

AN ENTERPRISE DATABASE-CENTRIC APPROACH
FOR GEOSPATIAL IMAGE MANAGEMENT AND PROCESSING

Qingyun (Jeffrey) Xie, Siva Ravada, Weisheng Xu, Zhihai Zhang

Oracle USA, Inc., One Oracle Drive, Nashua, NH 03062, USA -
(qingyun.xie, siva.ravada, weisheng.xu, zhihai.zhang)@oracle.com

KEY WORDS: Spatial Databases, Raster Data, Data Management, Image Processing, Query Processing, Database, Software

ABSTRACT:

Geoimagery and raster gridded data are growing exponentially. As a result, we face many challenges. This paper discusses two of the
major challenges. One is how to effectively and efficiently archive, manage, process and deliver all those geoimage data. Another
challenge is how to make the geoimages and professionally extracted information available to broader audiences so that enterprises
and mass consumers can benefit more from our work. This paper focuses on the database server technology, which is one of the key
areas that is essential and foundational for solving the above two challenges and beyond. It proposes a new enterprise database-
centric approach for geospatial image and raster data management and processing. The key concept of this approach is to enhance
and leverage enterprise IT technologies and provide a database-centric solution for image data management as well as key image
processing operations. It consists of three major components: a new native database data type for raster data, a server-side image
processing and raster operation engine and a standard-based user-friendly interface. It’s designed to work in a client-server
environment as well as in any multi-tier architecture. The advantages and benefits of this approach are discussed. The Oracle Spatial
GeoRaster was designed based on this approach. A series of tests and research using the Oracle GeoRaster technology were
conducted and are partially presented in this paper. The results show that this approach is practical, easy-to-use and truly scalable and
performant. This database-centric approach is a viable solution for geospatial image management and processing.

1. INTRODUCTION

Geoimagery and raster gridded data are growing exponentially.
Numerous remote sensors of different types on various
platforms are collecting real time data about the Earth and our
environment for different purposes on a daily basis. As a result,
we face many technical challenges, two of which are the major
ones we need to address carefully. One is how to effectively and
efficiently archive, manage, process and deliver all those
geoimage data. This real-time processing, management and
distribution task is becoming overwhelming and we have to
solve it intelligently. Another challenge is how to make the
geoimages and professionally extracted information available to
broader audiences so that a variety of businesses and mass
consumers can benefit more from our work. In other words,
geospatial and geoimaging technologies need a good platform
to go mainstream. New research and technologies are needed in
order to better solve those problems and the existing database
and application server and client technologies must work
synergistically in order to achieve those goals. This paper
focuses on the database server technology, which is one of the
key areas that is essential and foundational for solving the
above two challenges and beyond.

It’s well known that enterprise database management systems
provide great data security, reliability, availability, recovery and
backup, transactional features, versioning and concurrency, to
name just a few. Because of these benefits, spatial database
technologies based on standard relational database management
systems (RDBMS) have become very popular in recent years.
Good examples include RasDaMan/RasGEO (Baumann, 2001)
and ArcSDE (ESRI, 2005). They typically take a middleware
approach by storing data inside a standard RDBMS system and
processing the data in a middleware or client software package.
Most RDBMS’s don’t have image data types defined. So this
approach requires a relational database schema to be designed

to store the imagery inside RDBMS. However, a fixed set of
relational tables specified in such application schema doesn’t
offer a good flexibility when it comes to integrate geoimage
datasets with other enterprise datasets. The middleware acts as a
processing engine, which queries the data from the RDBMS,
retrieves the data out and then process the data in the
middleware to serve the clients. Some extra data might have to
be retrieved and delivered. Data transportation is expensive and
could be insecure. So performance and data security are
concerns with this approach. The other downside is either the
lack of standard database SQL interface or the decoupling of its
interface from the RDBMS system, which significantly limits
the usability and enterprise integration efforts.

In this paper, we describe an enterprise database-centric
approach for geospatial image and raster data management and
processing. The key concept of this approach is to enhance and
leverage enterprise IT technologies and provide a database-
centric solution for image data management as well as key
image processing operations. It not only offers the
aforementioned standard database benefits but also goes one
step further to provide more advantages to tackle the specific
requirements derived from the two major challenges facing the
geoimaging and geospatial industry.

