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ABSTRACT: 
 
Recently, automatic object extraction from Light Detection And Ranging (LiDAR) data has attracted great attention. The level of 
detail and the quality of the collected point cloud motivated the research community to investigate the possibility of automatic object 
extraction from such data. Prior accurate knowledge of terrain information is usually essential for the data to be usable in further 
processing, such as feature extraction, and to obtain better object detection results.  In this paper, a new strategy for automatic terrain 
extraction from LiDAR data is presented. The proposed strategy is based on the fact that sudden elevation changes, which usually 
correspond to non-ground objects, will cause relief displacements in perspective views. The introduced relief displacements will occlude 
neighboring ground points. A Digital Surface Model (DSM) is first generated by resampling the irregular LiDAR point clouds to a 
regular grid. By using synthesized projection centers located above the DSM and analyzing the visibility maps in perspective images, we 
can classify the DSM into non-ground and ground hypotheses. Surface roughness and inherent noise in the point cloud will lead to some 
false hypotheses. By using a novel algorithm which combines plane fitting and statistical filtering to remove these false hypotheses, non-
ground and ground points can be separated. The algorithm has been tested using both simulated and real datasets. The results have 
demonstrated that our approach can perform well with highly complex data from an urban area. In a comparison with the results obtained 
with TerraScan software, our algorithm showed the capability of producing better results while being less sensitive to used parameters.  
 
 

1. INTRODUCTION 

LiDAR technology has been demonstrated in recent years to be 
a prominent technique for the acquisition of highly dense and 
accurate information for physical surfaces. As LiDAR is a non-
selective mapping method, the acquired data consists of a point 
cloud that includes bare-ground and non-ground objects such as 
trees and buildings. Methods of removing non-ground points, 
also referred to as filtering techniques, have been the focus of 
many researchers. Many applications, for example, the 
generation of contour lines for topographic maps, road 
engineering projects, and the delineation of flooding zones, 
among others, require the generation of a DTM from the ground 
points. A DTM can be produced by resampling those extracted 
ground points from LiDAR data. The filtering step is also 
essential for the data to be usable in further processing, such as 
in feature extraction. Building detection and reconstruction 
procedures for the generation of 3D city models can be 
facilitated by first detecting the non-ground points. The feature 
extraction and modeling procedures are also beneficial to 
applications such as change detection and database updating. 

 
To satisfy the needs of these applications, the research 
community has been developing several techniques for the 
classification of LiDAR data. The first group of methods that 
can be identified in the literature are based on mathematical 
morphology. A method related to the erosion operator was 
proposed by Vosselman (2000). In this method, the acceptable 
height difference between two points is explicitly defined as a 
function of the distance between the points. Morphological 
filters have some drawbacks when certain features, such as large 
buildings and dense forest canopy, are involved. In such cases, a 
window size that is too small could be including only building 

points, thereby classifying them as ground. However, a larger 
window size can potentially chop off hills that have a significant 
slope. Strategies such as the use of multiple window sizes, as 
proposed by Kilian et al. (1996), and the one developed by 
Zhang et al. (2003), which gradually increases the window size, 
might help in overcoming these problems. However, the success 
of these types of filters is strongly dependent on the selection of 
the discriminant function parameters. The second group of 
filters are based on the progressive densification of a TIN 
(Triangulated Irregular Network). In Axelsson (2000), ground 
points are classified by iteratively building a triangulated 
surface model. The third group of methods are based on linear 
prediction and hierarchic robust interpolation (Kraus and Pfeifer, 
2001). The approach is based on a surface model defined for the 
entire point set that iteratively approaches the ground surface.  
However, these two groups of methodologies cannot handle the 
surface with low and complex objects very well, as reported by 
Sithole and Vosselman (2004). 
 
