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ABSTRACT: 
 
Geospatial analysis is becoming increasingly dependent on the integration of data from heterogeneous sources. In this paper, we 
present an automated, feature-based approach for geometric co-registration using networks of roads (or other similar features). This 
approach is based on a graph matching scheme that models networks as graphs with embedded invariant attributes. The main 
advantages of our approach reside in its ability of using both geometric and topological attributes to reduce the ambiguity in search 
space for inexact matching as well as its invariance to translation, rotation and scale differences (through the use of appropriate 
attributes). Furthermore, our approach requires no user-defined threshold to justify local matches. Using the information derived 
from this matching process, the registration of two datasets can be accomplished.  
 
 

1. INTRODUCTION 

Geospatial analysis is becoming increasingly dependent on the 
integration of data from heterogeneous sources. The geometric 
co-registration of these datasets still remains a challenging and 
crucial task, especially given the emergence of novel data 
capturing approaches, like the use of unmanned aerial vehicles 
(UAVs) to capture long image sequences. In this context, 
registration may refer either to the registration of images to 
images, to generate for example long mosaics, or to the 
registration of images to maps, to identify their orientation 
parameters. This registration problem becomes increasingly 
complex when we consider differences in coverage, scale, and 
resolution as corresponding objects in two datasets may also 
differ to a certain extent.  
 
Road networks usually are common features in areas of interest. 
Unlike points or point-like features e.g. manhole covers 
(Drewniok and Rohr, 1996) or building corners (Rohr, 2001), 
road networks contain inherently substantial semantic 
information in their structure (e.g. topology and geometry), and 
thus are considered robust entities for matching in our approach 
based on graph matching. A great deal of effort has been 
devoted to graph matching by the computer vision community. 
In the work of Barrow and Popplestone (1971), relational graph 
matching was first studied where a relational graph is designed 
to represent scene structure for matching. After that, it has been 
widely adopted and developed for matching problems. Two 
major approaches can be identified. One involves the 
construction of structural graph model where geometric 
attributes of components are not taken into consider. Matching 
techniques are developed solely based on structure pattern, like 
the graph and sub-graph isomorphism approaches (Shapiro and 
Haralick, 1985; Pellilo, 1999; Bunke, 1999; Jain et. al., 2002). 
The major drawbacks in these graph-theoretical methods are 
their computational complexity and inability to handle inexact 
matching due to noise or corruptions in the graph. Later works 
in Wilson and Hancock (1997) and Luo & Hancock (2001) 

exemplify some enhancements based on pure structural graph 
model. The second approach to the problem appreciates the 
measurements of network components and represents networks 
as attributed relational graphs. Matching techniques are 
developed to compute graph similarity based on these 
measurements and network relational structure, such as 
relaxation labelling algorithm (Rosenfeld et. al., 1976; Li,1992; 
Gautama & Borgharaef, 2005), information theory principles 
(Shi and Malik, 1998), Markov Random Field method (Li, 
1994). In these approaches, invariant measurements of network 
components are essential for the matching as they can reduce 
ambiguities in local similarity and the corresponding searching 
space. But due to different scope of computer vision 
applications (e.g. face recognition, content-based image 
retrieval) research has addressed geometric and topological 
attributes of the network in a rather limited manner, focusing 
instead more on performance metrics (e.g. faster convergence).  
 
In this work, we develop an efficient algorithm of inexact graph 
matching using invariant attributes (geometry and topology) 
included in geographic networks and is based on the relaxation 
labelling introduced by Hummel and Zucker (1983). The 
challenges we are facing include the computational complexity 
of matching network components (i.e. junctions and polygons), 
as well as errors in feature extraction due to the presence of 
noise in scenes, like building-induced shadows and occlusions. 
In this paper, the utilization of point networks and revised 
relaxation labelling provides the ability to utilize structures and 
geometric attributes derived from the network to improve the 
matching algorithm and thus achieve relatively efficient 
computation. The process is fully automatic in terms of no input 
needed from users. These unique advantages serve both as the 
motivation for our work and constitute the main contributions 
of this paper. 
 
