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ABSTRACT: 
 
Remote sensing techniques have been commonly used to map land cover and land use types. For many applications, users may only 
be interested in a specific land class in an image such as extracting urban areas from an image, or retrieving dead trees from a forest. 
This could be referred to as a one-class classification problem. In addition, with the increasing availability of high spatial resolution 
imagery, earth objects can be mapped in detail, which enable us to quickly update and monitor the change of a specific class. 
However, conventional pixel-based classification methods have difficulty in dealing with high spatial resolution remote sensing data. 
In this study, we use urban house extraction as an example, and propose to classify houses from high spatial resolution images by 
integrating one-class Support Vector Machines (SVMs) and object-based classifiers. We also compared the performance from the 
proposed method with the one-class SVMs and pixel-based method. The results indicate that the proposed method outperforms the 
pixel based method, and could be a promising way to provide relatively quick and efficient way in extracting a specific land class 
from high spatial resolution images.  
 
 

1. INTRODUCTION 

With the increasing availability of remote sensing data over the 
past few decades, remote sensing data have been commonly 
used in a wide variety of urban and environmental applications 
such as: monitoring land use change, mapping suitable habitat, 
and detecting invasive species. Traditionally, all the land types 
in an image were completely mapped via remote sensing 
classification methods. However, for some applications, we 
may only be interested in a specific class without considering 
other land types (Foody et al. 2006). For example, if the 
objective of the project is to extract roads from remote sensing 
data, we may not be interested in classifying forests, and 
agricultural lands. Another reason for mapping a specific class 
of interest is to reduce significant amount of efforts in 
collecting, training, and testing ground truth data; as it is very 
time consuming to collect ground-truth data for all the land 
classes. Therefore, it is needed to develop methods to retrieve 
only one land type from the remote sensing data. The idea is to 
separate a specific class from the rest of the land classes. This 
question could be referred to as a one-class classification 
problem. Other disciplines also have similar issues. For 
example, species collection data from natural museums often 
contain presence-only data (i.e. absence data are often not 
collected, or unreliable to collect such an animals or invasive 
species), scientists are interested in classifying the habitat based 
on presence-only data in order to find suitable or potential 
habitat for species. Another example in a handwritten number 
recognition problem is to classify the handwriting number such 
as “8” when we only have a sample a set of handwritten “8”s.  
One common solution to deal with one-class classification 
problem is based on similarity matching. Numerous machine 
learning and non machine learning approaches can be applied to 

this problem.  Among many methods, support vector machines 
(SVMs), originally developed by Vapnik (1995), are considered 
to be a new generation of learning algorithms. SVM have 
several appealing characteristics for modellers, including: they 
are statistically based models rather than loose analogies with 
natural learning systems, and they theoretically guarantee 
performance (Cristianini and Scholkopf, 2002).  SVM have 
been applied successfully to a range of remote sensing 
classification applications (Huang et al., 2002). Recently, 
Scholkopf et al. (1999) developed one-class SVM to deal with 
the one-class problem. This method has proved useful in 
document classification, texture segmentation, and image 
retrieval. 
 
Moreover, with the advance of sensor techniques, high spatial 
resolution remotely sensed images have become commercially 
available and increasingly used in various aspects of 
environmental monitoring and management (Mumby and 
Edwards 2002). Conventional pixel-based classifiers such as 
maximum likelihood classification (MLC) and Iterative Self-
Organizing Data Analysis Technique (ISODATA), which label 
unknown areas pixel by pixel based on spectral similarity, do 
not perform well with high spatial resolution images ( Xia 
1996). This is because the inherent spectral variability in 
specific ground targets increases as resolution becomes finer 
(Martin and Howarth 1989). Therefore, retrieving one land 
class from high spatial resolution imagery based on pixel-based 
method may result in significant misclassification. In recent 
years, object-based methods have gained much attention as 
alternative methods for classifying high resolution images. An 
“object” is defined here as a group of spectrally similar 
contiguous pixels, and ideally, it should represent a physically 
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or ecologically homogeneous land class. One reason that the 
object-based methods perform well in classifying high 
resolution images are because once the object is created by a 
segmentation approach, many more features such geometrical 
(e.g. shape and area) and topological properties (e.g. 
relationship between objects) can be extracted from the 
segmented image. This feature is particularly useful in 
classifying high spatial resolution images since high spatial 
resolution images often contain relatively fewer spectral bands 
(e.g. IKNONOS, QIUCKBIRD) compared to coarser images 
(e.g. MOIDS, Landsat TM). Consequently, methods that rely on 
only spectral information could have difficulty in distinguishing 
spectrally similar classes such as buildings and roads). Yet, it 
will be much easier to differentiate a building from a road if we 
can incorporate the object shape into the classification process. 
 
