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ABSTRACT:  Land-based mobile mapping systems have yielded an enormous time saving in capturing road networks and their 
surrounding. However, the manual extraction of the road information from the mobile mapping data is still a time-consuming task. 
This paper presents ARVEE (Automated Road Geometry Vectors Extraction Engine), a robust automatic road geometry extraction 
system developed by Absolute Mapping Solution Inc. (AMS). The extracted road information includes 3D continuous lane lines, road 
edges as well as lane lines attributes. There are three innovations in this work. First, all the visible lane lines in the georeferenced 
image sequences are extracted, instead of only extracting the central lane line or the nearby lane line pair. Second, lane line attributes 
are recognized, so the output is a functional description of the road geometry. Third, the output is an absolute-georeferenced model of 
lane lines in mapping coordinates, and is directly compatible to GIS databases. ARVEE includes four steps: First, extracting linear 
features in each image. Second, extracting, filtering and grouping linear features into lane line segments (LLS) based on  their 
geometric and radiometric characteristics. Third, linking the LLSs into long lane lines 3D model using Multiple-Hypothesis Analysis 
(MHA). Finally, classifying each lane line into a lane line type based on the synthetic analysis of the included LLSs’ features. The 
system has been tested on large number of VISAT™ mobile mapping data. The experiments on massive real MMS data sets 
demonstrate that ARVEE can deliver accurate and robust 3D continuous functional road geometry model. Full automatic processing 
result from ARVEE can replace most of the human efforts in road geometry modelling. 

 
 

1. INTRODUCTION 
  

Mobile Mapping Systems (MMS), provide an effective way to 
collect georeferenced image sequences of the roads and their 
surroundings. For instance, the VISAT™ 
(Video-Inertial-Satellite) (El-Sheimy, 1999) developed by 
Absolute Mapping Solution Inc. (AMS).can be operated at road 
speed of up to 100 km/hr and achieve abolute positioning 
accuracy better than 0.3 m (RMS) for points within the field of 
view of the images captured by the van. Mobile mapping has 
yielded an enormous time saving in road network survey. 
However, the manual extraction of the road information from 
the mobile mapping data is still a time-consuming task. 
 
Previous researches on lane line extraction mainly focus on the 
traffic applications, such as traffic monitoring or autonomous 
vehicle guidance (Ishikawa, 1988; Kenue, 1991; Jochem, 1993; 
Chen, 1997; Beauvais, 2000; Paetzold, 2000; Yim, 2003; Li, 
2004; McCall, 2004; Tai, 2004; Yue Wang, 2004; Hassouna, 
2005; Jung, 2005; Lee, 2005; Choi, 2006), more details can be 
found in (Kastrinaki, 2003). In summary, the constrains used in 
lane line detection include: (a) the shape, the lane lines is 
supposed to be a solid or dashed line with a certain width; (b) 
the colour, the lane lines are usually white or yellow; and (c) the 
geometry constrain, the road is flat and the lane lines are with 
almost no horizontal curvature. Led by the application purpose, 
and limited by the demand of real-time processing, these works 
only concerned about lane lines that are close to the vehicle, and 
all the results are described within local body frame coordinate, 
or even simply within the image coordinate frame. In addition, 
only vision sensors were exploited, and therefore, performances 
are generally not satisfying at the situation of obscuration, 
shadow or worn out painting. Few research works have focused 
on lane line extraction in image sequences using, 

georeferencing information from other sensing devices. For 
autonomous vehicle guidance, Radar and camera fusion were 
used to locate obstacle and lane line (Beauvais, 2000); location 
sensing devices, such as GPS, were fused with vision in lane 
lines following (Goldbeck, 2000; Jin Wang, 2005). In mobile 
mapping, Tao (Tao, 2001) used georeferenced images form 
mobile mapping image sequences to extract the 3D model of 
central lane line. Roncella  (Roncella, 2006) developed a 
semi-automatic lane line extraction system and tested on 
synthetic mobile mapping data. 
 
