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ABSTRACT:

This paper gives some mathematical methods for the automatic analysis and determination of forest management parameters in particu-
lar for the measurements of geometrical sizes on terrestrial scanning laser data using segmentation of the objects with iterative contrast
enhancement, fractal dimension, skeletonization and local digital geometry and topology (LDGT).

1 INTRODUCTION

Terrestrial laser scanner (LIDAR) are used more and more in the
forestry. The manual measurement of forest relevant parameters
are very cost-intensive and time-consuming tasks, which can be
supported with LIDAR data acquisition. By using 3D terrestrial
laser scanning instruments the distances and other geometrical
sizes in 3D-space can be measured on the digital data set. This
data can be used for semi-automatic and/or automatic extraction
of the forest relevant parameters. The geometrical primitives,
structures and features of the tree crowns, tree stems such as stem
position, height, length, diameter of the stem, size/volume of the
leaf area etc. play a very important role in the forest management.
An automatic or computer based extraction of these parameters is
of great relevance for the forest inventory.

In this paper we will focus on the mathematical, numerical and
digital-geometrical methods to extract forest relevant features on
digital pictures (2D) and 3D data sets, in particular geometric
measurement of the stem diameter at breast height (DBH). How-
ever we will focus mainly on the tree diameter calculation, be-
cause on the one-scan pictures the whole trees are mostly not
available in all cases, but it is also possible to derivate the other
relevant inventory informations using the suggested methods. There
will be used also common image processing algorithms for the
picture analysis, as well as for the segmentation of the objects.

The aim of the paper is to develop mathematical founded algo-
rithms for the supporting of the extraction of a subset of laser
points, point clouds and regions from LIDAR data for the geo-
metrical measurements and numerical calculations. But the sta-
tistical evaluation, a comparison the manual measurement with
laser measurement will be here not discussed.

2 THE LIDAR DEVICE AND DATA

For the data acquisition the Riegl LMS-Z360 terrestrial laser scan-
ner (see Fig. 1) was used. The Riegl scanner provides 2D, 3D
data and true colour information (separate digital camera) about
the 3D scene. The laser scanner measures the distance and the
intensity to the nearest object point in a [0..360] and [-50..40] de-
gree polar-system (see Fig. 2), which can be converted into an

Figure 1: The Riegl laser scanner in forest measurement in Freis-
ing, Germany

intensity 2D panorama picture, as well. For the automatic ex-
traction and analysis of the forest management parameters will
be used both the 2D intensity image and the 3D raw data set, but
currently without the combination with the colour informations.

The data was recorded in the Bavarian forest - Böhm forest in373
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Figure 2: The horizontal and vertical canning range of Riegl laser
scanner.

German and Czech range. From an inventory point 3-5 measure-
ments including the central point were made. In this work we will
use only the data set from the central acquisition.

3 IMAGE PROCESSING OF THE LIDAR DATA

Our approach to the geometrical, real-size measurements on LI-
DAR data is based on the segmentation and skeletonization of
the 2D panorama pictures and on the correction/extension of this
information from the 3D data set. On the segmented pictures
with the help of the skeletonized image and using local digital
geometry and topology (LDGT) the forest relevant sizes e.g. the
tree-trunk diameter can be determinated and measured.

3.1 Image Filtering and Segmentation

For the image processing tasks the 2D panorama pictures (see
Fig. 3 /a/) will be used. In the first step the panorama image is
filtered with a Gaussian filter G(x, y) = exp(−x2+y2

2σ2 ) in or-
der to remove and reduce the noisy artifacts. After that the im-
age is binarized and segmented. The segmentation is based on
an iterative contrast enhancement method (Pál and etal., 1996)
which extracts the thin line-like (1-2 pixel wide) structures using
a mask. The segmentation is taken by the following non-linear
transformation:

b′ij = λ · bij · (
maxl(rl)−minl(rl)

maxl(rl) + minl(rl)
)µ, (1)

where bij is the reference pixel, λ = 1.8 and µ = 0.2 are variable
parameters but here empirical determinated and rl (l ∈ [1..4])
the direction sums over the reference pixel bij . The transforma-
tion is used iteratively k-times (k = 3 . . . 6) and in each step the
size of the mask will be increased in which the rl’s are determi-
nated, but always were used 4 directions. Parallel to this step a
simple binarization of the original picture was done and added to
the contrast enhanced image and to end the segmentation process
a renewed binarization was carried out. The result is shown on
the Fig. 3 (b). The characteristic of this segmentation method and
comparisation with another line segmentations and how it works
on noisy images was shown in (Pál, 2002).