The remainder of the paper is organized as follows: Section 2 
describes the formal representation of road networks in terms of 
attributed relational graph. The attributes developed for 
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relaxation matching are described in Section 3. In Section 4, our 
revised relaxation labelling algorithm for matching is described 
in detail. Experimental results are presented in Section 5. 
Finally, Section 6 presents conclusion and outlines our future 
work. 
 
 

2. NETWORK PREPARATION  

Geographic features (road networks) extracted from both data 
sets are first transformed into graph structure as input to our 
approach: extracted intersections are modelled as vertices in the 
graph, while road segments between intersections are modelled 
as straight edges in the graph. The detection of intersections is 
not a topic addressed by this paper, as this is a well-researched 
topic in photogrammetry and computer vision. We assume that 
road intersections have been detected in both datasets being 
registered. Figure 1 exemplifies the transformation of the road 
networks in an image.  
 

 

 

 
 

Figure 1. Graph representation of road networks on imagery 
 
For the sake of clarity, we name the graph from image space as 
Gd and the one from corresponding object space as Gm. 
Correspondingly, V1

d
 is a vertex of Gd , E1

d
 an edge of Gd , V1

m
 

a vertex of  Gm , E1
m
 an edge of Gm … 

  
 

3. FORMALIZATION OF INVARIANT ATTRIBUTES 

Invariant attributes are essential for matching as they can 
reduce ambiguities in local similarity and the corresponding 
search space. Developing invariant attributes, however, is a 
non-trivial issue. In one hand, as the involved imagery and GIS 
datasets may differ in terms of resolution, scale, coverage, and 
orientation in general, the conjugate features may also differ to 
a certain extent. On the other hand, as road networks usually 
involve high volume of data, it is important to develop 
attributes that require less computational efforts. In this section, 
we introduce attributes derived from the geometry and topology 
of road networks, which are invariant to translations, rotations 
and scale changes.  
 
We start with connectivity attribute represented by the formal 
adjacency matrix (noted as A), which can be used to model the 
topological structure of road networks. 
 
Definition 1. If there is at least one single road segment 
connecting road intersections i and j, i is said being connected 
to j (or vice versa). The entry for ij in the adjacency matrix A is 
of value 1. Otherwise, it is 0.  
 
The adjacency matrix can be derived from the graph. The entry 
values of the matrix correspond to the existence of edges 
between corresponding vertices, i.e. value 1 describes at least 

one edge, while value 0 represents no edge. By definition 
adjacency matrix is invariant with respect to translation, 
rotation, and even scale variations between the image and the 
corresponding geospatial dataset.  
 
Typically Euclidean distance is an important measurement of 
the geometry. It is invariant to translations and rotations, but not 
to scale changes. In order to overcome this problem we use the 
relative distance between road intersections as a node-linking 
attribute (instead of Euclidean distance). Relative distance is 
defined as: 
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where  i, j, t = three road intersections 
 = relative distance between i and j 

ijD̂
 Dij = euclidean distance between i and j 
 Dit = euclidean distance between i and t 
 
A third attribute (basic loop attribute) can be derived from 
adjacency matrix. It is used to model higher network 
topological structures, specifically the formation of closed loops 
in it. In the case of networks the closed loops are of triangle, 
quadrangular or higher forms, and accordingly the basic loop is 
defined as:  
 
Definition 2. If vertex Vi has two adjacent (connected) vertices, 
each of which also has one common adjacent vertex other than 
Vi , Vi has one quadrangle associated to it. 
 

 1 

2 

3 

4 

5 
 

 
Figure 2. The quadrangle in networks 

 
This is exemplified in Figure 2. V1 has two adjacent vertices V2 
and V4. Both V2 and V4 are adjacent to V3. Thus, V1 is associated 
to one quadrangle formed by V1 , V2, V3, V4. Same as V4 , V3 and 
V2. As mentioned above, the property can easily be extended to 
more complex, polygonal loops, if so desired.  
 