2. THE ENTERPRISE DATABASE-CENTRIC
APPROACH AND THE BENEFITS

While it’s been proven to have many advantages and have
become the industry trend to manage geoimagery data in
commercial RDBMS systems instead of directly using file
systems, we think the traditional RDBMS system itself should
be enhanced to specifically handle geoimagery within the
databases as well.

199

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

Traditional commercial RDBMS or ORDBMS systems and the
SQL standards (such as SQL2 and SQL-99) typically support
only simple data types and BLOB (Binary Large Objects). None
of those standard data types meets the management
requirements of geoimagery and raster gridded data. Even
though the geoimage data can be directly stored as BLOB’s in
the databases, there is no standard operations developed to
manipulate them inside the database system, and the standard
SQL query language doesn’t work the same way as for other
simple data types. SQL/MM defines a data type SI_StillImage
to store and manage still 2D images (ISO, 2001). However it
stores images in one of the standard image file formats, which
are best used to store only smaller images and are not
specifically designed to support geoimagery and geospatial
raster data types. Scalability and performance are concerns for
both the simple BLOB approach and the SI_StillImage data
type.

Geospatial imagery and raster data are typically huge in size
and have many special metadata associated with them, such as
coordinate system and georeferencing information. The
operations on them are also different from other standard data
types. In order to meet those special requirements, we propose
an enterprise database-centric approach. This approach has
uniquely a database-centric focus and uses server-based image
processing concepts. By database-centric it means the raster
data are stored and managed inside the database natively and
the management and processing functionalities are implemented
and embedded inside the database and closely and securely
associated with the raster data itself. It’s basically an
enhancement of the RDBMS from inside.

More specifically, we think it should consist of three major
components: a new native database data type for storing raster
datasets, a server-side image processing and raster operation
engine, and a standard user-friendly interface. It’s designed to
work in a client-server environment as well as in any multi-tier
architecture.

The native object data type in this approach is specifically
designed so that it can be used similarly as other standard
database data types. The data model is generic for most raster
data types, including geoimagery, so that each image can be
stored as an object in any relational table. The specific format of
the object type fits well into the enterprise RDBMS so that it’s
truly scalable and performant. For example, it allows flexible
user-specified blocking, which means each image stored can be
unlimited in size and adaptable to various applications. One
database table can contain virtually unlimited number of images
and various internal spatial indexing mechanisms enable fast
metadata query and raster data retrieval.

This approach emphasizes a server-side image processing and
raster operation engine. By doing that it offers true security for
the data because the data no longer needs to be retrieved and
loaded into a middleware or client through an insecure network
and processed in an unmanaged computer memory. The
processing engine is also closest to the data and so runs faster
by avoiding data transferring cost. The processes can be run
concurrently and deployed onto many powerful servers to
reduce the burden on the desktop image processing systems.
The processing engine can be coupled with middleware and
client-side processing systems to fully leverage the power of
enterprise distributed computing systems.

The approach offers a single data format and a SQL or PL/SQL
API, which dramatically improves usability and simplifies data

access. Usability is one of the key drivers behind this database-
centric approach. SQL is the standard for enterprises and
enterprise application developers are most familiar with it. By
storing and managing the data inside the database, offering
various indexing and query capabilities, and providing many
basic processing operations through an easy-to-use and standard
interface, this approach allows non-geoimaging experts easily
integrate geospatial data with enterprise data, quickly leverage
geospatial technologies, and deploy powerful IT resources so
that the geoimagery and related information can be quickly
delivered, distributed and used by different enterprises and mass
consumers.

Oracle GeoRaster, an enterprise database management system
for geospatial raster datasets, was designed based on this
approach. To prove the concept of such a native database-
centric approach, part of the design and some key benefits of
Oracle GeoRaster are further described in the floowing sections
of this paper. Some tests and research using the Oracle
GeoRaster technology were conducted and are partially
presented as well.

