 
The methodology is detailed in section 2. First, section 2.1 
presents the management of the point cloud. Section 2.2 details 
the hierarchical filtering of the point cloud using K-means 
algorithm that provides a robust approximated surface. The 
number of cluster splits is used to automatically qualify the 
filtering reliability. They are jointly used with a local slope map 
to refine the ground points filtering ( cf. Section 2.3). The 
mutliscale extension is detailed in section 2.4. Finally, 
quantitative and qualitative results are presented in section 4 on 
the ISPRS data set. 
 
 

2. METHODOLOGY 

2.1 Management of the point cloud geometry 

Considering the DTM as a georeferenced regular gridded 
surface  with a resolution r, the system explores the lidar point 
cloud following this gridded geometry. For each site s, the local 
3D environment, noted Vs, is extracted. It is designed as a 
cylindric neighborhood centred on s and of diameter ds = 2*r 
ensures 50% overlap between 3D neighborhoods and filtering 
regularity. 
 
2.2 Hierarchical K-means Filtering 

We propose an unsupervised filtering based on K-means 
clustering of the 3D-point cloud. The clustering is processed in 
the feature space. Mean and standard deviation of heights are 
used. Generally, filtering methods depend of the window size ds. 
Unlike techniques that try to adapt the window size, the idea is 
to use a fixed window size with a hierarchical clustering of 
point cloud based on series of splits of the ground cluster. 
The algorithm is described in figure 1. The 3D point cloud is 
initialized as off-ground. For each site s(i,j), the cylindric 
neighborhood Vs is extracted. First, negative outliers are filtered. 
If the percentage of negative points in Vs is over (Tout = 80%), 
they are considered as outliers and labelled as Non-Determined 
points. The filtering starts with a coarse clustering. The 
centroids are initialized at equal distance on Z interval. The 
number of initial centroids is initialized to 1. It increases 
iteratively while the intra-variance cluster is higher than 1m. 
The number of  initial clusters can go up to three which can 
roughly correspond to ground, off-ground and low off-ground 
classes. nsplit corresponds to a cluster map with DTM resolution.  
 

 
 

Figure 1: Hierarchical K-means flowchart. 
 
The number of splits is stored for each site s. The cluster whose 
average height is minimum is considered as the ground cluster. 
From then, it is refined iteratively. The K-means is 
implemented in a hierarchical way that splits the ground cluster 
into two classes while the cluster standard deviation σcluster is 
higher than a threshold Tn. n is the number of cluster splits. The 
threshold is refined at each split following Tn+1 = Tn/2. 
When the algorithm converges, the ground cluster is labeled 
and the propagation continues through the 3D point cloud. In 
case of DTM generation, the corresponding site is assigned to 
the average height of the ground cluster. This method provides 
a robust filtering of ground points. Therefore, 3D points labeled 
as ground are not reprocessed when moving to neighboring site. 
The filtering step classes the point cloud into ground, off-
ground and non-determined points. There is no need for pre-
processing the data to filter the outliers. They are handled in the 
hierarchical filtering process and labeled as non-determined 
points. It also provides the corresponding cluster map. This map 
is used to qualify the classification reliability. The less the 
number of splits, the more reliable the classification. This 

326

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 



information is used to refine the classification as detailed in the 
following section. 
 
2.3 Classification refinement 
As cited above, our methodology is especially dedicated to 
vegetated and mountainous areas. The clustering process is 
based on point heights and tends to minimize the intra-variance 
of each cluster and to maximize the height difference between 
clusters. A neighborhood with high variance is likely to belong 
either to a vegetation area or to a steep surface. The most errors 
occur in case of steep relief with vegetation Sithole and 
Vosselman (2004). Therefore, sites with a high number of 
cluster splits (n>2) and a high local neighborhood slope (>10°) 
are reprocessed to refine the classification.  
The estimation of the local slope is detailed in the following 
section. For these sites, the hierarchical K-means filtering is 
then processed in the fitted plane framework. The distances 
between clusters are unsigned to take into account both points 
which are above and below the estimated local plane. 
Estimating the local slope Based on the assumption that the 
local slope changes locally in a monotonous manner, a local 
tangent plane is fitted, for each site s to lidar points within the 
cylindric neighborhood Vs. The quality of the local plane 
estimation depends on the lidar point distribution within Vs, the 
windows size and defines the terrain height relevancy as well as 
its uncertainty. 
We estimate a plane nx x + ny y + nz z + d = 0 with (nx, ny, nz) ∈ 
[−1, 1] and d= 2* r. A robust M-estimator has been used with a 
Lp-norm, p=1.2 Xu and Zhang (1996). This algorithm is 
implemented as an iterative re-weighted least square system. At 
each DTM site, the steepness (the elevation angle of the surface 
normal) is processed, leading to a slope map. Figure 3(b) has 
been processed on the sample 52 of ISPRS data set. One 
can observe the discontinuity on the right of the image and the 
sharp ridges. The contribution of the local slope is discussed in 
Section 4.1. 
 