Recently, we developed ARVEE (Automated Road Geometry 
Vectors Extraction Engine) − a robust automatic road geometry 
extraction system for the post processing of georeferenced 
images captured by a land-based mobile mapping system. The 
input of the system is the mobile mapping data, which includes: 
georeferencing information, multi-camera panoramic images 
sequence and sensor/system calibration parameters. The output 
is the GIS-database-compatible road geometry information, 
which contains 3D lane line model of all the lane lines visible 
within cameras field of view together with line type/colour 
attributes. The system works in a fully automatic mode, with no 
operator supervision. The aim of the design is to introduce 
computer vision techniques to do most of the road geometry 
information extraction works in mobile mapping post 
processing, and leave as less as possible work for manual 
editing/correction. 
 
There are three innovations presented in this work; first, all  
the visible lane lines in the georeferenced image sequences are 
extracted, instead of only extracting the central lane line or the 
nearby lane line pair. The wider cover of each MMS survey  
pass means less passes of the van to complete the whole survey. 
This makes the MMS road survey more efficient. Second, the 
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lane line colour/line type attributes are recognized, and 
therefore the output is a functional description of the road 
geometry. GIS database with lane lines and their attributes can 
better support many applications. For instance, intelligent 
driving assistants can tell the driver which lane to change to, not 
only which side to change to. Third, the output is an absolute-
georeferenced model of lane lines in mapping coordinates. This 
means that the output is directly compatible to GIS database. 
 
The paper is presented in 9 sections where section 2 gives the 
overview of the system. Sections 3 to 7 describe the design 
details of ARVEE. Sections 8 and 9 describe the experimental 
results and conclusions. 
 

2. VISATTM MMS OVERVIEW 

VISATTM has been developed at the University of Calgary in 
the early 1990s and was among the first terrestrial MMS at that 
time.  Recently, an improved version was developed by 
Absolute Mapping Solutions Inc, Calgary, Canada 
(www.amsvisat.com), see Figure 1.  The system’s hardware 
components include a strapdown Inertial Navigation System 
(INS), a dual frequency GPS receiver, 6 to 12 digital colour 
cameras, and an integrated Distance Measurement Instrument 
(DMI), and the VISATTM system controller. The camera cluster 
provides a 330° panoramic field of view (see Figure 2). The 
images are captured in sets every 2~10 meters, each of these 
image sets will be called a survey point. The DMI provides the 
van longitudinal velocities and consequently linear distances to 
triggers the cameras at user pre-defined constant intervals. The 
data-logging program, VISATTM Log, allows for different 
camera configurations and different image recording distances 
or trigger the camera by time if necessary (both can be changed 
in real-time). In terms of secondary functions, the camera 
cluster provides redundancy, i.e. more than two images of the 
same object. Using the VISATTM georeferenced images, 
mapping accuracies of 0.1 - 0.3 m, for all objects within the 
filed of view of the cameras can be achieved in urban or 
highway environments while operating at road speeds of up to 
100 km/hr. 

The user can then interface with the geo-referenced images 
through VISAT StationTM — a softcopy photogrammetric 
workstation mainly designed for manual feature extraction from 
georeferenced images, collected by the VISATTM system, or 
any other georeferenced media. VISAT Station environment is 
fully integrated with ArcGIS, and permits user-friendly viewing 
of the imagery. Moreover, VISAT StationTM is a client/server 
application, enables many user terminals to access the same 
image data base and perform parallel processing. 

 

 
Figure 1: The VISATTM MMS Van 

 
 
 

 
Figure 2: The VISATTM Vision System 

 
3. GIS FEATURE EXTRACTION FRAMEWORK 

Figure 3 shows the GIS feature extraction framework for 
VISATTM. The input is georeferenced images acquired by the 
VISATTM van.  The extraction of 3D information is based on 
the integration of both image processing and photogrammetric 
analysis. The photogrammetric analysis uses available system 
parameters and geometrical constrains to provide a channel 
between 3D and 2D spaces. The image analysis extracts GIS-
feature-related information in the images. Both results are used 
in a pattern recognition procedures, which locates the GIS 
features in the images and classify them into pre-specified 
categories. Then the GIS features are modelled in 3D to meet 
the requirements of GIS database.  

