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ABSTRACT: 
 
In this paper, we propose a recognition technique for geographic features which are represented as closed contours. Our algorithm 
relies on the planar projective geometry between the contours and exploits the properties of the Fourier Transform. One of the 
contributions of the proposed method is that it can recognize features acquired from any viewing direction and even partially 
occluded. Another contribution is that this method is independent of the starting point of the contour and the digitizing direction. In 
addition, this method does not require conjugate, or matching points that are traditionally required in projective geometry. The 
experimental results on an in-house developed geographic database and the Brown University shape database show robust 
recognition performance. 
 
 

1 INTRODUCTION 
 
The measurement of shape similarity between two objects is an 
essential task in many areas, including object recognition, 
classification, mobile mapping, surveillance, trajectory 
calculation, event analysis and retrieval (Zhang and Lu, 2001) 
(Schenk, 2001) (Noor et al., 2006); and it has received a lot of 
attention since the earliest pictures were taken. For example, by 
World War I, the opposing sides routinely took aerial photos of 
each others’ positions and identified landmarks for intelligence 
gathering. The abundance and easy access today to digital 
images makes matching especially relevant among the listed 
tasks. Ideally, recognition of objects should be projection, scale, 
translation and rotation invariant, just as they are in human 
vision. This, however, is a very complex problem, since 
numerous times an object is occluded and many objects rarely 
appear the same twice, due to different camera/observer 
positions, variable lighting or object motion. According to 
Meyer (Meyer, 1993), the ultimate goal in this regard is to 
investigate automatic object recognition in unconstrained 
environments by means of outlines of the objects, which we will 
refer to as the contours. In this paper, we study the problem of 
matching 2-D contours. One of the reasons for the popularity of 
contour-based analysis techniques is that edge detection 
constitutes an important aspect of shape recognition by the 
human visual system (van Otterloo, 1991) (Schenk, 2001). Rui 
(Rui et al., 1998), Zahn and Roskies (Zahn and Roskies, 1972), 
Zhang and Fiume (Zhang and Fiume, 2002), Wallace and Wintz 
(Wallace and Wintz, 1980) use Fourier Descriptors to match 
contours. Other methods used to recognize shapes are moment 
based and structure based approaches. The advantages of 
moments (easy to calculate) are outweighed by their 
disadvantages (not intuitive) (Teague, 1980) (Zhang and Lu, 
2001). In particular, it is difficult to correlate high-order 
moments with one of these shape features (DeValois and 
DeValois, 1980). The representation of curves/contours using 
FDs gives a continuous function. Using FDs, a better 
reconstruction of the curve/contour can be created than by just 
using moments. Using only moments, reconstruction of the 
curve is difficult, if not impossible. Belonged (Belongie et al., 
2002) develop a measure called shape context for comparison. 
Shapiro (Shapiro, 1979) writes about the structure of shape in 

and early work, about how shapes can be defined, and compares 
different structure methods. Using structural information is, 
however, not efficient when compared to contours, and 
structural methods, especially those using graph-like 
representations, usually lead to variants of the computation-
intensive graph isomorphism algorithm (Shapiro, 1979) (van 
Otterloo, 1991) (Zhang and Lu, 2001). For an extended 
introduction of these techniques, please refer to any of the 
several survey papers by DeValois and DeValois (DeValois and 
DeValois, 1980), van Otterloo (van Otterloo, 1991), Loncaric 
(Loncaric, 1998) and Veltkamp (Veltkamp, 2001). Many of 
these matching methods rely on simple transformations, such as 
translation, rotation and scaling. Recognition under more 
general transformations, such as affine and projective transform, 
however, has not been fully examined, due to the complex 
nature of these transforms. A projective transform is also known 
as a homography. In a homography, a ratio of ratios or cross 
ratio of lengths on a line is the only projective invariant. The 
main motivation behind this work is that 2-D homography may 
overcome the problem of noise sensitivity and boundary 
variations. The Fourier transform, or the Fourier descriptors 
(FDs), of the contour are used to represent the curve 
parametrically. We propose to use the homography transform 
along with the FDs to match contours, applying the digitized 
coordinates of the contours. We use FDs, since ideally, shape 
representation should be invariant to scale, rotation translation 
and starting point, robust to noise, errors, efficient in computing 
the representative terms and efficient for use in matching (Rui et 
al., 1998), and many of these task are handled effectively by the 
Fourier transform. An important contribution of this paper is the 
elimination of the requirement of corresponding points. The 
paper by Belongie (Belongie et al., 2002) is probably closest in 
spirit of this paper, although with a different approach. For this 
study, several images of countries, lakes and other features were 
digitized from maps, satellite images, silhouettes to obtain the 
contours. 
 