2.4 Coarse to Fine implementation 
The evaluation of the algorithm robustness (Section 4.1) 
showed that results are very sensitive to the neighboring 
window size and to the DTM resolution. It gives good results 
provided a priori knowledge. Tuning the parameters is difficult. 
To overcome this problem, we propose a multiscale approach 
for extracting ground points. The idea is to start at coarse 
resolution with a high window size to ensure to have some 
ground points. This may lead to the surface overfitting. The 
result is refined later at fine resolution with a small window size. 
The clustering method is still hierarchical. 
The difference is that the fine ground cluster tends to minimize 
the mean and the standard deviation of differences between 
ground points heights and the estimated elevation (at coarse 
resolution). Evaluations (Section 4.3) proof that the coarse-to-
fine method ensures a high reliability for ground points, that is 
independent of the neighborhood size. Moreover, since the finer 
stage is based on the coarse DTM, the methodology saves 
computation time. 
 

3. THE DATA SET 

The algorithm has been tested on various data sets, especially 
on vegetated areas with different topography. The algorithm is 
first analyzed on one data set and then quantitative and 
qualitative evaluations are presented over several others. The 
datasets are those made available for the ISPRSWG3/III test 
Sithole and Vosselman (2004). These data are considered as a 
reference for evaluating filtering algorithms. A ground truth of 

ground/off-ground classification is provided. It was performed 
manually in a controlled manner. In this study, we are interested 
on vegetated, mountainous and steep relieves. Consequently, 
we selected the FSite5 data set with 2m resolution. Provided the 
ground truth, the incorrect classification is qualified by two 
measures: Type I error (classify ground points as non-ground) 
and Type II errors (classify non-ground points as ground). 
Unlike the ISPRS study, where some lidar points are unused, all 
the lidar points are taken into account for evaluations. 
 
 

4. RESULTS AND DISCUSSION 

Table 1 summarizes the characteristics of the proposed method. 
 

Description I/O Format # of operator settings 
 

Hierarchical 
iterative K-means 

 
Point list 

Grid 

3 
DTM resolution 

neighborhood size T0 
variance intra-cluster Tn 

 
Table 1: Characteristics of the proposed method. 

 

Compared to other methods, the algorithm depends on few 
parameters. The robustness of the algorithm to these parameters 
is evaluated in section 4.1. Results and evaluations are first 
detailed on sample 52 dataset. The contribution of local slope is 
also demonstrated. The results on previously described datasets 
will be compared to other filtering algorithms Sithole and 
Vosselman (2004). These evaluations will entail a coarse-to-
fine implementation that makes the algorithm more robust and 
less sensible to the window size. Results will be also presented 
on the same areas. 
 
4.1 Hierarchical K-means filtering 
Sample 52 deals with quarry and low vegetation on river bank 
with gaps. The 3D point cloud is shown in figure 2.  
 
 
 
 
 
 
 
                    Figure 2: Sample 52-3D point cloud 
 
Figure 3 shows the used landscape predictors to locally refine 
the classification.  
 

                              
             (a) Cluster map.                                      (b) Slope degree map. 
 

 
(c) Locally retreated points. 

Figure 3: Sample 52 - landscape predictors. 
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The algorithm was processed with a DTM resolution of 2m and 
a neighborhood size of 30m. The cluster split map is shown in 
figure 3(a). The less the number of splits, the more reliable is 
the ground cluster. One can observe that the number of clusters 
increases in the steep surface. Figure 3(b) shows the slope 
degree map. The combination of both maps leads to the sites 
that have to be reprocessed to refine the classification (figure 
3(c)). 
Contribution of local slope  Table 2 compares the type I and 
type II errors after processing the confusion matrix.  
 