Approaches that rely on segmentation are also found in the 
literature. Jacobsen and Lohmann (2003) developed a method 
that first segments the data and then classifies the segments as 
either ground segments or off-terrain segments, based on 
neighborhood height differences. When dealing with large areas, 
segmentation techniques require expensive computation for 
processing. Other filtering algorithms are also described by 
Elmqvist et al. (2001), and Brovelli et al. (2002), among others. 
A detailed comparison of some filters is provided in Sithole and 
Vosselman (2004). The experimental study conducted shows 
that in flat and uncomplicated landscapes, all the algorithms 
give satisfactory results. However, significant differences in the 
accuracy of these methods appear when landscapes containing 

457

mailto:ycchang@ucalgary.ca


The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

steep slopes and discontinuities. These differences are the result 
of the differing abilities of the algorithms to preserve 
discontinuities while detecting large and low objects. 
In this paper, a new approach for the automatic extraction of 
terrain points from LiDAR data is presented. The next section 
will briefly describe our approach. This discussion will be 
followed by the proposed methodology for extracting non-
ground points. The Experimental Results section presents the 
descriptions of our datasets and results. Finally, concluding 
remarks regarding the performance of the proposed technique, 
together with future research directions are summarized. 
 
 

2. METHODOLOGY 

In a perspective image, we can see relief displacement caused 
by the height of the corresponding object point above or below 
the datum. Relief displacement is directly proportional to the 
radial distance and the object height above the datum. However, 
relief displacement is inversely proportional to the flying height 
above the datum. A larger radial distance and a perspective 
center with a lower height can cause more occlusions in the 
image. The concept of our new approach is based on occlusion 
detection. Non-ground points can cause occlusions in 
perspective views. Therefore, if occlusions can be detected, and 
we can find out which points are causing the occlusions, then 
these points would be identified as non-ground points.  In our 
approach, we generate a DSM grid from irregular LiDAR point 
cloud. Using this DSM, once the occlusions are detected using 
synthesized perspective centers, the points producing the 
occlusions are identified. After removing the effects of the 
roughness of the terrain, non-ground points and ground points 
can be separated from one another. Figure 1 summarizes the 
procedure. 

 
 

Figure 1. Flowchart of LiDAR data classification. 

2.1. DSM Generation 

A LiDAR point cloud is obtained as an irregularly spaced set of 
points. For most analytical processes, processing this irregular 
data format is time-consuming, and converting the points to a 
regular grid for analysis and visualization increases the 
efficiency. The pixel size has to be determined before 
resampling. Reducing information loss is important, as is 
keeping the redundancy at a minimum, while resampling. A 
very large ground sampling distance (GSD) for the resampled 
DSM will increase the information loss. However, the 
redundancy increases, as do the storage requirements, if the 
GSD is very small. To satisfy these requirements, the optimum 
GSD for resampling can be estimated to be equal to the average 
point density of the LiDAR data. In order to keep the edges 
from being blurred by some low pass filters, we use the nearest 
neighbor method for resampling. The elevation of each grid 
point is assigned the elevation of the closest original LiDAR 
point. If there is more than one point located in a pixel, we pick 
the one with the lowest height and assign its height to the pixel.  
 
2.2. Identification of the Points Causing Occlusion 

In this paper, the off-nadir angle to the line of sight will be 
denoted as the α angle, as in Figure 2. As we move away from 
the nadir point, the off-nadir angle α is supposed to increase 
(Habib et al., 2007). As long as the α angle increases while 
moving away from the nadir point, the DSM cells along the 
radial direction will be visible in the image in question. For 
example, points A and B are visible in Fig. 2 since their 
corresponding off-nadir angles increase as we move away from 
the nadir point. Occlusions, on the other hand, can be detected 
whenever there is an apparent decrease in the off-nadir angle α 
while proceeding away from the nadir point. This occlusion will 
persist until the off-nadir angle α exceeds the angle associated 
with the last visible point. In Fig. 2, we find that because 

