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ABSTRACT:

The paper addresses the problem of feature selection during classification of image regions within the context of interpreting
images showing highly structured objects such as buildings. We present a feature selection scheme that is connected with
the classification framework Adaboost, cf. (Schapire and Singer, 1999). We constricted our weak learners on threshold
classification on a single feature. Our experiments showed that the classification with Adaboost is based on relatively small
subsets of features. Thus, we are able to find sets of appropriate features. We present our results on manually annotated and
automatically segmented regions from facade images of the eTRIMS data base, where our focus were the object classes
facade, roof, windows and window panes.

1 INTRODUCTION

The paper addresses the problem of feature selection during
classification of image regions within the context of inter-
preting images showing highly structured objects such as
buildings. Our region classification is meant to be used as
an initial interpretation which can be inspected by a high-
level system, cf. (Hartz and Neumann, 2007), leading to
new hypotheses to be verified by new image evidence.

The diversity of buildings and their environment is too rich
for the determination of appropriate region features by only
a few features, such as the color channels themselves, gra-
dient images or texture measures. This would lead to un-
satisfying results during classification of building parts. If
we, as a remedy, significantly expand the dimension of the
feature vector, we need to select appropriate features for
efficiency reasons.

This paper adresses the problem of feature selection. We
present a feature selection method based on Adaboost and
investigate its performance with respect to classification of
image regions which show buildings or building parts. In
the following we first relate our work to previously pro-
posed methods and use it to motivate our approach. Then
we introduce our technique and decribe our experiments
with which we want to show the capability of our approach.

2 RELATED WORKS

Building extraction is an active research area in photogram-
metry. Concerning building extraction from aerial images,
the review in (Mayer, 1999) presents well discussed ap-
proaches. Many of these methods work on extracted image
edges to identify buildings, e. g. (Nevatia et al., 1997), or
combine detected image edges and detected homogeneous
image regions in a hierarchical aggregation process, e. g.

(Fischer et al., 1998). Regrettably, these approches often
fail as soon as the building structures become too com-
plex. The interpretation of terrestrial images of buildings
is not developed as far as the interpretation of aerial im-
ages. Some approaches only investigate the grouping of
repetitive textures and structures, cf. (Wang et al., 2002)
and (Tuytelaars et al., 2003).

Building detection is also a very active research area in pho-
togrammtery and computer vision. In recent approaches,
graphical models are often used for integrating further in-
formation about the content of the whole scene, cf. (Kumar
and Hebert, 2003) and (Verbeek and Triggs, 2007). In an-
other paradigm, the bag of words, objects are detected by
the evaluation of histograms of basic image features from a
dictionary, cf. (Sivic et al., 2005). Unfortunately, both ap-
proaches have not been tested with high resolution building
images. Furthermore, the bag of words approaches have
not applied to multifarious categories as building or mam-
mals. Epshtein and Ullman (2005) and Lifschitz (2005)
propose a hierarchical interpretation scheme and show first
results on very small and strongly smoothed building im-
ages. Thus, their concept is also not applicable on detailed
building scenes. In photogrammetry, the interpretation of
building facades is currently studied by Reznik and Mayer
(2007), where they make use of image sequences.

Feature Selection is used in data mining to extract useful
and comprehensible information from data, cf. (Liu and
Motoda, 1998). In our case, we want to select the most
valuable features from a set of candidates to keep the clas-
sification efficient and reliable. One classical approach, the
principal component analysis, reduces the dimension of the
feature space by projecting all features, cf. (Bishop, 2006).
Thus, the obtained new features are not a subset of all can-
didate features, but combinations of the original features.

The exhaustive evaluation of all 2D combinations ofD fea-
tures takes too much time. Therefore, we may choose be-
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tween random or greedily deterministic approaches to find
an appropriate subset of features to perform satisfying clas-
sifications.

Alternatively, Guyon and Elisseeff (2003) propose a feature
selection framework which is based on the ranking of fea-
tures. Then, the classification step itself is done by only one
classifier. In our experiments, the features have low corre-
lation coefficients with the class target and they are highly
correlated with each other. Furthermore, the training sam-
ples do not form compact clusters in feature space. Then, it
is a hard task to find a single classifier that is able to sepa-
rate the classes. Thus, we prefer a feature selection scheme
which combines several classifiers.