Hence, in this study, we propose to develop an integrated 
approach based on one-class SVMs and object-based methods 
to classify one land class from high spatial resolution images. 
We first segmented an image by a segmentation approach; both 
spectral and spatial properties were then extracted from objects, 
the one-class SVMs were then applied to extract one land type 
based on properties extracted from the objects. We also 
performed the comparisons among the proposed method and the 
one-class SVM with pixel-based classification. The overall 
accuracy and Kappa coefficient were calculated and used in the 
comparison (Congalton and Mead, 1983).  
 
 

2. DATA AND METHODS 

2.1 Data 

The high resolution remote sensing data used in this research 
are from aerial photos with 0.3 meter spatial resolution. The 
study area is located in Oakland, California (Figure 1). 
 

 
 
Figure 1. Aerial photograph of the study area (color image with 

0.3 meter spatial resolution) 
 
2.2 Methods 

2.2.1 Segmentation method: Segmentation methods are used 
to generate image objects for classification and image retrieval, 
the object is defined as a group of spectrally similar contiguous 
pixels. Numerous algorithms have been proposed to segment an 
image. In this study, we used the segmentation method from 
Definies software, which is based on a multi-resolution 
segmentation algorithm. The segmentation results are tuned 
based on scale parameters, color, smoothness, and compactness. 
The final segmentation results are shown in Figure 2.  
 

2.2.2 Features extraction: After image segmentation, we then 
extract features to be used for image classification. One 
advantage of the object-based method is the ability to extract a 
wealth of features that could aid in classifying the imagery. 
Fourteen features are chosen in this study, detailed descriptions 
are described as follows: 
 
(1) Mean value (MV), which represents mean brightness value 

of every image object. Since the aerial photo includes three 
bands (i.e. green, blue, and red), we will have three mean 
values as features for image classification. The formula is as 
follows: 

Lk = /n  ∑
=

n

i
ikB

1

Where, Lk is the mean brightness value; n is the number of 
pixels in the image object; Bik is brightness value of ith pixel 
contained in the image object in band k. 
 
(2) Mean difference to scene (MDS), which is the difference 
between mean brightness value of an image object and mean 
brightness value of the whole scene in band k. The formula is as 
follows: 

Sk = /n - /m ∑
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i
ikB

1
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Where, Sk is mean difference to the band k; m is the number of 
pixels of the whole scene. Similarly, there are three features 
which exist in the mean difference to the scene. 

 

 
Figure 2. The result of image segmentation 

 
(3)Mean difference to neighbour (MDN), which is the 
difference between mean brightness value of an image object 
and mean brightness value of its direct neighbours in band k. 
The formula is defined as follows: 
 

Nk = /n - /  ∑
=

n

i
ikB

1
∑∑
= =

p

l

m

j
ljk

l

B
1 1

∑
=

p

l
lm

1

 
Where, p is the number of direct neighbours; ml is the number 
of pixels of the neighbour l.  There are three MDNs. 

 
(4)Standard Deviation, which represents the standard deviation 
of brightness value of all the pixels contained in an image 
object in bank k. There are also three standard deviations.  
 
(5)Area, which represents the number of all the pixels contained 
in an image object. 
 