 

4. MATCHING TWO ROAD NETWORKS 

Accordingly, the road network is defined through the graph 
embedded two topological (connectivity and basic loop) and 
one geometric attribute (relative distance). The reader can 
easily understand that additional attributes may also be used as 
needed. This type of graph is termed attributed graph here (and, 
similarly, attributed network). Using the above notations for 
these two networks, our aim in matching is to optimally 
correspond (label) nodes Vi

d in graph Gd to those in graph Gm 
satisfying certain matching criteria. The road network matching 
is formulated as a graph-labeling problem. 
 
Based on relaxation labelling, the matching process iteratively 
re-labels the data nodes with model nodes by changing their 
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corresponding weights. The weights are optimized according to 
their local geometric and topological similarity. After each 
iteration, the global matching (i.e. global compatibility) is 
measured. The process reaches an optimal matching when the 
global compatibility measurement becomes unchanged or varies 
to a limited threshold. We details the matching process in 
following subsections. 
 
4.1 Local Similarity 

Once we have constructed the attributed graphs from two 
networks we proceed with their optimal matching. Given Vk

m 
from Gm as the current label of Vi

d in Gd, the goodness of such 
mapping (Vi

d→Vk
m) can be measured through a modified 

version of the exponential function (Li, 1992). Our aim is to 
iteratively re-label the nodes of the data graph with the model 
graph so as to optimize a global compatibility measured by the 
structures and geometries of matched nodes. The goodness of 
the local fit can be measured with H (Vi

d, Vk
m):  

 
a)  If not both Vi

d  and Vk
m are associated with the basic loop 
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Where i, s, α = road intersections in the dataset 
 to be registered, where s & α are connected with i 
 k, t, τ = road intersections in model dataset, where 
 t & τ are connected with k  
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b) If both Vi

d and Vk
m are associated with the basic loop 
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Where i, s, α,  j = road intersections in the dataset 
 To be registered and form the basic loop of i 
 k, t, τ,  κ = road intersections in model dataset 
 and form the basic loop of k 
  = sum of relative distances of  d

jsD ),,(
ˆ

α

 intersections s, j and α, j 
  = sum of relative distances of  m

tD κτ ),,(
ˆ

 intersections t, κ and τ, κ 
 
Use Figure 3 as an example. If we consider labelling V2

m for V1
d, 

V1
d has two connected vertices V2

d and V3
d , which also both 

connect with vertex V4
d . At the same time, V2

m also has two 
connected vertices V1

m and V5
m both connecting with vertex V4

m.  
In this case, H should be measured with the formula (3). If Vk

m 
has more than two adjacent vertices as V1

m, we choose the two 
vertices that minimize the power value in function H.  
 

 
V1

d 

V2
d

V3
d

V4
d

V1
m 

V2
m 

V3
m 

V4
m 

V5
m

 
 

Figure 3. Vertices with inexact degrees 
 

The novel feature of this local consistency measure H is its 
compound structure, which distinguishes it from many 
alternatives in the literature. Specifically, the geometry and 
topology for measuring local mapping goodness is formed by 
nodes both directly connected (marked with yellow circles in 
Figure 3) and indirectly connected (marked with blue circles in 
Figure 3) with the mapping nodes. The underlying advantages 
with these two measurements is that the constructed H function 
will not be affected by the presence of noise (i.e. the additional 
link V3

m in Figure 3) and the ambiguity will be reduced as low 
as possible. Similarly, the presence of noise (i.e. additional 
links) in Vd would not affect our matching. 
 
4.2 Global Compatibility 

With function H, the local difference between Vk
m and Vi

d under 
the minimal relative distance constraint is mapped into a 
similarity measure for assigning Vk

m to Vi
d . As the continuous 

relaxation labeling framework, weighted values other than 
logical assertions (1 or 0) are attached to all possible 
assignments for each vertex in Gd. The weight (denoted by pi(λ)) 
with which label Vλ

m is assigned to vertex Vi
d  belongs to [0,1]. 