One of such schemes is the framework of adaptive boosting
(Adaboost), cf. (Schapire, 1990). The first weak classifier
(or best hypothesis) is learnt on equally weighted training
samples (xn, yn). Then, the influence of all misclassified
samples is increased by adjusting the weights of the fea-
ture vectors before training the second weak classifier. So,
the second weak classifier will focus especially on the pre-
viously misclassified samples. Again, the weights are ad-
justed once more depending on the classification result of
the second weak classifier before training the third weak
classifier, and so on. Finally, we obtain the resulting clas-
sifier by a majority vote of all weak classifiers. The dis-
criminative power of this resulting classifier is much higher
than the discriminative power of each weak classifier, cf.
(Rätsch et al., 2001).

This majority voting is also done when using random forests,
which are based on random decisions when constructing
decision trees. In (Ho, 1998), a random selection of a pre-
defined small number of features is used for constructing
decision trees. This procedure is equivalent to projecting
the feature vectors into a space with much lower dimen-
sionality, but the projections differ from one decision tree
to the others. The decision trees in (Breiman, 2001) ran-
domly choose a feature from the whole feature set and takes
it for determining the best domain split. Both methods only
work well, if the number of random decision trees is large,
especially if there are only features which are nearly un-
correlated with the classes. In the experiments by Breiman
(2001), decision trees were used five times more than weak
learners in Adaboost. Therefore, we focus our work on Ad-
aboost and its variants.

3 FEATURE SELECTION WITH ADABOOST

The basic algorithm of Adaboost as taken from (Schapire
and Singer, 1999) is shown in alg. 1. Input are the number
T of iterations and N samples (xn, yn) with binary tar-
gets, i. e. yn ∈ {+1,−1}. In each iteration, the best weak
classifier is determined with respect to the samples weights.
Each weak classifier ht is a function ht : xn 7→ {+1,−1}.
After Adaboost has terminated after T iterations, the result-
ing strong classifier H can be depicted as weighted major-
ity voting over the responses of all weak classifiers:

H(xn) = sign

(∑
t

αtht(xn)

)
. (1)

The αt are predictive values and depend on the weak clas-
sifiers success rates.

Algorithm 1 Adaboost algorithm
1: function ADABOOST(T, (x1, y1),. . . , (xN , yN ))
2: Wn

1 = 1
N

3: for t = 1,. . . , T do
4: Determine best weak hypothesis ht using Wt

5: Determine αt

6: Determine distribution Wt+1

7: end for
8: return H with H(x) = sign

(∑
t αtht(x)

)
.

If the weak classifiers are designed in a way that they use
only a limited set of features, e. g. 1 feature only, then we
are able to derive the relevance of features from the rele-
vance of the weak classifiers. In the case, where only clas-
sifiers on single features are used, the strong classifier H
consists of T weak classifiers h1,. . . , hT , and we obtain a
list of maximally T features that are involved in classifica-
tion. If T < D, then these maximally T features are the
most appropriate features for classification.

Another strategy for obtaining the best feature subset is pre-
sented in (Drauschke and Förstner, 2008). In case T ≈ D
or T > D, we cannot assume to find the best subset by
only taking those features that have been used by the first
weak classifiers. The influence of a feature depends on the
absolute value of the predictive values αt. Since these αt

do not monotonously decrease with increasing t, we have
to evaluate the features after the iterative process has termi-
nated.

4 DATA

We use terrestrial images of the eTRIMS data base for test-
ing our feature selection and classification. This data base
contains several hundred buildings from several major Eu-
ropean cities or their suburbs. We selected 82 images from
Berlin, Bonn and Munich, Germany, and from Prague, Czech
Republic.

Typically, buildings have dominant vanishing lines in hori-
zontal and vertical directions, respectively. If a pair of lines
in the image is selected for each of both directions, we are
able to determine the vanishing points and the homography
for rectifying the image, cf. (McGlone, 2004), p. 775. So
far, we work on rectified images which where the image
rectification has been calculated after manual selection of
these two pairs of lines. We show such a rectified image in
fig. 1.