In the tests we used Oracle Database 10g Release 1, which was
installed on Asianux 1.0 Service Pack 1. The Linux server has
4x 1G RAM, 4x 2.4GHz CPU, and 1x 72G internal hard disk.
Network Appliance NearStore R200 system was used for
database storage. It is a disk-based nearline storage system and
provides near-primary storage performance at near-tape storage
costs. The NetApp Storage consists of 16 disks (14 data disks +
2 parity disks, each disk is 292GB) combined into one global
disk by RAID4. The test dataset includes 50 digital Color Ortho
Images, courtesy of the Office of MassGIS, Commonwealth of
Massachusetts Executive Office of Environmental Affairs.
These 50 images cover the greater Boston area and can be
seamlessly mosaicked into one large image. Each image has
8000 rows, 8000 columns and 3 bands and has a size of 183MB
stored in TIFF format.

3. THE NATIVE RASTER DATA TYPE AND THE
SCALABILITY

As described above, the first key component of this database-
centric approach is a new native raster data type, which is called
the GeoRaster data type in Oracle 10g and 11g databases
(Oracle, 2004; Xie, 2008). Oracle GeoRaster defines a
component-based logically layered multidimensional raster data
model. A raster data object consists of raster cell data and
associated metadata. The raster cell data is a multidimensional
matrix of raster cells. Each cell stores a value, referred to as the
cell value. The number of bits used to store the cell value is
called the cell depth. The matrix has a number of dimensions, a
cell depth, and a size for each dimension. As a multi-
dimensional matrix, the core data can be blocked and
compressed for optimal storage, retrieval and processing. In the
GeoRaster data model, all associated information (other than
the raster cell matrix) for the raster object is stored as
“metadata”, which include raster information, spatial reference
system information, date and time information, layer
information, and spatial extent (footprint) etc.

More specifically, a raster data (an image or a grid) is stored in
Oracle as an object of the SDO_GEORASTER data type, called
the GeoRaster object. This object type is the core data type for
users and it stores all metadata and necessary information for
indexing and raster data query. The type is defined as below:

200

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

CREATE TYPE sdo_georaster AS OBJECT (
rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2(32),
rasterID NUMBER,
metadata XMLType);

The other data type is called SDO_RASTER, which is used to
define the Raster Data Tables (RDT). The actual raster cell data
of a large GeoRaster object are blocked into small blocks and
each block is stored as one row in its RDT. The relationship
between a GeoRaster object and its RDT and the raster cell data
inside the RDT table are maintained and managed internally
and automatically by enhancing the database server. Users only
need to understand and deal with the SDO_GEORASTER
object type (Figure 1).

Figure 1. GeoRaster objects in an Oracle database (Oracle, 2004;

Xie, 2008)

Using standard SQL language, a user can define any table and
create one or more columns inside that table using the
SDO_GEORASTER type. In Oracle database, a GeoRaster data
table is any user-defined table, which has at least one data
column of type SDO_GEORASTER. From a user perspective, a
GeoRaster database is thus a list of GeoRaster tables, in which
each image or raster grid is stored as a GeoRaster object in one
row as shown in Figure 1. Users can build appropriate indexes
on various columns of the GeoRaster tables e.g., a spatial R-tree
index on the raster extent and B-tree indexes on other columns
so that queries and other operations on the tables can be
supported efficiently.

To build a GeoRaster database users simply create one or a list
of GeoRaster tables using standard SQL statement. One
example follows:

CREATE TABLE my_table

(id NUMBER PRIMARY KEY,
name VARCHAR2(50),
my_image SDO_GEORASTER);

Users are required to create RDT tables. The reason is purely to
give users full control of the storage of the raster cell data so
that appropriate tuning and partitioning can be applied to
improve scalability and performance by leveraging the power of
Oracle database server.

As described earlier, the first challenge is to make sure the
image database management systems truly scalable. GeoRaster
is completely built inside Oracle database server and the

GeoRaster type is a native Oracle data type. Any table could
contain one or more columns of the GeoRaster type. There is no
limit on how many rows of an Oracle table could hold. A
GeoRaster table is just a regular oracle table and so it could
have unlimited number of rows. In each row a GeoRaster
column can store one image. So, there is virtually no limit on
the number of images you can store inside Oracle databases and
the total size of such image database could be in petabytes.