The result of this segmentation on an other, Faro LIDAR instru-
ment is shown on the Fig. 4.

(a) (b) (c)

Figure 3: The pictures are 90 degree rotated. (a) Original polar
picture by the Riegl scanner (size 750 × 3000 pixels), (b) seg-
mented picture, (c) skeletonized picture

Figure 4: (top) Original picture by the Faro scanner, (bottom) the
segmented picture,

3.2 Skeletonization

Skeletonization or thinning is used for the determination of the
middle line of the segmented or binarized geometrical object on
the digital picture. The skeleton picture can be used for mea-
surements on the digital image, maybe for masking or together374
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with another pictures. So it can be used for the calculation of
the length of the tree trunk, but also for the tree diameter calcu-
lation. There were studied and tested numerous skeletonization
algorithms for 2D pictures described in (Riazanoff et al., 1990,
Sirjani and Cross, 1991, Ge and Fitzpatrick, 1996, Dyer Charles
and Rosenfeld, 1979, Bräunl et al., 1995, Pavlidis, 1990, Zamper-
oni, 1989, Klette and Zamperoni, 1995, Datta and Parui, 1994),
but the best result was achieved by the Zhou suggested technique
(Zhou et al., 1995). This algorithm was modified to become 1
pixel wide line structures as to reduce the (2 × 2)-structures on
the digital picture.

3.3 The modified Algorithm by Zhou

The Zhou’s algorithm is a sequential process to eliminate the
boundary pixels which satisfy some topological conditions. The
neighbour structures Pi and Qi, the previous PN(.) and current
neighbour CN(.), the connectivity function T (.) and the match-
ing function M(.) are used such as in the Zhous’s algorithm.

Definition 1. In the original and in the marked picture the sym-
bols Pi and Qi, i ∈ {0, 1, 2, ..., 8} represent the pixels with the
following (3× 3)-neighbour structure:

P1 P2 P3

P8 P0 P4

P7 P6 P5

and
Q1 Q2 Q3

Q8 Q0 Q4

Q7 Q6 Q5

, (2)

where Pi and Qi have the value 1 or 0 (object or background
pixel) on the binary picture.

Definition 2. The previous neighbour of the pixel P0 is defined
as follows:

PN(P0) =

8X
i=1

Pi, (3)

Using PN(P0) can be decided about a pixel P0 which is an ob-
ject pixel in original image, whether this pixel is a boundary pixel
or not.

Definition 3. The current neighbour of the pixel P0 is defined as
follows:

CN(P0) =

8X
i=1

(Pi ∧Qi) (4)

CN(P0) provides information about the current neighbourhood.

Definition 4. The connectivity number of the pixel P0 is defined:

T (P0) =

8X
i=1

c(Pi), (5)

where

c(Pi) =


1 if ((Pi ∧Qi) ∧ (Pi+1 ∧Qi+1)
0 else (6)

P9 = P1, Q9 = Q1

The function T (.) is used for the measurement of the connectiv-
ity of a pixel in (3× 3)-neighbourhood. If it’s satisfied T (P0) =
min(CN(P0), 8−CN(P0), then P0 is a break point, because it
can’t be deleted (Zhou et al., 1995). In four cases the P0 can be
deleted without loosing the 8th connectivity, these are the follow-
ing:

Definition 5. The matching function M(P0) is true, if it corre-
sponds with one of four cases

0 1 0
0 1 1
0 0 0

0 0 0
0 1 1
0 1 0

0 0 0
1 1 0
0 1 0

0 1 0
1 1 0
0 0 0

(7)
otherwise it is false.

M(P0) is used for the identification of the break points in P0 in
special cases.