The paper is organized as follows: Section 2 describes 
projective geometry for a background on homography. Section 
3 outlines the methodology used: converting the x and y 
coordinates into periodic functions for use by the Fourier 
transform   
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Figure 1: Planar homography between two views of a target. 
Planar homography requires corresponding points across two 
views.  
 
and the Power Spectrum, then using the values of the Power 
Spectrum as the basis for the least squares adjustment to find 
the projectivity between the two Power Spectrums. Section 4 
shows the robust recognition results from the condition number 
and variance. 
 

2  PROJECTIVE GEOMETRY 
 
Methods, like similarity, affine and projective transforms, which 
exploit projective geometry require point correspondences 
across different views, such that any given point in one view 
corresponds to one and only one point in the other, and vice 
versa. We establish a relationship between the x, y coordinates 
of two contours of the same object on different sources with the 
planar homography matrix. If a planar object is imaged from 
multiple viewing positions, the result is a projective image-to-
image homography (Hartley and Zisserman, 2000). Under 
planar homography, points in one image are transformed to the 
points in the other image as:  
 

x’ = Hx,  (1) 
 

where x’ = (x’, y’, 1) and x = (x, y, 1) are corresponding points 
across images in homogeneous coordinates and H is the 3 × 3 
matrix known as the planar homography matrix:  
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For geometric features imaged from a distant viewpoint, the 
projective homography reduces to affine homography:  
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This approximation is considered adequate, since the projective 
portion is minimized compared to the affine (Shapiro and 
Zisserman, 1995). 
 

3 METHODOLOGY 
 
While establishing correspondences across images is feasible 
and has been a common practice among researchers, finding 
corresponding points between two contours is not easy and at 

times it is impossible. Due to this observation, a common 
tradition has been to represent the contours in parametric form 
prior to any processing. Parametric contour representation can 
be generated by methods including but not limited to: 
curvature/spline based, polar coordinate (geometric) based, 
trigonometric based, wavelet transform based, Fourier 
descriptor (FD) based. In contrast to others, FD and wavelet 
based parametric contour representations provide continuous 
functions. Compared to the FD based methods, wavelet based 
methods, however, involve intensive computation, and it is 
usually not clear which basis would be a better choice to 
represent the contour. (Zhang and Lu, 2001). Let two periodic 
functions x(t) and y(t) describe the contour, such that we treat x 
and y coordinates as independent dimensions (Zahn and Roskies, 
1972). We will be using periodic functions, since it is analogous 
to shifting the starting point on a contour. In order to objectively 
compare these functions to other x and y coordinates, we set a 
standard reference to the length of the contour, and select its 
period as 2 Π. Let l be the arc length from an arbitrary starting 
point, to a point p, and let L be the entire length of the closed 
curve. In this form the arc-length is converted to its angular 
representation by: 
 

φ= 2Π
L
l

 (4) 

 
This suggests that L is the period of the x and y functions of a 
contour. Given a digital image, the contour of the geometric 
shape constitutes a dense set of discrete points. Expressing the 
parametric form of the discrete point set can be obtained by 
taking the Fourier transform of x and y independently: 
 

F(x) =  f(x)e−iω(n)t, (5) ∑
∞=

−∞=

n

n

F(y) =  f(y)e−iω(n)t , (6) ∑
∞=

−∞=

n

n
 
where F is the Fourier transform of the f(x). For finite terms, n = 
(−N/2)...(N/2 − 1), where N is the number of points (even 
number).  
 