Another key question is how big a single GeoRaster object (a
single image inside the database) could be. For this we
specifically did some tests and described them in (Xie, Li and
Xu, 2006). We loaded the 50 DOQ images into the database and
stored each of them as one GeoRaster object in the Oracle
database. Then we mosaicked them into a single GeoRaster
object with a size of 9.6GB. We enlarged the mosaicked image
by using the GeoRaster procedure scaleCopy with
“scaleFactor=11” along both the row and column dimensions.
The size of the resulting image is 1.1616TB. Finally we
generated the pyramids for the result image using the GeoRaster
procedure generatePyramid. So we successfully ended up with a
huge GeoRaster object of about 1.5 terabytes in size. All
GeoRaster functions (the SQL API) passed tests on this huge
image.

This test shows that with a proper database configuration, this
approach allows creating, storing, and processing large raster
datasets. Single GeoRaster objects can be in the scale of
terabytes while the whole database can contain virtually
unlimited number of images with a total size in the scale of
petabytes.

4. THE SERVER-SIDE PROCESSING ENGINE AND
THE PERFORMANCE

A robust data manipulation engine is another essential part of
this approach and of any large-scale image database
management system. This engine should cover data loading,
exporting, insertions, updating, queries, deletions, analysis and
processing. Besides leveraging the standard enterprise database
features, GeoRaster provides over 100 raster data and metadata
operations through the SQL API to optimally manage and
manipulate GeoRaster objects in support of various application
requirements (Oracle, 2004; Xie, Sharma and Ihm, 2007; Xie,
2008). The data processing includes internal blocking and
interleaving format change, pyramiding, compressing,
mosaicking, enlarging and shrinking, subsetting, band copying
and merging, partial raster updates, and generating statistics.

The success of such a data processing engine relies on its
security, scalability, and performance. The database-centric
approach emphasizes a server-side image processing and raster
operation engine that means all the processing and
manipulations are implemented inside the Oracle database
server and use the protected database memory system. By doing
that the data no longer needs to be retrieved and loaded into a
middleware or client through an insecure network and
processed in an unmanaged computer memory. In other words,
better performance and true security can be achieved. The
~1.5TB GeoRaster object was generated through the engine, by
calling functions such as the loader, mosaic, enlarging and
pyramiding. All existing functions can run on this big image
and so demonstrated great scalability of this processing engine.
It’s achieved by adding to the database server a robust and
scalable caching and memory management system specifically
for GeoRaster object manipulation, no matter how big the
physical image is.

201

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

To get an idea of how GeoRaster performs, we tested on the key
tuning function, called changeFormatCopy. It can adjust the
internal storage format based on user specifications, such as
blocking size, interleaving type, cell depth and compression
type. The size of the GeoRaster object used is 96M. It has 8000
rows, 4000 columns and 3 bands. The cell depth is 8 bit
unsigned. The interleaving type is BIP. They are all three-band
true-color images. In the test, the database buffer cache and
shared pool are flushed to make sure every measure on the
procedure is of a new execution of the procedure itself. The
results are shown in Table 1. The tests only do reblocking of the
GeoRaster object (no interleaving and other changes combined)
and “noblock” means the image is not blocked, or in other
words, the whole image is one block without padding. The
blocking size is specified in the order of row, column, and band.
For example, a blocking size of 512x512x3 means each block
would have 512 pixels in row dimension, 512 pixels in column
dimension and 3 bands.

New raster block size after changeFormatCopy Original raster
block size

256x256x3 1024x1024x3 2048x2048x3 noblock

64x64x3 59.90 57.94 57.97 58.54

128x128x3 49.31 48.96 59.29 55.50

256x256x3 42.74 54.51 49.43 54.05

512x512x3 52.47 42.72 44.68 47.63

1024x1024x3 47.00 37.65 40.48 45.98

2048X2048x3 46.10 41.09 37.61 42.90

Table 1. Average execution time in seconds
to change internal raster block sizes

The changeFormatCopy procedure consists of two major
processes. One is to change the format of the GeoRaster object.
Another one is to make a copy of the original data. As you can
see from Table 1, the speed is very fast. One observation is that
when we call the procedure to change the block size to the same
block size of the original object, the procedure is basically
equivalent to copying the original blocks directly to the new
object. Based on the data in Table 1, it means that most of the
execution time is spent on simply copying data from one
GeoRaster object to another while the data manipulation inside
the database server is actually much faster. Like most other
functions, this one is obviously I/O intensive and better I/O
throughput would help in general. Efficient I/O operation is one
of the key directions in improving performance.