Dα < Cα , an occlusion is detected at point D. This occlusion 

will persist until point E, at which Eα > Cα . After an 
occlusion has been detected, the points causing the occlusion 
can be identified while tracing a path toward the nadir point. 
Figure 2 shows how the points causing an occlusion can be 
determined using the triangle composed of the last visible point, 
the first occluded point, and the perspective center. The non-
ground points can be traced until the off-nadir angle α is equal 
to the angle associated with the first occluded point. In Figure 2, 
an occlusion is detected because Dα < Cα . Point C is defined 
as the last visible point for this search, and point D is taken to 
be the first occluded point. A backward search for points 
causing occlusions can then be carried out. Those points with 
off-nadir angles larger than Dα  are defined as points causing 
occlusion. For example, point B is taken to be a non-ground 
point since Bα > Dα . The backward tracing stops when we 

find an off-nadir angle smaller than Dα . In Figure 2, the tracing 

stops at point A because Aα < Dα . 
 
In order to obtain a more complete list of the points causing 
occlusions, we need to enhance the procedure’s capability of 
detecting these points. Adjusting the locations of the 
synthesized projection centers relative to the DSM can 
maximize the introduced occlusions. If the elevation of the 
perspective center can be adjusted to be as close as possible to 
the height of the non-ground object, then the capability of 
detecting the points causing occlusions can be improved. A 
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larger radial distances between a DSM cell and the nadir point 
can be also helpful in detecting the points producing occlusions. 
By combining both of the above methods, we can enhance the 
capability of our procedure to detect the points causing 
occlusions. 
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Figure 2. Occlusion detection in perspective views. 
 

                                          
 

 
Figure 3: Two perspective centers on opposite sides used to 

detect all the non-ground points 
 
When dealing with large buildings, detecting non-ground points 
using only one perspective center could be a challenge. In 

Figure 3, the building requires two perspective centers on 
opposite sides in order to detect all the non-ground points for 
each vertical profile. It is necessary to check all possible 
occluding directions. Considering that every pixel has eight 
possible neighbors that could produce occlusions, for each pixel, 
we use 8 perspective centers with heights close to the maximum 
elevation of the entire area; this way, the points causing 
occlusions can be detected more thoroughly. For the same 
reason, larger radial distances between DSM cells and the nadir 
points are also required. The locations of the perspective centers 
are outside the region of interest, at a distance d.  
 
The algorithm is tested using the artificial data with sloping 
terrain shown in Figure 4. Some objects are located above the 
ground, and some noise is added to the DSM. Using the 
proposed algorithm with synthesized perspective centers, 
potential non-ground points are separated from ground points, 
as shown in Figure 5, in which the white points are the points 
causing occlusions and the black points are the extracted ground 
points. The result of classification in Figure 5 includes some 
false hypotheses which are caused by noise in the terrain surface.  
 

  
Figure 4: The simulated surface Model. 

 

 
 

Figure 5: Points causing occlusions. 
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Figure 6: Detected non-ground points 
 
2.3. Using a Statistical Filter to Remove the Effects of 
Surface Roughness 

We want to use the potential non-ground points outputted from 
the previous procedure to extract non-ground points, so surface 
roughness and noise should be removed. When comparing the 
resulting potential ground points with potential non-ground 
points, the potential ground point results are more reliable, and 
thus would make a good reference set of points.  The terrain can 
be considered a random field, in which the elevation can be 
approximated to be normally distributed with a mean μ and a 
variance σ2. 
 
In most cases, the surface of the terrain is supposed to be 
continuous; therefore, the distribution of terrain points is more 
suitable for being our reference than the distribution of non-
ground points. In analyzing the histogram of the elevations of 
the detected ground points in a local area, we consider the 
points located beyond 2 STD from the mean of the distribution, 
where the probability of having a terrain point is only 2%, to be 
wrongly classified non-ground points that need to be corrected. 
These points are classified as ground points in the previous 
procedure because of the rough and uneven surfaces of the non-
ground objects. We consider the points located within 1.5 STD 
from the mean of the distribution, where the probability of 
having a terrain point is 93%, to be reliable signals that should 
be kept. These points could have been identified as non-ground 
points because of the roughness of the ground surface. 
 