Using equations (5) and (6) and after some manipulations, 
which includes dividing each side with [e−iω(1)t, e−iω(2)t, ..., 
e−iω(n)t], it is easy to show that the homography transform in 
equation 1 becomes  
 

   F(X0) = H   F(X)  (7) 
(3,n)    (3,3)  (3,n) 

 
where X = [x y scale] 
 
Let Gk be the kth Fourier coefficient. Then the coefficients in eq. 
7 can be expressed by: 
  

G0k = H  Gk. (8) 
(3,n)  (3,3)  (3,n) 

 
Considering the case of a different starting point on the contour, 
according to Fourier theory a shift in the starting point of a 
function is the same as multiplying the coefficients by a rotation 
matrix (Schenk, 2001) 
 

G0k = Gk ei2Пkn0/N  (9) 
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where n0 is the shift in starting point (number of points), k is 
the harmonic coefficient, N is the total number of points on the 
contour. In this formulation, the phase shift is different for every 
k harmonic coefficient. This observation presents several 
problems, the most major being that shifting the starting point 
of an object is directly proportional to the harmonic number. In 
order to eliminate this effect, we use the Power Spectrum (PS) 
of the Fourier transform. Since the change of the starting point 
corresponds to a rotation matrix, 
 

   R=  (10) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θθ
θθ

 cossin 
sin - cos

 
Multiplying this matrix with its transpose would result in an 
identity matrix (since a rotation matrix is orthogonal). For 
complex numbers, this means multiplying the number with its 
complex conjugate: 

PS = ||f(x)e−iω(n)t ||2 = F∑
n

F   (11) 

where F is the Fourier transform of f(x), and F  is its complex 
conjugate. The Power Spectrum of an object is the sum of the 
square of the magnitude of the x, y Fourier descriptors. In 
equation (8), if Gkx and Gky is the kth complex Fourier 
descriptor for x and y, and G0kx and G0ky is the kth complex 
Fourier descriptor for x0 and y0, then the power spectrum is 
(||Gkx||)2 + (||Gky||)2 and (||G’kx||)2 + (||G’ky||)2 for the kth 
harmonic. This value is constant and independent of rotation or 
starting point, for any k. The result of this operation is a 
function where the only variable is the magnitude of each 
harmonic.  
 
3.1 Matching with the Power Spectrum  
 
We hypothesize that projectivity between two contours is 
sufficient for the existence of projectivity between their 
respective PSs. Hence, checking for the existence of projectivity 
between PSs suggests that two contours are projectively 
equivalent. Introducing the power spectrum into the harmonics 
in equation (7) and developing these equations establish a set of 
equations as in the following: 
 

||G0kx||2 + ||G0ky||2 = (h1) 2||(Gkx)|| 2 + 
(h2) 2||(Gkx)|| 2 + 2||(Gkx)|| ||(Gky)|| h1h2 + 

(h3) 2||(Gky)|| 2 + (h4) 2||(Gky)|| 2 + 
2||(Gky)|| ||(Gkx)|| h3h4. (12) 

 
Rearranging this equation and putting the unknowns into a 
vector form results in: 
 

(||G’kx||2 + ||G’ky||2) = 
( ||Gkx||2 ||Gky||2 2||Gkx|| ||Gky|| ) 
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 (13) 

This is in the well known form of y = Ax, where y and A are the 
PS coefficients of the two contours, and x in this case is the 
unknown homography coefficients between the PSs. Since there 
are more equations than unknowns, we can use a least squares 
solution to calculate the homography coefficients. The matching 
between two contours can be expressed by evaluating the 

quality of the projective relation depicted in equation (13). 
Particularly, the quality of an equation system can be computed 
by the condition number of A or the empirical estimate of the 
residual variance.  
 
Among these two measures, the condition number evaluates the 
residual error calculated from the least squares solution and the 
values of the PS. In order to calculate the condition number, let 
e be the error in y. Then the error in the solution A−1y is A−1e.  
 
The ratio of the relative error in the solution to the relative error 
in y is 
 

к = (||A−1e|| ||A−1y|| ) / (||e|| ||y||). (14) 
 
A lower condition number suggests a better parameter 
estimation; hence a better matching between the contours. The 
variance, on the other hand, is the measure of statistical 
dispersion of the residual. In other words, it is a measure of how 
spread out a distribution is and how much variability there is in 
the distribution: 
 

Var(X) = E((X − μ)2), (15) 
 
where μ is the average of the variables contained in X. In this 
paper, in order to compute the matching between two contours, 
we use a combination of both the condition number and the 
variance combination by weighting the variance with the 
inverse condition number: 

MatchingScore =1/( к Var(X)). (16) 

(a) 

 (b) 

 (c) 
(a) original shape (F15), (b) x coordinate, (c) y coordinate 
 
Figure 2: Analysis of an object by separating it into its x and y 
coordinates. Starting point is at nose of F15 plane, going 
clockwise. 
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  (a)                      (b)                                  (c)                                  (d)                                (e) 
 