Query is very important for such databases and the speed of
such query is critical. So, we did some tests on the major
GeoRaster query function, called getRasterSubset. It returns a
subset of a GeoRaster object based on the query window, no
matter how big the GeoRaster object is or how it is stored
internally

GeoRaster block size Retrieving
window size 128x128x3 256x256x3 512x512x3 1024x1024x3 2048x2048x3
256x256x3 0.3528 0.3194 0.3256 0.3178 0.3722
512x512x3 0.3970 0.3666 0.3424 0.3804 0.4478

1024x1024x3 0.5388 0.5068 0.4602 0.4766 0.5882
2048x2048x3 1.1450 0.9680 0.9028 0.8924 0.8848

Table 2. Average execution time in seconds to retrieve different
subsets of raster data from differently blocked GeoRaster

objects

We called getRasterSusbet 50 times continuously to get the
average execution time. In this test, the buffer cache and shared
pool were flushed out before every execution of the

getRasterSubset procedure to make sure the measures are the
pure running time of each independent call of the
getRasterSubset and do not take advantages of database caches.
We used various retrieving window sizes to retrieve data from
the GeoRaster objects that have various GeoRaster block sizes.
Results are shown in Table 2.

From this test, the AOI (area of interest) queries took only sub-
seconds and showed very good performance. Properly tuning
the blocking size may improve the performance as well.
GeoRaster provides such tuning tool through functions like
changeFormatCopy and so you can easily adjust the internal
storage to meet specific application requirements.

5. THE USABILITY

The other challenge we discussed earlier in this paper is how to
attract more users and push geoimagery into enterprise systems
so that more people and more businesses can benefit from the
achievements of the geoimaging and geospatial professionals.
So, enterprise integration and usability becomes another key of
the design of this database-centric approach.

Obviously the native data type and building the processing
system from inside the commercial database server enable easy
integration of enterprise data and geospatial raster data. It
allows users to define a relational table in which images and
other enterprise data can be stored together and those tables can
be joined by defining their relationships. In order to build a
single data type for different data sources, the native GeoRaster
data type uses a single and integrated data model and thus
simplifies the understanding and usage of such raster datasets.
Even more important is the SQL API provided with GeoRaster.

SQL is the language of commercial database systems. Most
Oracle database users and system integrators are familiar with
the usage of the standard SQL and PL/SQL language. The
language is simple, easy-to-use and has good modularity. It
gives user the flexibility of data manipulations either through
simple data queries or by packaging many functions into one
package to achieve more complex goals.

For example, users can query the total band number of a
GeoRaster object as follows:

select sdo_geor.getbanddimsize(t.my_image)
 from my_table t where id=21;

Users can simply write the following PL/SQL block to tune the
block size of a GeoRaster object (geor1) and apply JPEG
compression and store it in another GeoRaster object (geor2).

declare
 geor1 sdo_georaster;
 geor2 sdo_georaster;
begin
 select my_image into geor1 from my_table where id = 1;
 select my_image into geor2 from my_table where id = 2
 for update;
 sdo_geor.changeformatcopy(geor1,
 'blocksize=(256,256,3) compression=JPEG-B',
 geor2);
 update my_table set my_image=geor2 where id=2;
 commit;
end;

202

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

A more complex task could be that the user wants to find out all
images (maybe hundreds or more) inside a specific region and
then generate full pyramids for each of the images. The
following simple PL/SQL block would do the work
automatically.

declare
 type curtype is ref cursor;
 my_cursor curtype;
 stmt varchar2(1000);
 id number;
 gr sdo_georaster;
 gm sdo_geometry;
begin
 -- 1. define the query area in WGS84 coordinate system
 gm := sdo_geometry(2003, 8307, null,
 sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(5,6,30,30));

 -- 2. define the query statement on the georaster table
 stmt := 'select id, t.my_image from my_table t ' ||
 'where sdo_inside(t.my_image.spatialextent, :1)=''TRUE''';

 -- 3. spatially query all images INSIDE the query area
 -- and generate full pyramids for each of the images
 open my_cursor for stmt using gm;
 loop
 fetch my_cursor into id, gr;
 exit when my_cursor%NOTFOUND;
 sdo_geor.generatePyramid(gr, 'resampling=bilinear');
 execute immediate 'update my_table set my_image=:1
 where id=:2' using gr, id;
 commit;
 end loop;
 close my_cursor;
end;

Users can also wrap up such blocks into a PL/SQL procedure
and store it in the database, then call the stored procedure
directly. Such features enable users to organize complex
processes and automate database administration tasks easily.
This API enables non-geospatial experts understand such
geospatial databases and the data manipulations and thus
dramatically help expand the raster data usages in broader areas.