For each pixel P in the Image I , if P is an object pixel, the values
PN(P ), CN(P ), T (P ), M(P ) are determined by using of the
above computations and it is decided whether P may be marked
and/or deleted. If no more pixels can be deleted, the skeleton of
the object has been received. The modification consists of the
fact that we calculate the above values only in the case of the
object pixels and we use the following topological condition for
marking and deleting of a pixel in the Alg. 1.:

PN(P ) 6= 8∧[(CN(P ) > 1∧CN(P ) < 7)∧(T (P ) = 1∨M(P ))]
(8)

Using this modification was achieved a reduced 2× 2 line struc-
ture on the picture, which means that the skeleton is 1 pixel wide
and it can be used easily for the length calculation. It was point
out in (Pál, 2003) that the modified Zhou’s algorithm is 1 pixel
wide, so the skeleton contains 2× 2 structures only in some spe-
cial cases e.g. in the case of few crossing lines etc., but it doesn’t
contain greater as 2× 2-structures.

The skeletonization algorithm reads as follows:

Algorithm 1 : modified Alg. by Zhou
FOR ∀P ∈ I

IF P = object pixel
THEN calculate PN(P ), CN(P ), T (P )

IF PN(P ) 6= 8 ∧ [(CN(P ) > 1 ∧
CN(P ) < 7) ∧ (T (P ) = 1 ∨M(P ))]

THEN mark pixel
delete the marked pixels

UNTIL no more pixel can be deleted

3.4 Fractal Dimension

In numerous investigations for the measurement of biological forms
the fractal dimension is used. Accordingly it can be used also
for the study of the leaf area. The leaf density is an important
characteristic, which can be used for the estimation of the light
absorption of the biomass. For the calculation of the leaf den-
sity with fractal dimension can be used the panorama picture, the
segmented panorama picture and also the 3D data set, where in
each pixel of the polar image (R, θ) in place of the intensity the
distances of the pixels to the projection plane are used, which is
obtained by the formula dpixel = R ∗ sin(θ).

The practical computation of the fractal dimension in a binary
picture (e.g. Fig. 3 /b/) can carried out via the box dimension or
mass radius dimension. The fractal box-dimension is calculated
as follows:375
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Figure 5: Calculation of the box-dimension

Figure 6: Calculation of the mass-radius-dimension

DB = lim
∆s→0

„
− log(N(∆s))

log(∆s)

«
= lim

∆s→0

„
log(N(∆s))

log( 1
∆s

)

«
.

(9)

The mass radius dimension DM can be similarly determined as
the box dimension. Here in the binary picture within a square
given by its ’radius’ (edge length) r the number of object pixels
are counted and they are put into the logarithmic coordinate sys-
tem, where the slope of the fitting straight line is computed (see
also Eq. 13), which the mass radius dimension indicates (see Fig.
6).

The box and mass radius dimension can be used also for 3D sur-
faces, like ’grey value mountains’ of the pictures (Chaudhuri and
Sarkar, 1992). Here instead of the 2D small boxes 3D cubes are
used accordingly, which are determined by the grey values of the
picture.

The disadvantage of the above calculations of the fractal dimen-
sion is that the pictures must be binarized or segmented. An an-
other method for getting of the fractal dimension is the walking
divider method introduced by Shelberg (Turner et al., 1998, p.41).
This method uses a chord length (StepLength) and measures the
number of chord lengths (NumLength) needed to cover the fractal
curve. The technique is based on the principle of taking smaller
and smaller rules of size StepLength to cover the curve and com-
puting the number of rules ’NumLength’ required in each case.
The calculations algorithm of the fractal dimension is based on
the following relationship:

NumLength = c · StepLengthβ (10)

and
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Figure 7: The walking divider fractal dimension (top) on rows
and (bottom) on columns calculated on the Fig 3 (a)

log(NumLength) = log(c) + β · log(StepLength). (11)

The least squares fit of the bilogarithmic plot of ’NumLength’
and ’StepLength’ gives the slope β where D = −β. After differ-
entiating of the error function

e =
X

i

(fi − βxi + c)2, (12)

where fi corresponds to log(NumLength) and xi to the
log(StepLength), with respect to β and c and solving for β we
obtain

β =
N

P
i fixi − (

P
i fi)(

P
i xi)

N
P

i x2
i − (

P
i xi)2

. (13)

On the Fig. 7 is shown the fractal dimension using the walking
divider method by Shelberg for each row (top) and for each col-
umn (bottom). The tree crown and stem structure have higher
fractal dimension as the ground area.