Our class ontology contains several object classes, and our
goal is to find instances of these classes in images. At this
stage, we limit our experiments to a subset of classes. On
the one hand, we are interested in building detection, and
therefore, we want to classify image regions as facade, roof,
sky or vegetation. On the other hand, we are interested in
detection of building parts, and therefore, we want to clas-
sify image regions as windows or window panes. Objects of
both classes appear in all images, and regarding their cardi-
nality, these are the most dominant structures in all images
of the eTRIMS data base.
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Figure 1: Rectified facade image and an detail from
eTRIMS data base with manually annotated regions, e. g.
window panes, vegetation.

We did our first experiments on manually annotated regions
from rectified facade images, see fig. 1. These tests can
show us the relevance of the features with respect to an op-
timal image segmentation.

In the second experiments, we used automatically segmented
image regions. We obtain these image regions from the
analysis of the image’s scale-space with S discrete layers,
which we have already used in (Drauschke et al., 2006).
We adopted some parameters, i. e. we only consider the
original image and additional 41 layers in scale-space with
scales between σ = 0.5 and σ = 8. Then, we automati-
cally trace the regions through the scale-space structure to
derive a region’s hierarchy, similar to the approach of Bang-
ham et al. (1999). For complexity reason, we reduce the
number of regions by selecting only stable regions in scale-
space structure. Distinct region borders are often good ev-
idences for stable regions. Thus, most stable regions cor-
respond to man-made structures or are caused by shadows.
The process of determining stable regions is explicitly de-
scribed in (Drauschke, 2008). Fig. 2 shows all detected
stable regions in scales σ = 2.

Figure 2: Segmented stable regions at scales σ = 2.

We derive 164 features from each manually annotated and
each automatically segmented image region. Thus, our sam-
ples xn are 164-dimensional feature vectors. These fea-
tures are roughly described in tab. 1. Color features are
determined with respect to two color channels RGB and
HSV. Last, we derive the features f157 to f164 from the

vectorized region’s border, which is a simplification of the
region’s boundary by using the algorithm of Douglas and
Peucker (1973).

Table 1: List of derived features from image regions.
f1 area
f2 circumference
f3 form factor
f4 vertical elongation of bounding box
f5 horizontal elongation of bounding box
f6 ratio f1 : (f4 · f5)

f7-f12 mean color value in original image
regarding the six channels

f13-f18 variance of color values in original image
regarding the six channels

f19-f108 normalized histogram entries of gradients
magnitude, 15 bins per channel

f109-f156 normalized histogram entries of gradients
orientation, 8 bins per channel

f157 portion of lengths of parallel edges
in vectorized region’s boundary

f158 portion of number of parallel edges
f159 portion of lengths of boundary edges

which are parallel to region’s major axis
f160 portion of number of boundary edges

which are parallel to region’s major axis
f161 portion of lengths of boundary edges

which are parallel to region’s minor axis
f162 portion of number of boundary edges

which are parallel to region’s minor axis
f163 portion of number of orthogonal angles

in vectorized region’s boundary
f164 portion of lengths of boundary edges

which are adjacent to orthogonal angles

The targets yn are obtained differently. For manually anno-
tated regions, we additionally select the appropriate class.
Otherwise, the automatically segmented regions inherit the
class target from the best fitting manually annotated region.
The best fitting annotated region Ai∗ is determined by

i∗ = argmaxi

R ∩Ai

R ∪Ai
, (2)

whereR is a automatically segmented region andAi are all
manually annotated regions. Furthermore, the best fitting
annotated region must fulfill the condition

R ∩Ai∗

R
> 0.5, (3)

otherwise the class target of the segmented region will be
set to none, and the segmented region will be always treated
as background.

5 EXPERIMENTS

The goal of our experiments was to find appropriate fea-
tures from the set of image features, which can be used for
classifying our automatically segmented stable image re-
gions. Therefore, we designed the Adaboost algorithm as
follows. First, we only use weak classifiers which perform
threshold classifications on a single feature. And secondly,
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we perform Adaboost with only 30 iterations. We checked,
that the classification error on the training samples is more
or less constant after a few iterations and decreases very
very slowly in further iterations.