6. LEVERAGING IT INFRASTRUCTURE

Raster data processing and manipulations are computationally
complex and I/O intensive. Single process might not be fast
enough to meet the real-time archiving and processing
requirements. Concurrent processing offers one of the best
answers to such requirements. Tests show that concurrent
processes drastically improve performance and scalability,
including GeoRaster data loading, queries and processing (Xie,
Li and Xu, 2006).

Since GeoRaster allows users to store raster data natively inside
Oracle databases, it enables all benefits from Enterprise
Computing technologies, such as the Oracle Enterprise GRID.
From this standpoint of view, GeoRaster is an Enterprise GRID
Computing enabler for the geospatial and geoimaging
applications. Oracle enterprise GRID computing technology
provides the benefits of lower cost, higher quality and flexibility,
greater scalability and performance, and so on. In addition, the
server-side processing engine, as an integral part of the database
server, can be coupled with middleware and client processing
systems to fully leverage the power of enterprise distributed

computing systems. With a multi-tier architecture and the
power of GRID computing, concurrent processing and
parallelization can be readily available for raster image database
management and processing.

7. CONCLUSIONS

In summary, this enterprise database-centric approach provides
a foundation to help solve the two major challenges in a truly
secure, scalable and performant way and offers an easy-to-use
interface to empower non-geospatial professionals to manage
and process geospatial raster datasets. The implementation of
Oracle GeoRaster based on this database-centric approach and
the tests we conducted show that this database-centric approach
is a viable solution for geospatial image management and
processing.

This approach focuses on the database server, in which the
future directions include content-based indexing and search,
componentizing the server-side image processing and query
engine and storing them as database models, enhancing raster
data analysis and mining, leveraging computing clusters and
parallelizing image processing operations. It is not to discount
the middleware image servers and desktop image processing
systems or GIS systems. Instead the spatially enabled database
server, middleware application servers and desktop image
processing and GIS systems should complement each other and
built on top of them a distributed system with a multi-tier
architecture is the right direction.

ACKNOWLEDGEMENTS

The authors would like to thank Zhun Li for conducting some
of the tests presented in this paper.

REFERENCES

ESRI, 2005. Raster Data in ArcSDE® 9.1 - An ESRI White
Paper. http://www.esri.com/library/whitepapers/pdfs/arcsde91-
raster.pdf (accessed April 2008)

ISO, 2001. ISO/IEC 13249-5:2001, Information technology -
Database languages - SQL Multimedia and Application
Packages - Part 5: Still Image, International Organization For
Standardization.

Oracle, 2004. Oracle Spatial GeoRaster, 10g Release 1 (10.1).
Oracle Corporation.

Baumann, P., 2001. Web-enabled Raster GIS Services for Large
Image and Map Databases, 5th Int’l Workshop on Query
Processing and Multimedia Issues in Distributed Systems
(QPMIDS'2001), Munich, Germany, September 3-4, 2001

Xie, J., Z. Li, and W. Xu, 2006. Using Enterprise Grid
Computing Technologies to Manage Large-Scale Geoimage
And Raster Databases. In: the Proceedings of ASPRS 2006
Annual Conference, Reno, Nevada, May 1 – 5, 2006.

Xie, Q., J. Sharma, and J. Ihm, 2007. Oracle Spatial 11g
GeoRaster, An Oracle Technical White Paper.
http://www.oracle.com/technology/products/spatial/pdf/11g_col
lateral/spatial11g_georaster_twp.pdf (accessed April 2008)

Xie, Q., 2008. Oracle Spatial, Raster Data. Encyclopedia of GIS,
Shashi Shekhar and Hui Xiong (editors), Springer. pp. 826 -
832.

203

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

204