4 MEASUREMENTS USING LOCAL DIGITAL
GEOMETRY AND TOPOLOGY (LDGT)

Local digital geometry and topology (LDGT) is used for the mea-
surements and extraction of the forest relevant features on the bi-376
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(a) (b) (c)

Figure 8: diameter (a) with square filling (b) with directions (c)
with orthogonals
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(a) (b)

Figure 9: (a) digital line segment in (n× n)-window, (b) orthog-
onal digital line segments

nary images, which are obtained after the segmentation and skele-
tonization of the 2D panorama pictures. For the exact measure-
ment on the 2D images a correction must be applied, to eliminate
the perspective distortion and to get a real size of the objects. The
perspective correction or the real distance between two pixels on
the 2D pictures is calculated from its 3D coordinates using the
known vector geometrical formulas.

4.1 Calculation of the Tree Diameter using LDGT

The diameter can be determined in the segmented picture by its
different geometrical definition.

A possible procedure for the diameter determination is the square
filling out (the algorithm is described in (Pál, 2004)) with the help
of the skeleton picture, which is a cover of the tree branches with
squares in the tree-emphasized binarized picture (see Fig. 8 /a/).
In the skeleton picture can be assigned a value to each pixel of
the center line of the tree (similar to (Pál, 2004)), to which the
diameter of the cover square corresponds.

To the further algorithms for the tree-trunk diameters calculation
the digital line and/or line segment (Klette and Zamperoni, 1995)
must be defined (see Fig. 9 /a/).

Definition 6. A digital line segment L
(n)
l in a (n × n)-window

n ≥ 3, n = 2k+1, k ∈ N is clearly defined by l mod 2(n−1) ∈
N. The pixel coordinates (dx, dy)> of the digital line segment are
to be calculated as follows:

0BB@ dx(l) =


1, if l ∈ [1, n]
l − n− k, else

dy(l) =


1 + k − l, if l ∈ [1, n]
1, else

1CCA , (14)

where k = n−1
2

.

Another algorithm of the diameter determination is based on the
following definition (see also Fig. 8 /b/)

Definition 7. The diameter of a tree-trunk is equal to the min-
imum distance, which results from the intersections of a digital
line segment which lies on a point of the skeleton or a tree-trunk
center and the edges of the tree-trunk.

For the determination of the intersection with the edges of the
tree-trunk or tree branches two possibilities are offered:

1. The intersection is determined with the help of an edge-
segmented picture.

2. The length of the digital line segments is so long increased
in both directions, until all pixels of the digital lines are still
tree pixels.

With the digital line segment the number of line directions can be
determined by the specification of n ≥ 4.

A further possibility of the diameter determination is based on an
another geometrical definition of the diameter (see also Fig. 8 /c/)

Definition 8. The diameter of a tree-trunk is the distance, which
develops from the intersections of the digital line segment which
is perpendicularly on its center line and the edges of tree-trunk.

In order to carry out algorithmically the above two definitions of
the tree diameters, on the basis of the definition of the digital line
segment (Klette and Zamperoni, 1995) a so-called local digital
geometry and topology will be mathematically developed. LDGT
is based on the representation of the digital line segment by a
natural number in a local area given by an (n× n)-window.

The LDGT can be used not only for the tree-trunk diameter de-
termination, but also for further characteristics of the tree-trunk,
like the angle of the branch-bifurcations, the curvature of the tree-
trunk and branches etc.

Definition 9. Two digital line segments li, lj in a (n×n)-windows
are together perpendicular (li ⊥ lj)⇔ (li+

2(n−1)
2

) (mod 2(n−
1)) = (li + n − 1) (mod 2(n − 1)) = lj (mod 2(n − 1)) thus
li + n− 1 ≡ lj (mod 2(n− 1)) 1.

Definition 10. Let o : N → N, o(l) = (l + n − 1) be the
perpendicular function or the orthogonal function in a (n × n)-
window.