 
Figure 3: GIS feature extraction framework 

 
 
ARVEE follows the above framework. Generally, there are two 
stages of processing in ARVEE. The first operates is on image 
level by only considering images from one survey point. At this 
stage, linear features are extracted from each image, and 
projected onto a road ortho image, which is achieved by an 
improved inverse perspective mapping with vehicle fluctuation 
compensation (see section 4). Then, linear features are filtered 
and grouped into lane line segments (LLS). Geometric and 
radiometric characteristics are extracted for each LLS (see 
section 5). The second stage operates on high level which 
processes the whole MMS survey images results. All LLSs 
from different survey points are integrated to generate 
continuous lane line 3D model and their attributes. A Multiple-
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Hypothesis Analysis (MHA) method is used to link the LLSs 
into long lane lines 3D model (see section 6). Each lane line is 
then classified into a lane line type, for instance “white dash 
line”. The classification is based on the analysis of the LLSs’ 
features within the lane line. A continued lane line may be of 
different types in difference sections, for example “white dash 
line” may change to “white solid line” near traffic light 
intersections. A decision filtering method is used to find the 
type-changed points (see section 7). Figure 4 shows the 
flowchart of ARVEE framework.  

 

 
Figure 4: ARVEE Workflow 

 
4. PITCH CORRECTED INVERSE PERSPECTIVE 

MAPPING (PCIPM) 

The inverse perspective mapping (IPM) can be used to simplify 
the process of lane detection. IPM essentially re-projects the 
images onto a common plane (road surface plane) and provides 
a single image with common lane line structure. As shown in 
Figure 5, direction OA is the optical axis of a given camera. IG 
is the ideal road surface plane. Assuming the vehicle is a rigid 
body, the angle between OA and IG can be estimated at system 
calibration stage. 
 
We denote the angle between the two vectors as Angle(·,·). The 
classical inverse perspective mapping assumes that the vehicle 
drives on a perfect flat plane IG, and Angle(OA, IG) is fixed, 
and the distance from camera to the road surface (denoted as H) 
is fixed; both Angle(OA, IG) and H  are known.  The IPM 
projects all the original images from different cameras onto the 
IG plane, and generates the 2D ortho-image on the road surface 
plane, as shown in Figure 5. The generated image is no longer a 
perspective image but a map. In Figure 5, M is a plane parallel 
to IG. The ideal IPM result can be a mapping from IG to any M, 
through the direction that perpendicular to IG. 
 
 

 
Figure 5:  Classical IPM   

 
The classical IPM is based on the flat road surface assumption. 
However, this assumption is not always valid in real world. 
There are several facts that invalidate the assumption. First, 
road surface is not always an ideal plane, in stead; a curved 
road surface is common in practice.  As shown in Figure 6, 
given G is the true road surface, the classical IPM will project 
the on-road-surface point (a) to position (a’); and this will 
cause distortion in the resulted IPM map. Second, due to the 
flexibility of tires and shock absorber, vehicle is not a rigid 
body, the ideal IPM is violated. Therefore, given the same road 
surface and the same vehicle position, the angle between OA 
and the road surface may still be different. Third, small bumps 
on the road surface may cause fluctuation of vehicle, and again, 
this will cause OA to change.   
In ARVEE, we introduce georeferencing information to 
overcome this problem. VISAT™ provides quite accurate 
measurement of the position of the body frame centre. All the 
cameras are fixed to the navigation body frame; and the 
relationship of all the sensors are accurately estimated during 
the system calibration.   