(6)Shape Index (SI) describes the smoothness of the image 
object borders, which is useful in differentiating houses and 
other man-made objects such as road. The definition of SI is:  
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SIi =
i

i
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4
 

Where, SIi is the shape index; Pi is the perimeter; Ai is the area 
of image object i. 
The number of features used in this study is summarized in 
Table 1: 
  

Features The number of features 
Mean value 3 
Mean difference to scene 3 
Mean difference to 
neighbour 

3 

Standard Deviation 3 
Area 1 
Shape Index 1 
Table 1. Features and the number of features used in one-class 

SVMs 
 
The values of features vary significantly. For example, the area 
of objects ranges from 1 to 10650 while the shape index ranges 
from 1 to 8.73. Therefore, before we implemented support 
vector machines to classify the objects, we firstly normalized 
the features by using a maximum and minim method, and the 
final values for each feature range from 0 – 1.  
 
2.2.3 Feature selection: The feature selection aims to select a 
subset of the features that could perform well in the 
classification algorithms. It could reduce the dimensionality of 
the feature space while still maintain high classification 
accuracy and avoid over-fitting. In this study, we used the 
brute-force search algorithm (also referred to as the exhaustive 
search), which searches for all of the possible combinations of 
features and finds the optimum solution for the classifier. 
Assuming the number of features is n, the number of possible 
combination of features will be:  

1
nC  +  +  + … +  = 2n – 1 2

nC 3
nC n

nC
Since there are 14 features in this study, which results in 16383 
possible combinations. The computational calculation is 
acceptable with current PC (the computer used in this study is 
Intel CPU 2.4, and takes approximately 2.6  hours to search all 
possible combinations as well as implemented one-class SVMs). 
Although the brute-force algorithm is very time-consuming, it 
solves the optimization problem directly and always finds the 
solution if it exists. However, it should be noted that when the 
number of features increase, the brutal search method could 
become too time-consuming as its cost is proportional to the 
number of candidate features.  In these cases, other feature 
selection methods can be more appropriate (e.g. the stepwise 
method). The Kappa values and cross validation methods are 
used to evaluate model performance with difference feature 
combinations.  

 
2.2.4 Accuracy assessment: Ground truth data were acquired 
by manual photo interpretation. Totally, 100 house objects and 
20 non-house objects were selected. For one class support 
vector machines, we only used house data for training, and both 
house and non-housing data to evaluate the classification results. 
We used the Kappa value to measure the classification accuracy, 
Kappa values take into account an agreement that can occur by 
change (expected agreement). In General, Kappa values of 0.75 
and higher are considered good classification results (Eric et al 
2004). A five-fold cross-validation method is used to evaluate 
the model performance based on the training data. The cross 
validation method is implemented as follows (Guo et al. 2007): 

(1) Select 100 houses as set H and 20 non houses as set Hn as 
training set for cross validation. 
(2) Randomly split set H into five subsets, i.e., every subset 
contains 20 houses. Every subset H in combination with Hn in 
turn composes of set Te. Other four subsets in set H compose of 
set Tr.  
(3) The set Tr is used as training samples; the set Te is used as 
testing samples to evaluate the model performance of one-class 
SVMs.  
(4) The Kappa value is calculated for each iteration.  The 
average Kappa value is reported based on five implements.  
 
2.2.5. Implement SVMs for object-based classification   
Assuming we have l  training points  ( i =1, 2… ), we want 
to find a hypersphere as small as possible to contain the training 
points in multidimensional space. Meanwhile, we also allow a 
small portion of outliers to exist using a slack variable (

ix l

iξ ):  

Min ∑+
i

ivl
R ξ12                 (1) 

Subject to:   (2)   ][i allfor  0  ,)()( i
2 lRcxcx ii

T
i ∈≥+≤−− ξξ

Where c and R are the center and radius of the sphere, T is the 
transpose of a matrix, and v  ∈  (0, 1] is the trade-off between 
the volume of the sphere and the number of training points 
rejected. When v  is large, the volume of the sphere is small 
thus more training points will be rejected than when  is small, 
where more training points will be contained within the sphere. 