Figure 3: Reconstruction of x coordinate of Figure 2 above using first six Fourier descriptors out of 100
. 
The first descriptor is the average, and will be left out. (a) 
Second descriptor only (b) Sum of second and third (c) Sum of 
second, third and fourth (d) Sum of second, third, fourth and 
fifth (e) Sum of second, third, fourth, fifth and sixth  
 
For least squares matching, the number of terms has to be the 
same on both sides of the equation. Since the number of points 
on each feature may not be the same, we use the lower number 
of 3 coefficients between the compared shapes for each 
matching. Using less coefficients gives us the opportunity to 
compare the same first coefficients with each other, without 
changing the shape itself, it is also more efficient, since the 
coefficients need to be calculated once. The other solution 
would be to delete some of the points in the shape with the 
higher number of points, but this would change the contour 
itself. The results are comparable to Belongie (Belongie et al., 
2002), with the added benefit of having a simpler algorithm 
than shape contexts, although our method only considered the 
outline contours, not contours within contours. 
 

 
4 RESULTS 

 
We tested the method with both geographic and non-geographic 
features. The geographic features are manually extracted from 
maps and images. The non-geographic images, on the other 
hand, are obtained from the silhouette database from the Brown 
University (Database, 2007). The contours used in this study are 
represented by a set of sampled points. Some contours were 
digitized with intentional errors, others were sampled (at regular 
intervals) from an output from an edge-detector. There is 
nothing unique about the detected edges, such that they are not 
intersection points or break points. The number of sampled 
points was also varied. The results are generated by comparing 
each feature against all the features used in the experiments. 
The similarity between the features are generated using equation 
(16) which exploits the empirical estimate of variance and the 
condition number of the equation system generated from the 
homography transform between the Fourier descriptors of the 
contours. We tabulated the matching recognition performance 
of the proposed method in the form of a confusion matrix which 
is shown in Figure 5. Ideally, the regions marked by red outlines, 
which correspond to the clusters of objects, should have highest 
similarity and the other regions in the matrix should have no 
similarity. Representing a high match by white and no match by 
black color codes, the performance of the method provides 
shades of gray which shows robust matching performance. An 
affine projection of F15 gives close to 0 error when compared to 
the original, as expected, due to round-off. It even provides 
robust matching for different projections, like with the two 
instance of the Mexico. Similar performance results are 
observed when the features are occluded as shown for two 
instances of the Lake Superior and the occluded hand 
silhouettes. We have observed similar performances for three 
instances of the Mexico map, where the occluded version very 

well matches with the two other instances. An interesting 
observation is that, the match score tells us that F15 and F16 
have some similarity which can be considered true since both 
are silhouettes of planes. We should note that for a human 
observer, all the geographic features have some similarity, such 
as most maps used in the experiments have small peninsulas 
visible at one end of the feature. This observation, however, is 
not valid for the Staten Island, which has a more elliptical shape 
and has a smoother outline compared to the rest.  
 
 

5 CONCLUSION 
 
This paper provides a novel approach to matching objects 
represented in the form of a silhouette. Compared to many other 
recognition method in the literature, our method allows 
extracted silhouettes and their outlines to contain noise and 
occlusions. Additionally, the method resolves projective 
deformations to the objects which occur due to perspective 
viewing effects. The proposed approach exploits the projective 
geometry, which results in a robust and computationally simple 
procedure. An important contribution in this regard is the 
elimination of the point correspondences, having the same 
staring points on the silhouette outline and the direction of 
digitization of the outline. Experimental results show the 
robustness of the proposed method. 
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Mexico1                         Mexico2                      Mexico1, without Baja peninsula on the northwest 
 

                                                                         
 
Lake Balaton1                         Lake Balaton2            Staten Island, 2000           Staten Island, 1850        Staten Island, 1776 
 
 

                                                                                      
Lake Superior                            Lake Superior with some parts under ice                 Hand               Hand bent            Hand occluded 
 

                                      
F15                      F15 occluded                F16                      projected F16 
 
Figure 4: Images used to perform the experiments.The silhouette images are obtained from the Brown U. silhouette database, and the 
geographic features are from in-house generated database. 
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Figure 5: The matching scores for features displayed in the form of a confusion matrix where each feature is matched against all the 
other features. The light areas represent higher match scores and the red outlines represent the ground truth of the clusters in the 
datasets. 
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