Theorem 1. o(.) is cyclical mod 2(n− 1):

o(o(l)) ≡ l (mod 2(n− 1)) (15)

proof. The proof takes place according to the definition of the
orthogonal-function of the digital line segment:

o(o(l)) = [l + n− 1] + n− 1

= l + 2n + 2

= l + 2(n− 1)

l + 2(n− 1) (mod 2(n− 1)) = l (mod 2(n− 1))

o(o(l)) ≡ l (mod 2(n− 1))

Definition 11. The bisector lwh from two digital line segments
li, lj is the digital line segment

lwh ≡
‰

li + lj
2

ı
(mod 2(n− 1)), (16)

where d.e means the rounding up.
1It is naturally considered that the modulo in the interval [0, n−1] and

the line segment in the interval [1, n] is. It was neglected only because of
the simpler indexation.377



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 

Figure 10: Connectivity number in a (3 × 3)-window, C3
4 = 4

crossing, C3
4 = 3 bifurcation, C3

4 = 2 normal line and C3
4 = 1

an end pixel structure

Definition 12. A digital curve or straight line area (Pavlidis,
1990) on a discrete lattice are a group of pixels, whose pixels all
belong also to the outline of the group, thus in (3×3)-neighbourhood
of the pixel no object pixel exists.

For the tree-trunk analysis it is useful to introduce the connectiv-
ity number in 4th neighbourhood generally even for larger win-
dow (n > 3). The definition for the special case n = 3 can be
found in (Ernst, 1991).

Definition 13. The connectivity number C
(n)
4 in a (n×n)-window

is defined:

C
(n)
4 =

1

2

4(n−1)X
i=1

|Pi+1 − Pi|, (17)

where Pi the border points (n× n)-window is, thus

dcs(Pi(x, y), P0(x, y)) =
n− 1

2
i = 1, . . . , 4(n− 1)

and P4(n−1) = P1 (dcs is the Chebychev distance).

The connectivity number is used for the determinating about a
pixel if it belongs to a crossing C3

4 = 4 or bifurcation C3
4 = 3, to

a normal line structure C3
4 = 2 or an end pixel structure C3

4 = 1
(see Fig. 10)

Remark 1. In practice the determination of C
(n)
4 in the case of

greater n by other pixel structures can be disturbed.

Definition 14. Let Pli , Plj be the beginning and end points of a
digital curve with C

(n)
4 = 2 on the (n× n)-window border. The

perpendicular line segment lo in the center (n × n)-window P0

is defined by the perpendicular of the bisector of the digital line
segments of o(li) and o(lj):

lo ≡ o(

‰
o(li) + o(lj)

2

ı
) (mod 2(n− 1)) (18)

Theorem 2. Let a digital curve be in a (n×n)-window C
(n)
4 = 2

being connected. Let further be the beginning and end points of
the curve Pli , Plj on the (n × n)-window border and accord-
ingly by these points with the center P0 line segments determined
li = (Pli , P0), lj = (Plj , P0). On the digital curve in P0 per-

pendicular digital line segment is through o(
l

o(li)+o(lj)

2

m
) ≡l

li+lj
2

m
(mod 2(n− 1)) given and vice versa.

proof. According to the definition of the perpendicular digital
line segment and bisectors with the Thm. 1 follows:

o(

‰
o(li) + o(lj)

2

ı
) = o(

‰
li + n− 1 + lj + n− 1

2

ı
)

= o(

‰
li + lj + 2(n− 1)

2

ı
)

= o(

‰
li + lj

2

ı
+ n− 1)

= o(o(

‰
li + lj

2

ı
))

≡
‰

li + lj
2

ı
(mod 2(n− 1))

‰
li + lj

2

ı
= o(o(

‰
li + lj

2

ı
))

o(

‰
li + lj

2

ı
+ n− 1)

= o(

‰
li + lj + 2(n− 1)

2

ı
)

= o(

‰
li + n− 1 + lj + n− 1

2

ı
)

= o(

‰
o(li) + o(lj)

2

ı
)

≡ o(

‰
o(li) + o(lj)

2

ı
) (mod 2(n− 1))

With the digital curves it was assumed that they are monotonous
between Pli , P0 and P0, Plj . The monotonously is always attain-
able, if the size of the window is sufficient small selected.

On the basis of the above mathematical descriptions the tree-
trunk diameters can be determined in each skeleton pixel accord-
ing to the Def. 8. The measurement of the tree-trunk diameters
by square filling out is very well suitable for a reconstruction of
the tree-trunk from the diameters. The other two procedures (Def.
7, Def. 8) supply against it a more exact diameter, but it can be
well determined only outside of the branch bifurcations. On the
basis of the diameter the separate representation of the branches
and the thicker trunk is possible, as well.