In addition, the sum of the weights for all possible assignments 
to any vertex should be equal to 1. Let Θ be all available 
assignments with Vm to Vd. The global compatibility function 
can be formed as:  
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Thus, the optimal labeling of Vd with Vm will be the assignment 
that maximizes the above function. We use the gradient ascent 
algorithm, which iteratively computes the length and direction 
of the update vector to update the weight p such that the global 
compatibility function Λ will increase with each updating of p. 
The iteration terminates when the algorithm converges, 
generally producing an optimal labeling (or matching). 
Interested readers are referred to (Hummel and Zucker, 1983) 
for additional details. 
 
 

5. EXPERIMENTS 

We tested proposed approach in two experiments in order to 
demonstrate its performance and robustness. All tests are 
implemented in MATLAB environment.  
 
5.1 Test 1 

The two road networks used in this experiment are detected 
respectively from a map, typically having larger coverage, and 
from an image with smaller coverage. They are shown on the 
left in Figure 4, with their corresponding graphs on the right. 
The two networks reflect typical registration conditions, 
whereby an image and a corresponding map may differ 
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substantially in terms of translations, rotations, and scale 
changes. It should also be noted that a link (between nodes a 
and e) in the map network does not exist in the image network. 
This introduces inexact matching in the two networks, but only 
in their structure. 
 
 

   

 a

b

c

de

fM1 Gm1
 

 

 

v3

v4 

v6 

v1 
v2 

v5 

M ′ Gm′ 
 

 
Figure 4. Detected networks and their graphs 

 
Figure 5 illustrates the convergence of the global compatibility 
function under successive iterations until a maximum value is 
reached. The result using all three attributes is shown by the 
thinner curve (top) and its global compatibility increases faster 
and converges earlier than when using two attributes 
(connectivity and relative distance) only. The run time for this 
experiment is 1.2218 seconds (with two attributes) and 1.4821 
seconds (with all three attributes).  

 

 
Figure 5. Comparison under inexact matching 

 
The matching result is summarized in Table 1. It can be easily 
seen that all nodes were matched correctly despite differences 
in orientation (rotation, shift, and scales) between the two 
networks, or even differences in their actual structure (the 
presence of the a-e link). 
 

 a b c d e f 
Matching 

result V6 V1 V2 V5 V4 V3 
 

Table 1. Matching result 
 

5.2 Test 2 

In this test, we examine the robustness of our approach in exact 
matching. M2 in Figure 6 and M′ in Figure 4 are two detected 
networks used in this experiment. It should be noted that M2 has 
9 intersections and 13 edges, while M′  only has 6 intersections 
and 7 edges. These two datasets vary not only in structures like 
the example in Test 1, but also in nodes of the graph.  
 
 

 
 

Figure 6. Detected network M2 from the map 
 
In addition, as shown in Figure 7, there are four components in  
M2  marked with colors that have same topological pattern as 
M′ . Thus, topological attributes only would produce multiple 
results.  
 

 

M′ 

 
 

Figure 7. Topologically similar components 
 
The convergence of the global compatibility is shown in Figure 
8. Similar as Figure 5, the result using all three attributes is 
shown by the red curve (top) and its global compatibility 
increases faster and converges earlier than when using two 
attributes only.  In this test, the matching starts to converge 
after 30 iterations, slower than in Test 1 as we have relatively 
complex networks for matching.  
 

 

 
Figure 8. Global compatibility vs. iteration times 

 
The matching result is graphically described in Figure 9. 
Despite the topological similarity problems shown in Figure 7, 
intersections in M′  are correctly mapped to M2.   

 

 
 

Figure 9. Matching result 
 

196



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

6. CONCLUSION AND FUTURE WORK 

This paper introduced a novel matching approach to the 
georegistration problem based on graph matching. It offers the 
ability to utilize information about the topology and geometry 
of a network to establish correspondence. The ability to utilize 
both allows us to reduce the ambiguity of local consistency, 
especially when inexact matching takes place. Furthermore, the 
approach does not require user input, other than detecting road 
intersections through image processing. Thus our approach 
offers a robust and general solution to the image-to-x 
registration problem using networks.  
 
Future work will further investigate additional attributes to give 
rise to invariant description of patterns in networks. It will also 
include an extension of the proposed approach to more complex 
networks.   
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