We are not only interested in reasonable classification re-
sults, but we also want to derive the most appropriate fea-
tures. Therefore, we analyze the stability of the decisions
of the weak classifiers. We repeated our tests V times,
and then we checked the features the weak classifiers ht

use. Therefore, we determined histograms over the features
which are used by the t-th weak classifier, t = 1..30. Fur-
thermore, we focused on two certain characteristics. First,
we analyzed, how many different features are used by t-th
weak classifier in V trials: c1, 1 ≤ c1 ≤ D. And secondly,
we evaluated, how often the best feature has been used by
t-th weak classifier in V trials: c2, 1 ≤ c2 ≤ V . Both
characteristics can be directly derived from the histograms:
c1 is the number of histogram entries which are not 0, and
maximum frequency of a feature, c2, is the value of the
highest peak.

If the number of used features is relatively small, then the
weak classifiers always select the same features. We have
found a set of appropriate features, if it stays consequently
below a certain threshold.

5.1 Experiments on annotated regions

We selected 62 facade images from Bonn, Germany, and
Prague, Czech Republic. Together, there are 5284 anno-
tated objects in these images. Over 70% of them are win-
dow panes, and over 20% of the annotated objects are win-
dows.

5.1.1 Facade, Roof, Sky and Vegetation The first ex-
periment included 35 annotated facades, 37 roofs, 47 times
sky and 70 times vegetation, i. e. 189 samples in total.
Since the data set is quite small, we were able to perform
four Leave-one-out-tests, i. e. V = 189, with the samples
of one class as foreground and the samples from the other
three classes as background. The classification errors are
shown in tab. 2.

Table 2: Error rates of manually annotated regions.
facade roof sky vegetation
9.5% 48.1% 1.1% 11.1%

In tab. 3 and fig. 3, we present the histograms over the
features which are used by the t-th weak classifier regard-
ing the classification of facades and roofs. With respect to
the classification of facades, we notice that the first weak
classifiers h1 to h4 distinguish facades from background
by using nearly the same features over all 189 trials. Thus,
the set of appropriate features should certainly contain the
features f3, f4, f6 and f163. Then, number of used fea-
tures, c1, increases for the further weak classifiers. Finally,
in the 30-th iteration c1 reaches a value of 21, i. e. the weak
classifiers h30 of all 189 trials use 21 different features. In
91 cases, the f3 was chosen, and f1 was chosen in 35 cases,
again. All other features which are used by h30 only play a
minor role.

Table 3: Used features and maximum frequency of a fea-
ture with respect to the weak classifiers ht for classifying
facades in 189 trials.

h1 h3 h5 h30

f6 : 187 f4 : 188 f144 : 174 f3 : 91
f3 : 2 f1 : 1 f141 : 8 f1 : 35
c1 = 2 c1 = 2 c1 = 6 c1 = 21
c2 = 187 c2 = 188 c2 = 174 c2 = 91

The almost perfect classification of sky relies on the fea-
tures f9, f151 and f130. Here, even the last weak classifier
h30 choses in 164 or 87% of all cases the feature f129, all
other features which are used by h30 can get neglected. Re-
garding the classification of vegetation, the first weak clas-
sifiers mainly use the features f9, f5 and f19. The devel-
opment of the histograms of the further weak classifiers is
similar to the observation which we made after the facade
classification.

The classification results of roofs is inacceptable, and here
the selection of appropriate feature is not so stable as in the
other three tests. Although the first weak classifiers always
uses f15 as the discriminative feature, all further weak clas-
sifiers vary much more with respect to the selected feature.
We show the histograms of four weak classifiers in fig. 3.

h1

c1 = 1
c2 = 189

h3

c1 = 4
c2 = 140

h5

c1 = 6
c2 = 123

h30

c1 = 19
c2 = 47

Figure 3: Histograms over the features of each weak clas-
sifier ht and the number of used features c1 and the maxi-
mum frequency c2 from classifying roofs.