 
 

Figure 6: Pitch corrected IPM 
 

The trajectory of the survey provides a good estimate of road 
surface profiles, and this model is in earth mapping frame. 
Given the positions of the survey points as }{ iP

v , the estimation 
of the trajectory at position i can be expressed as  

),...,,,,...,( 11 niiiimii PPPPPFT ++−−=
vvvvvv

            (1) 
where F is a trajectory interpolation function, which takes the 
ordered position sequence and models the trajectory. Since the 
road surface behind the vehicle has no influence to the IPM, so 
m = 0.  The road surface are suppose to be smooth, so n can be 
2, and F can, therefore, be defined as  

 

∑
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The road surface can be described as a general cylindrical 
surface along the trajectory. At each point on the trajectory, the 
roll angle between the road surface to the body frame 
coordinate is 0.0.  With this assumption, we correct the classical 
IPM according to the local trajectory at each survey point. The 
proceeding processing stages use this pitch-corrected road 
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surface (PCRS) as the a priori knowledge. As shown in Figure 6, 
the corrected projection is perpendicular to M’, and this 
eliminates most of the restoration distortions in classical IPM.  
 

5. LANE LINE SEGMENT EXTRACTION 

At each survey point, the images from all the cameras are 
captured at the same instant, based on distance or time, at a 
series of points along the route using the VISAT Log data 
acquisition module. The data acquisition module, VISAT Log, 
can be configured on the fly to trigger the cameras for any 
desired distance.  In urban surveys, this distance is typically 3 
to 5 meters intervals between image sets, which will ensure 
complete panoramic coverage.  On highways, 5 to 10 meters 
intervals are typically used. At each survey point, the cameras 
cover a wide angle of the surrounding area. The aim of LLS 
extraction is to extract the lane lines within the covered area 
from each image set captured at the same survey point. ARVEE 
is adaptive to different camera configurations, which greatly 
increase the flexibility. This convention is due to the effective 
LLS extraction algorithm.  
 
For each camera, the image is applied with a linear feature 
extraction algorithm (Cheng Wang, 2002). All the lane line 
associated linear features are filtered by the following 
constrains: 
(1) Shape constrain: the lane lines is supposed to be a solid or 
dashed line with a certain width; (2) Colour constrain: the lane 
lines usually are of white or yellow colour, and (3) Geometry 
constrain: the road is a flat surface and the lane line is with a 
small curvature.  
 
The filtered out linear features from different cameras are added 
into the lane-line-associated linear feature set (LALS). All the 
elements in LALS are combined to establish the 3D model of 
the LALS in the mapping frame. In this stage, more constrains 
are introduced to determine is the location of the LLSs and their 
central lines. These constrains are mainly from the 
observational correspondence across cameras. The major 
constrains include: (1) Space distribution correspondence: the 
observations to the same LLS from different cameras should be 
close to each other in PCRS. (2) Colour distribution 
correspondence: the LLS should have similar colour 
distribution in difference observations, and (3) Heading 
direction agreement: all the LLSs should agree to the heading 
direction of the road. At this stage, attributes that describe the 
characteristics of each LLS are also extracted. These attributes 
will later be used to classify the lane line type. For each LLS, as 
shown in Figure 7, the local image is separated into three parts: 
the lane line covered region C, the left neighbour region L and 
right neighbour region R .  
 
Motivated by common features used by human, ARVEE 
utilizes the following features to describe a LLS: relative 
position and orientation to the body frame centre; dashness (the 
dash-shape of the LLS); colour distribution of region C, L, R; 
the relationship between the three colour distributions; and 
texture features.  

 
Figure 7:  Local image segmentation for feature extraction  

 

 
6. MULTI-HYPERTHESIS LINKING 

Given the LLSs extracted from each survey point, the aim of 
lane line linking is to join the LLSs through the whole survey 
image sets to form a continuous 3D model of the lane lines. 
Each lane line could include several to hundreds of LLSs.  
Multi-hypothesis Analysis (MHA) has proved to be successful 
in many applications, such as multi-target tracking  (Gong, 
2005). ARVEE utilizes a revised MHA algorithm to perform 
the lane line linking. The MHA has three steps: hypothesis 
generation; likelihood computation; and hypotheses 
management.  
 
All the LLSs are kept in a graph structure as shown in Figure 8. 
Each node represents a LLS. For instance, node Li,j is the jth 
LLSs in ith survey image set. The lane line linking develops the 
edges connecting the nodes.  At each survey point, the 
hypotheses are the possible connecting configurations between 
the ends of current maintained node to the nodes in the future 
image sets.  
 