 can be roughly explained as the percentage of outliers in the 
training dataset (Scholkopf et al., 2001). This optimization 
problem can be solved by the Lagrangian: 

v

v
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Where   0 and ia ≥ iβ  ≥ 0. Setting the partial derivative of L 

with respect to R, , c equal to 0, we get: ia

∑
=

=
l

i
ia

1
1                                               (4) 

vl
ai

10 ≤≤                                           (5) 

∑
=

=
l

i
ii xac

1
                                          (6) 

 
Substituting equation (4)-(6) to equation (3), we have the dual 
problem: 

∑ ∑ ⋅−⋅ji i iiijiji
a

xxaxxaa, )()(min         (7) 

Subject to: 
vl

ai
10 ≤≤ ,  ∑

=

=
l

i
ia

1
1

To determine whether or not a test point ( x ) is within the 
sphere, we can calculate the distance between the test point and 
the center C. It can be expressed as: 

∑∑ ≤⋅+⋅−⋅ 2)()(2)( Rxxaaxxaxx jijii
i

i                (8) 

So far, we have assumed that the data are spherically distributed. 
In reality, the data are often not spherically distributed. To 
make the method more flexible and to capture the non-linearity 
such as multi-mode distribution, the kernel function K(xi, xj) can 
be introduced. We can express the inner product in equation 8 
as the kernel function: 
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∑∑ ≤+−
ji

jiji
i

ii RxxKaaxxkaxxK
,

2),(),(2),(             (9) 

Two types of kernels are often used: polynomial and Gaussian 
kernels, however, the former usually does not produce a tight 
description of the data and is sensitive to outliers when the 
polynomial degree is high (Tax and Duin, 1999a).  A more 
robust way is to construct the Gaussian kernel, which has been 
commonly used for one-class SVMs (Tax and Duin, 1999a; 
Scholkopf et al., 2001): 

22 /)(),( Sxx
ji

jiexxK −−=                                 (10) 
where S is the kernel width. The Gaussian kernel was applied in 
this study. It should be noted that the method above was 
proposed by Tax and Duin (1999), another approach proposed 
by Scholkopf et al (1999) is to find some hyperplane to separate 
the training data from the origin with the maximum margin. For 
the Gaussian kernel, these two methods are equivalent 
(Scholkopf et al., 2001).  We implemented the one-class SVMs 
by the modified version of LIBSVM-a library for support vector 
machines developed by Chang and Lin (2001). A more detailed 
mathematical derivation of one-class SVMs can be found in 
Scholkopf et al. (1999), and Tax and Duin (1999a).  In this 
study, both Gaussian kernel width (S) and v  are estimated from 
the cross validation method that maximizes the classification 
accuracy (i.e. Kappa value).  
 
2.2.6 One class SVMS with pixel-based classification: as a 
comparison, we implemented the one class SVMs with pixel-
based classification. Features used in pixel based classification 
include digital values of three bands for each pixel. In order to 
catch the texture information in the classification, we also used 
the variance of digital value for each pixel with a 5×5 
processing window in each band. As a result, six features are 
used in one-class SVMs with pixel-based classification. The 
training samples and testing samples are used similar to the 
object-based method. The major difference is from the 
perspective of data storage and processing: in the object-based 
method, the segmented objects as well as training and testing 
samples are stored as polygons and hence processed in the 
vector format, while, in the pixel-based method, the data are 
stored and processed in the raster format only. 
 

3. RESULTS 

For the one-class SVMs with object-based method, we found 
that the combination of shape index and mean difference to 
neighbour provided the highest Kappa score based on the five-
fold cross validation method. Kappa value is 0.79. The kernel 
width and the v for one-class SVMs are 0.03 and 0.06 
respectively. The final classification result is shown in Figure 3.  

 
Figure 3. one-class SVMs with object-based classification. The 

pink objects are houses, and blue objects are non-houses.  
 