Due to the limited space, we do not present additional his-
tograms in detail. But the plots of fig. 4 shows how the the
number of used features c1 and the maximum frequency c2
develop with respect to the classification target. Comparing
the curves of c2 with respect to roof and sky, it decreases
much faster with bad classification results.

5.1.2 Window and Window Panes In the other two ex-
periments, we tested the classification of windows and win-
dow panes. Since we could use 5284 annotated regions, we
performed a cross validation test, where we used 10% of
the regions for testing and the rest for training the classi-
fiers. Then, we repeated all tests V = 20 times. The results
are presented in tab. 4.

Table 4: Error rates of manually annotated regions.
class min median max total
window 15.4% 24.7% 75.3% 41.8%
window pane 3.1% 6.0% 70.0% 10.1%

The classification results of the windows and window panes
make us very optimistic that we might get reasonable sets
of appropriate features. Perturbingly, the classification er-
rors vary too much between the 20 different tests. Further-
more, we cannot find any correlation between the classifica-
tion results and the stability of the weak classifierss choice
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facade

sky

roof

vegetation
Figure 4: Development of the number of used features c1
(dashed blue line) and the maximum frequency c2 (solid
red line) with respect to the 30 weak classifiers ht.

on features. For window classification, the weak classifier
mainly use the three features f5 (in 28 cases!), f4 and f18.
Although the classification of window panes yields much
better results, the curves of c1 and c2 change very fast, cf.
fig. 5. Nevertheless, the histograms show that only a small
subset of four features is mainly used by the 30 weak clas-
sifiers, cf. fig. 6.

window window pane
Figure 5: Development of the number of used features c1
(dashed blue line) and the maximum frequency c2 (solid
red line) with respect to the 30 weak classifiers ht.

5.2 Experiments on segmented data

We determined the stable regions from 82 facade images
from Berlin and Munich, Germany, and Prague, Czech Re-
public. We changed the image data that was the basis of the
previous experiments a bit, so we only worked with build-
ings of similar scale and with images of these buildings that
have a similar resolution. We extracted over 13 000 stable
regions, and then we repeated the cross validation tests on
five selections of regions. First, we considered all scales,
and then we only considered regions which where stable in
the scale-space layers with scales σ = 1, 2, 4, 8, respec-
tively.

In the tabs. 5 and 6, we show the results of our classifica-
tions. With respect to the experiment on classifying roofs,
we are surprised that the classification of regions over all
scales yields much better results than the classification of

h1

h2

h3

h5

h30

Figure 6: Histograms over the features of each weak clas-
sifier ht: f2, f5 and f13 are the most dominant features for
classifying window panes.

regions of the same scale. When choosing regions from all
scales, all weak classifiers choose one of the three features
f1, f2 and f5. Thus, c1 ≤ 3∀t, cf. fig. 7. Surprisingly, the
bad classification results of roof regions in scale σ = 1 is
also based on stable decisions of the weak classifiers since
only 11 features are used by all weak classifiers, cf. fig. 8.

Table 5: Error rates on automatically segmented regions.
scale facade roof sky vegetation
all 39.67% 15.88% 44.44% 20.75%
1 35.00% 81.06% 44.81% 33.17%
2 42.94% 28.44% 47.55% 45.27%
4 53.96% 39.76% 50.43% 43.26%
8 44.71% 25.14% 51.71% 58.86%

all scales scale σ = 1
Figure 7: Development of the number of used features c1
(dashed blue line) and the maximum frequency c2 (solid
red line) with respect to the 30 weak classifiers ht.

6 CONCLUSION AND OUTLOOK

In this paper, we presented a feature selection scheme which
is connected to the classification framework of Adaboost.
We chose very simple weak classifiers which only work on
single features. Thus, we were able to derive information
on the relevance of features for the classification process.
We could show, that the weak classifiers favour the use of
the same features. So, we obtained sets of appropriate fea-
tures even for the cases where we did not find good classi-
fication results. Therefore, we resume that we should im-
prove the classification, e. g. by using more complex weak
classifiers on 2-dimensional feature planes as fd× f2

d . Ad-
ditionally, we should expand the feature space, further fea-
tures might by derived from texture.
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h30
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