4.2 Extension of the LDGT to 3D

In the above section the 2D LDGT was described, where the 2D
digital line segment was represented with a natural number l. In
3D space will be needed two natural numbers (l, k), l, k ∈ N to
represent a 3D digital line segment. The first number is used for
the orientation in the horizontal space and the second number in
the vertical space. A similar extension is used also for the skele-
tonization. The calculation of the intersection of the orthogonals
of a 3D digital curve to the object surface is more complicated and
computationally intensive process, because of the surface model-
ing.

4.3 Circle/ellipse detecting and fitting

The detecting of circles and ellipses such as the tree-trunk slice
in the 3D scene e.g with Hough transformation is a very time-
consuming task (searching in the 3-5 dimensional space). Us-
ing the LDGT on the 2D panorama pictures with the help of the
3D-coordinates it is possible to reduce the circle/ellipse detection
time. On the segmented 2D panorama pictures and with the help
of LDGT and of the 3D geometry the 3D points near to an or-
thogonal plane in a tree trunk position can be extracted, which
points belong to the stem boundary. After the projection of these378
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(a) (b) (c)

Figure 11: The pictures are 90 degree rotated. The reconstruction
of the tree structures from the tree diameters in the skeleton pix-
els (a) with square filling, (b) with minimal length and (c) with
orthogonals

points to the orthogonal plane to the tree-trunk can be used any
regression approach to determinate the stem border and the stem
diameter at this position.

For the circle/ellipse fitting the algebraic equation was used:

F (x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F (19)

which in th case of the circle is:

F (x, y) = x2 + y2 + Dx + Ey + F (20)

and the least squares method with the error function

e = F (x, y; D, E, F )2. (21)

The D, E, and F minimize e if the partial derivatives for e with
respect to each of D, E, and F are simultaneously zero (Eq. 24).
To determinate the center point (xc, yc) and the radius r of the
circle must be solved the Eq. 25 and

xc = −D, yc = −E (22)

and
r =

p
xc ∗ xc + yc ∗ yc− F . (23)

∂e
∂D

=
P

i 2(x2
i + y2

i + Dxi + Eyi + F ) · xi

=
P

i 2(x3
i + y2

i xi + Dx2
i + Eyixi + Fxi) = 0

∂e
∂E

=
P

i 2(x2
i + y2

i + Dxi + Eyi + F ) · yi

=
P

i 2(x2
i yi + y3

i + Dxiyi + Ey2
i + Fyi) = 0

∂e
∂F

=
P

i 2(x2
i + y2

i + Dxi + Eyi + F )
=

P
i 2(x2

i + y2
i + Dxi + Eyi) = 0

(24)

2
P

i x2
i D + 2

P
i xiyi E +

P
i xi F +

P
i x3

i + xiy
2
i = 0

2
P

i xiyi D + 2
P

i y2
i E +

P
i yi F +

P
i y3

i + x2
i yi = 0

2
P

i xi D + 2
P

i yi E +
P

i 1 F +
P

i x2
i + y2

i = 0
(25)

The ellipse fitting is analogous to the circle least squares method.
Here is used the Eq. 19 and also the parameters A, B, C should
be determinated.

The approximation of the extracted 3D-points is possible by using
splines, principal curves or another methods, as well.

5 RESULTS AND DISCUSSION

Using LDGT with the help of the connectivity numbers can be
followed the skeleton-pixels with C3

4 >= 2 in each column from
the beginning on the ground area (the 1st skeleton-pixel with
C3

4 = 1, = 3 or = 4) to the tree-top or the highest possible
part of the tree on the picture (the last skeleton-pixel with C3

4 =
1, = 3 or = 4). Small skeleton-parts can be assumed as noisy
and excluded from the calculations, so only the representative
skeleton-parts are used. The real (x,y,z)-coordinates of the be-
ginning and of the end-pixels of the tree-skeleton give the tree
height. If the tree-skeleton is broken it results of course a wrong
tree height. Walking on the tree-skeleton at approx. 1,3m height
from the beginning pixel, the pixels are cutted with the help of
one of the suggested diameter-algorithms and the corresponding
3D-coordinates are used for tree-trunk diameter calculation. The
DBH can be determinated e.g. using circle/ellipse fitting (see
Sec. 4.3). Following again the skeleton pixels on the skeleton
curve the connectivity numbers help to find the branches on the
tree or the skeleton line. The third skeleton pixel with C3