 
Figure 8:  Graph structure for multi-hypotheses analysis 

 
The hypothesise generation step first calculates the possibility 
of the connections between the maintained graph nodes and the 
nodes from the current image set. The maintained nodes include 
the ending nodes of all the links in maintained hypotheses. 
They are not necessarily from the previous image set since LLS 
extraction may have misdetections. The connection probability 
is computed as: 

ffddppcon pwpwpwP ++=                    (3) 

where pp is the position closeness possibility between the new 
node to the maintained note, pd is the direction similarity 
possibility, pf is the feature similarity; and wp wd w f are the 
weights of this probabilities. In hypothesises generation step, all 
the possible connection configurations are added to hypothesise 
list. Then, hypothesises with low connection possibility are 
pruned out of the list.  
 
Given the hypothesises (the connections configurations) 
obtained from the previous processing, the likelihood 
calculation step calculates the likelihood of each new 
hypothesis. This step introduces the information of all the 
maintained hypothesises, to bring in an overall view of the LLS 
graph. The likelihood is calculated as: 

(4) 
where i is the current image set number, n represent the number 
of objects in the current hypothesis. Pconj is the connection 
probability of the jth connection; Ptrjj is the smoothness 
probability of the new connection to the former link; Pfeaj is the 
feature similarity possibility. Wcon , Wtrj , and Wfeaj  are the 
weights to these possibilities. Condition* represents a set of 
constrains that make a hypothesis possible. The constrains 
include: no multiple connection; and no crossing connection. 
These constrains express the nature of a possible lane line. 
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With the increase of the survey image sets, the size of the 
hypothesis set might quickly explodes. Hypothesis management 
step is designed to keep a practical-sized hypothesis set and 
keep the diversity of that hypothesis set as much as possible.  
Several rules are introduced: first, only limited amount of 
hypothesises are maintained; second, the hypothesises that are 
not changed for several image sets will be combined into other 
hypothesises, or deleted; third, only limited hypothesises are 
allowed to be added at each image set. 
 
The MHA processing goes through all the image sets. At the 
end, H* —the hypothesis with highest likelihood— will be 
viewed as the best connection configuration of all the LLS 
notes. Each links in H* is a lane line.  
 
 

7. LANE LINE CLASSIFICATION 

The classification of LLS attributes is affected by many facts: 
occlusion; worn-out painting of lane lines; variation of the side 
pavements or grass; variance of road surface materials; and the 
unreliability of the feature extraction algorithms.  So, instead of 
classify the LLS, we calculate the feature of a lane line base on 
all the LLSs included in that lane line; and classify the type of 
the lane line as a whole. 
 
Lane line usually extends for hundreds of meters or even 
kilometers. According to the traffic design, the type of lane line 
may change during the extension. For example, a dashed white 
lane line may change into a solid near road crossings, to keep 
the vehicles from lane change. However, the above mentioned 
lane line detection and linking procedures are not able to 
separate the lane line type changes. In order to solve this 
problem, type-changed point detection is introduced in our 
system. 
Denote a lane line as LA, LA includes a set of LLS,  LA = { li | 
i=0,n}. Denote judge function  Ei as :  

⎩
⎨
⎧

≠
=

=
−−

−−

),...,(),...,(1
),...,(),...,(0

idiidi

idiidi
i llFllFwhen

llFllFwhen
E          (5) 

where d  is the buffer size. ),...,( pk llF  is the classification 

function that decide the lane line type based on the 
characteristics of LLSs  },...,{ pk ll . In practice, we use a KNN 

classifier as ()F . If the preceding lane line segments 

idi ll ,...,−  and the successive lane line segments idi ll ,...,−  

are not with the same type, then iE  is 1, and LLS 
il  is viewed 

as a point where the lane line type changed. Figure 9 illustrate 
the finding of type-changed point. 
 
 

 
Figure 9:  detection of type-changed point 

Once a type changed point is detected, the lane line will be 
broken at that point. The separated two parts of the lane line are 
to be classified independently. 
 