Method Type I Type II Total 
Initial classification 7.36%  3.87% 11.23%

Classification refinement 3.10% 4.57% 7.67%
 
Table 2: Contribution of cluster and slope maps, DTM 
resolution=2m, neighborhood size= 30m. 
 
The refinement of classification decreases the total error. The 
type I error is improved which means that less ground points are 
classified as off-ground thanks to the estimation of the surface 
slope. Figure 4 shows the confusion images with the initial 
classification and the refined one using the slope map. The 
result is improved on the right crest where the points are 
classified as ground in the surface plane framework. 
 

    
           (a) Initial classification.                                  (b) With local slope. 
 
 
 
Figure 4: Sample 52 - Impact of the local slope: comparison of 
confusion images. 
 
Algorithm robustness to parameters In this section, 
quantitative evaluations measure the algorithm robustness to its 
parameters. Type I, Type II and the total errors are processed. 
Figure 5 illustrates the impact of the neighborhood size on the 
evaluation with a fixed DTM resolution of 2m. Best results are 
obtained with a neighborhood size ds = 5m. However, when ds 

increases, the type II errors are almost constant but type I errors 
increase. This means that more ground points are classified as 
non-ground. In fact, with a large ds, the estimated plane may be 
erroneous in case of a relief changes and the terrain can be 
overfitted. Figure 6 shows the evolution of errors with the DTM 
resolution. The total error increases at coarse resolution of the 
DTM. However, the more r increases, the more type II error 
decreases. This property will be used in the coarse-to-fine 
implementation 2.4. 
These evaluations show that the algorithm is sensitive to 
parameter tuning. For such a terrain, with a fixed neighborhood 
size, we still need an a-priori knowledge to choose the window 
size. 
 
4.2 Comparison with filtering algorithms 
In this section, table 3 shows quantitative comparison of the 
proposed method with other filtering algorithms described in  

 
 
Figure 5: Evaluation of the neighborhood size impact, DTM 
resolution=2m. 
 

 
 
Figure 6: Evaluation of the DTM resolution impact, 
neighborhood size=30m 
 
Sithole and Vosselman (2004).  
 

Sample Method Type I Type II Total 
Elmqvist 49,34% 1.60% 50.94% 
Sohn 10.33% 5.68% 16.01% 
Axelsson 0.13% 12.00% 12.13% 
Pfeifer 4.21% 1.93% 6.14% 
Brovelli 28.23% 3.64% 31.87% 
Roggero 1.90% 6.96% 8.86% 
Wack 14.03% 2.23% 16.26% 
Sithole 7.03% 6.99% 14.02% 

 
 
 
Sample 
51 
17845 pts

Proposed meth 0.04% 7.31% 7.35% 
Elmqvist 85.05% 1.27% 86.32% 
Sohn 12.34% 9.48% 21.82% 
Axelsson 1.78% 14.21% 15.99% 
Pfeifer 21.27% 5.68% 26.95% 
Brovelli 50.43% 3.84% 54.27% 
Roggero 9.80% 9.66% 19.46% 
Wack 26.49% 1.04% 27.53% 
Sithole 30.41% 3.57% 33.98% 

 
 
 
Sample 
51 
17845 pts

Proposed meth 2.23% 4.73% 6.96% 
Elmqvist 92.45% 0.18% 92.63% 
Sohn 20.48% 13.24% 33.72% 
Axelsson 8.58% 16.76% 25.34% 
Pfeifer 12.53% 14.23% 26.76% 
Brovelli 54.93% 1.62% 56.55% 
Roggero 17.81% 4.74% 22.55% 
Wack 28.33% 1.02% 29.35% 
Sithole 38.41% 4.81% 43.22% 

 
 
 
Sample 
51 
17845 pts

Proposed meth 2.15% 2.16% 4.31% 
Table 3: ISPRS data sets. Quantitative evaluations of errors 

with comparison to the ground truth. 
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Three datasets of Fsite5 are used. The sample 52 which was 
used previously. The sample 51 is characterized by vegetation 
on slope. Finally the sample 53 raises the discontinuity 
preservation problem. For this comparison, we used a DTM 
resolution of 2m and a neighborhood size of 10m. For each 
sample, we highlighted the best results among filtering 
algorithms and the proposed method. In all cases the proposed 
method decreased the total errors. Moreover, it provides smaller 
type I errors, which means that few ground points are classified 
as off-ground. However, it might present heavy type II errors. 
This is due to the use of a relatively small neighborhood size. 
Some off-ground objects may be classified as ground. Figure 7 
shows confusion images on samples 51 and 53. One can 
observe that heavy type II errors occur in sample 51 on rooftops 
since their size is smaller than the used neighborhood size. 
 