4 = 4,
or C3

4 = 3 should be mean the beginning of the crown accord-
ing to the forestry definitions (’at the 3rd green branches’), but
in our case currently it isn’t possible to determinate the colour of
the branches. Another problem is, if the branch cannot or can be
only particularly seen on the scan.

Although the above algorithms are able to measure the exact sizes,
the noise (e.g. which may result broken or extra skeleton parts)
or the situation that one-scan contains not always the whole in-
formation about the complete tree, must be kept in mind.

The suggested algorithms make possible the automatical extrac-
tion and calculation of the relevant forest parameters on the whole
data set, but not only in one measured point (e.g. in the case
of the DBH, which is used mostly in the forestry), but at every
user defined heights. So for example also the stem form (also
curvature/torsion of the stem) can better calculated, which was
so far only on the harvested tree possible. In the case of more
scans from an inventory point from different scan positions the
one-scan algorithms can complete the algorithms which were de-
veloped for the merged 3D data set. This algorithms can be used
as well in the one-scan case, but in view of the fact that the data
set may contain not enough information for the correct measure-
ments. For example, we assume that the 3D-coordinates of a379
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tree are extracted with manual or region of interest (ROI) based
technique, or automatically, where the trees, tree-foot positions
can be localized by the local maxima in the distance-histogram,
which contains the occurrence of the object-points with the same
distance-ranges to the camera plane in a pixel-column in the case
of the panorama pictures or in a given grid structure in the case
of the merged 3D data set. A small fraction of the lowest (z-
coordinate) points are used for the determination of the local
tree foot-position, which is calculated by the mean of the x,y-
coordinates of these points. From the tree foot position in 1,3m
height the pixels are cutted and used for the DBH calculation with
the circle fitting method. The crown base is determinated by the
mean radial distances at each height by given step size. If the
mean radial distance and its standard deviation are significantly
different from the values at DBH, then the crown base is at this
height. For the crown can be derivated the same sizes such the
mean radii and the crown dimensions can be calculated. The tree
height is the difference between the z-coordinates of the tree foot-
position and the mean of a small percentage of the highest points.

6 CONCLUSIONS AND FUTURE WORK

In this work there were suggested algorithms and mathematical
founded methods for the segmentation, skeletonization and dig-
ital measurements using LDGT. The purposed algorithms sup-
port the manual, ROI based measurements and make possible
the automatical and computer based measurements on digital pic-
tures and terrestrial laser data. The extraction of forest relevant
parameters are based on the using of pictures as digital masks
(segmented and skeletonized pictures) and on calculating the dis-
tances, lengths along the line structures and n-connected digital
pixel structures (digital curves) in a local area which are determi-
nated by LDGT.

The tree segmentations method works well if the intensity infor-
mation from the tree (bright) is quite different from the back-
ground information (black). There are some trees see also on the
Fig. 3 (a) where the tree trunk is so dark as the background. In
this case the range information should be used to distinguish it
from the background. The quality of the segmentation influences
mainly the skeletonization and also the digital measurements us-
ing LDGT. In the ideal case the exact object sizes can be deter-
minated, but the intensity values of the laser data are not always
enough to detect all tree structures. Because of it the segmenta-
tion on 2D panorama pictures should be extended for the 3D data
set to get better preprocessing result. The colour information and
its projection to the 3D data set are also necessary to separate the
crown and leaf structures from the tree stem and branches and
from the ground area.

We have seen that only the intensity picture is not enough for the
real size measurements, but it supports very well the extraction
of the forest inventory parameters in the case of the above tech-
niques. There are methods like the fractal dimension which can
be used independent from the segmentation also for the 3D data
set and it makes the characterization of the different forest struc-
tures, biomass etc. possible (see Fig. 7 /top/). Furthermore the
fractal dimension can be used without size or range and distance
information also only on the intensity or panorama picture.
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