8. EXPERIMENTS 

ARVEE has been tested over massive real mobile mapping 
survey data from VISAT™, including data from urban and rural 

areas.  Test results show that ARVEE is robust and ready to 
serve the real world applications. Video of the results can be 
found at http://mms.geomatics.ucalgary.ca/Team/Current/ 
Collaborators/cheng/AVREE_demo/ARVEE_demo.htm 

 
Figure 10 shows a road geometry extraction result of ARVEE.  
The extracted lane lines are superimposed on the original 
images (only two of the four cameras are shown in the figure). 
There are four lane lines within this site, all correctly extracted 
and classified. The two lines in the middle of the road are 
dashed white lane line (marked as dashed white line),  the one 
in the left is a yellow solid lane line (marked as solid yellow 
line), and the one on the right side is a solid white line (marked 
as solid white line). Figure 11 is the bird eye view of the 
extracted road geometry. At this point, it should be stressed that, 
although there are other vehicles occlude the sight view to the 
right side lane line, it is still successfully extracted. This shows 
the robustness of the ARVEE against partly occlusion.  
 

  
a                                              b 

Figure 10: ARVEE result in partly occlusion 
 

 
Figure 11: Bird eye view of result in Figure 10  

 
Figure 12 shows ARVEE result at a shadowed road. Despite of 
the tree shadows, all visible lane lines are correctly detected, 
linked and classified. This shows the robustness of the ARVEE 
against shadows.  

 

 
Figure 12: Road geometry result in shadows 

 
Figure 13 shows the detected road geometry overlapped on the 
digital map. The extracted road geometry fits the map perfectly, 
but with much more details and much higher accuracy. The 
result can greatly improve the current GIS database.  

 

li-d,…li li,…li+d 
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Figure 13:  ARVEE result overlapped on map 

 
In order to evaluate the misdetection rate and false detection 
rate of ARVEE, over 25 kilometres (more than 100,000 meters 
lane lines) survey data are first automatically processed by 
ARVEE, and then corrected manually. The manually corrected 
result (MCR) is viewed as a reference, and compared with the 
automatic result (AR). All the lane lines appear in MCR but not 
in AR are count as misdetection (MD), and all the lane lines 
appear in AR but not in MCR are viewed as false detection. The 
misdetection and false detection rate is calculate based on the 
length of the lane lines. The statistics of the test are shown in 
Table 1. 
 

 Length (meter) Percentage
Total Lane Line 102,732 100% 
False detection  9,889 9.62% 
Miss-detection  2,510 2.4% 

 
Table 1: Performance statistics of ARVEE 

  
The major causes of the misdetection are worn-out lane lines, 
and heavy occlusion. The major causes of false detection are 
lane-line-similar structures near the road, such as the edge of 
side walks, or the line shapes in the nearby vehicles. Figure 14 
and Figure 15 show examples of misdetection and false 
detection. In Figure 14, there is a worn-out dashed white lane 
line in the right side of the road, and is misdetected. 

 

 
Figure 14: Example of miss detection to worn-out lane line 

 

 
Figure 15: Example of false detection in heavy occlusion 

 

9. CONCLUSION 

MMS are efficient and cost effective tools for building and 
updating GIS databases. However, manual measurements of 
GIS features in MMS are still manpower demanding procedure. 
We have initiated a wide scope project for automated GIS 
features extraction, to decrease and possibly eliminate the most 
of the human work in the post-processing. In this paper, we 
present ARVEE, a robust automatic functional road geometry 
extraction system for MMS. There are three innovations in 
ARVEE. First, instead of only extracting the central lane line or 
the nearby lane line pair, our system extracts all the visible lane 
lines in the georeferenced image sequences. Second, the lane 
line attributes are recognized, so the output is a functional 
description of the road geometry. Third, the output is the high 
accurate absolute-georeferenced models which are compatible 
to the GIS database. Test over massive real mobile mapping 
demonstrate that ARVEE are ready for the real world 
applications.  
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