For the one-class SVMs with pixel-based method, the kernel 
width and the v for one-class SVMs are 0.07 and 0.02 
respectively by using the brute-force search method. The 
optimal Kappa value for the classification is 0.30. Figure 4 
shows the final classification result based on one-class SVMs 
with the pixel-based method. This method can effectively 
distinguish houses from grasslands, but it is difficult to 
distinguish houses from roads.  
 

 
 
Figure 4. Classification results based on one-class SVMs with 
the pixel-based classification. The pink objects represent houses 
and the gray objects represent non-houses.  
 
 

4. DISCUSSION 

The result indicates that one-class SVMs with the object-based 
classification (kappa = 0.79) outperformed the pixel-based 
counterpart (kappa = 0.30). Two reasons may contribute to the 
differences: 
 
1) The object-based classification can provide more meaningful 
candidate features such as shape and mean difference to 
neighbour, which is very useful in differentiating houses from 
roads. Because of the spectral similarity between houses and 
roads, conventional pixel-based methods are difficult to 
distinguish between them as shown in Figure 4.  
 
(2) Since the pixel-based classifies the image pixel by pixel, the 
final classification is very fragmented, particularly in 
classifying high spatial resolution images. As shown in Figure 4, 
many pixels are misclassified as houses.  Based on the shape 
and size of those pixels, we could easily tell that they are not 
houses. Therefore, in order to make use of the classification 
result from pixel-based methods for extracting houses from high 
resolution images, users normally need to manually or semi-
manually post process the classified image. On the other hand, 
the object-based method seeks to first segment the images based 
on spectral similarity among pixels, and then classify the 
images based on features extracted from the segmented objects. 
The classification results are much smoother and almost ready 
for environmental or urban applications (Figure 3).   
 
In sum, with the increasingly available high spatial resolution 
imagery, one-class SVMs together with object-based 
classification methods provide a promising way in extracting a 
specific land class type from high resolution images. 
 
 
 
 
 

 1162



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

 

REFERENCES 

Congalton, R.G. and Mead, R.A., 1983,  A quantitative method 
to test for consistency and correctness in photointerpretation, 
Photogrammetric Engineering and Remote Sensing, 49:  69-74. 
 
Cristianini, N. and Scholkopf, B., 2002,  Support vector 
machines and kernel methods - the new generation of learning 
machines, Ai Magazine, 23:  31-41. 
 
Eric A. Whitsel, Kathryn M. Rose, Joy L. Wood et al. 2004 
Accuracy and Repeatability of Commercial Geocoding. 
American Journal of Epidemiology, 160(10):1023-1029. 
 
Foody, G.M., Mathur, A., Sanchez-Hernandez, C. and Boyd, D., 
2006,  Training set size requirements for the classification of a 
specific class, Remote Sensing of Environment, 104:  1 - 14. 
 
Guo, Q., Kelly, M., Gong, P. and Liu, D., 2007,  An object-
based classification approach in mapping tree mortality using 
high spatial resolution imagery, GIScience & Remote Sensing, 
44:  24 - 47. 
 
Huang, C., Davis, L.S. and Townshend, J.R.G., 2002,  An 
assessment of support vector machines for land cover 

classification, International Journal of Remote Sensing, 23:  
725-749. 
 
Martin, L.R.G. and Howarth, P.J., 1989,  Change-detection 
accuracy assessment using spot multispectral imagery of the 
rural urban fringe, Remote Sensing of Environment, 30:  55-66. 
 
Mumby, P.J. and Edwards, A.J., 2002,  Mapping marine 
environments with ikonos imagery: Enhanced spatial resolution 
can deliver greater thematic accuracy, Remote Sensing of 
Environment, 82:  248-257. 
 
Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and 
Williamson, R.C., 1999,  Estimation the support of a high-
dimensional distribution, Technical Report MSR-TR-99-87, 
Microsoft Research. 
 
Vapnik, V., 1995, The nature of statistical learning theory, New 
York: Springer-Verlag. 
 
Xia, L., 1996,  A method to improve classification with shape 
information, International Journal of Remote Sensing, 17:  
1473-1481. 

 

1163



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

 

 1164