4.3 Coarse to Fine implementation 
For terrain modeling, the ground estimation should be robust 
and type II error should be minimized. Based on parameter 
evaluation (section 4.1), we propose a coarse-to-fine 
implementation to decrease type II errors. A coarse DTM 
resolution ensures a reliable ground estimation, the finer 
resolution should decrease the type I error. Figure 8 shows the 
evolution of confusion images from the coarse resolution to the 
finer one. At coarse resolution, r=15m and neighborhood size ds 

= 30m. At fine resolution r=2m and ds=5m. Figure 8(a) shows, 
at coarse resolution, heavy type I errors due to the large DTM 
resolution. Figure 8(b) shows the results at fine resolution. The 
total errors are clearly decreased. Figure 8(c) shows the spatial 
differences between the coarse DTM height and the fine ground 
cluster mean height. Negative differences are along the steep 
surface which was overfitted at the coarse stage. Besides, high 
positive differences occur on the right of the image, in presence 
of discontinuity. 
Table 4 compares the errors between the fixed neighborhood 
size and the coarse-to-fine implementations. Type II errors 
decreases with the coarse-to-fine implementation. The ground 
estimation is more reliable for a terrain modeling application. 
The coarse-to-fine implementation makes the algorithm robust 
the neighborhood size and the DTM resolution. It combines the 
advantages at each resolution. It allows to preserve the 
discontinuities and to deal with steep relieves. 
 
Sample Method Type I Type II Total 

Coarse fixed ds 12.32% 4.79% 17.11%
Fine fixed ds 0.039% 7.31% 7.35% 

 
51 

Coarse- to-fine 0.65% 6.33% 6.98% 
Coarse fixed ds 36.99% 1.75% 38.74%
Fine fixed ds 2.23% 4.73% 6.96% 

 
52 

Coarse- to-fine 4.37% 2.99% 7.36% 
Coarse fixed ds 34.72% 0.91% 35.63%
Fine fixed ds 2.15% 2.16% 4.31% 

 
53 

Coarse- to-fine 5.93% 1.27% 7.20% 
Table 4: Contribution of cluster and slope maps, DTM 
resolution=2m, neighborhood size= 30m. 
 
 

5. CONCLUSION AND PERSPECTIVES 

We proposed in this study, the use of K-means clustering in a 
hierarchical way to filter lidar data. The methodology provides 
good results with comparison to other filtering methods. 
Moreover, this algorithm provides an automatic classification 
quality thanks to the cluster map which is useful in case of 

human operator correction. The proposed classification is based 
on local neighborhood and can lead to misclassification in the 

                  
 
        (a) Sample 51 - cluster map             (b) Sample 53 - cluster map 
 

        
    

(c) Sample 51                                     (d) Sample 53 
 
 
 
Figure 7: Fixed neighborhood size 10m. Confusion images on 
Fsite5 dataset. 
 

   
                                                   (b) Confusion image at fine 

DTM resolution (2 m)
(a) Confusion image at coarse 
DTM resolution (15 m)                  

 
 
 
 
 
 

(d) Altitude difference (coarse 
DTM – fine ground cluster)

 
 

Figure 8: Sample 52 - Coarse-to-fine Approach 
 
presence of complex objects. Landscape predictors are clearly 
needed to tune the parameters. We used the cluster map and a 
slope map to refine locally the classification. However, the 
parameter evaluations showed that the algorithm is sensitive to 
the window size and the DTM resolution. To overcome this 
problem, a coarse-to-fine implementation is proposed. The 
classification at a coarse level helps dealing with discontinuities, 
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gaps and complex objects. The finer step takes into account 
local features as slope. The ground estimation is more reliable 
with the mutiscale approach. The advantage of K-means 
clustering is that it can be easily adapted to available data by 
modifying feature attributes. Clustering may be then processed 
in a multidimensional feature space. In the proposed algorithm, 
only geometric attributes are used to separate ground from off-
ground points. Spectral attributes could be used for fine 
classification purposes of off-ground objects. As a perspective, 
the cluster split map could be also used for a multiple resolution 
process of the lidar point cloud. In case of one cluster (ground), 
the lidar data can be under-sampled to reduce computing time. 
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