The concept above can be implemented as a filter. Only the 
center of the filter window is examined, using the distribution of 
the neighboring ground pixels within the window. In order to 
have enough samples to generate a reliable distribution for re-
classification, the filter window size should be adaptively 
increased if the number of potential terrain samples in this local 
neighborhood is less than a pre-defined number which is chosen 
to be 100 in our case. Through the moving window procedure, 
all the pixels can be checked. The statistical filter is used to 
remove the defects caused by the false hypotheses in the surface. 
The ground points extracted are shown in Figure 6.  

 
When dealing with the terrain with very large slope angle, a 
standard deviation of a histogram could become very huge. In 

order to handle the terrain with various slope angles, more 
constraints are needed to improve refinement of the classified 
points. Combining plane fitting with the statistical filter together 
(Fig. 7), a new method for correcting false hypotheses has been 
developed. Using potential ground points after occlusion 
detection in the local block as an input, the plane fitting 
procedure estimates the most probable plane which can be used 
to represent the terrain. The plane fitting procedure is performed 
through a least squares adjustment process by minimizing the 
summation of normal distances between the potential terrain 
points and the estimated plane. In order to determine where the 
higher probability of having a terrain points could happen, the 
standard deviation of normal distances between the estimated 
plane and the potential terrain points within the local block is 
first computed. Then using a multiple of the standard deviation, 
we create a buffer around the computed plane (Fig. 8 and Fig. 9). 
The central point of the local block is defined as non-ground if 
the point is located outside the buffer. Otherwise, the point is 
taken to be a ground point. If the estimation procedure for plane 
fitting cannot be convergent, a statistical filter can be used to 
correct false hypotheses.  
 
A procedure for the classification of a regularly spaced surface 
model has been introduced above. After classifying the DSM 
into ground and non-ground pixels, we can classify the original 
LiDAR points based on their proximity to the classified DSM 
cells. Each cell, however, can contain more than one LiDAR 
point, and thus we must consider that only the lowest point 
within each cell was used in creating the DSM. If several 
LiDAR points lie in a DSM cell, which has been classified as a 
terrain point, then the lowest LiDAR point is classified as 
terrain. The classification of the remaining points depends on 
their height relative to the lowest LiDAR point. If the heights of 
the other points are significantly higher than the height of the 
lowest LiDAR point, these points are classified as non-ground. 
In the case that a cell is classified as non-ground, then all 
LiDAR points in this cell are classified as non-ground. 
 

 
 

Figure 7: Potential ground points and potential non-ground 
points in the local block 

 
 

 
 
Figure 8: Plane fitting using potential ground points in the local 

block 
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Figure 9: Identified outliners based on a buffer surrounding the 

estimated plane. 
 
 

3. EXPERIMENTS 

The proposed algorithm was tested using the set of artificial 
data shown in Figure 4, 5 and 6. For the simulated datasets, our 
results demonstrate 100% accurate classification of ground and 
non-ground points. The results have shown that this algorithm 
can handle the simulated sloping and hilly data effectively. This 
approach was also tested on real LiDAR data. In comparing our 
results with the ground truth, the number of misclassified points 
divided by the total number of points can give us the error rate, 
which, in this case, was calculated as 4.6896% (Chang et al., 
2007). These results have demonstrated that our approach can 
perform well with highly complex and unpredictable data from 
an urban area. 
 
We also compared our results with those produced using 
TerraScan. As shown in Figure 10(a), we chose an experimental 
area around the C-Train track near the University of Calgary. 
One can see a C-Train track extending into a tunnel under the 
ground in Figure 10(a). In cases like this, the default parameters 
of our algorithm are good enough to produce acceptable results. 
The parameters for ground and non-ground classification using 
TerraScan, on the other hand, need to be adjusted iteratively. 
After fine-tuning the parameters, we computed the best results 
from TerraScan and compared them with our results. Figures 
11(a) and 11(b) show the extracted ground points and non-
ground points using the proposed approach in this paper, while 
the extracted terrain point and non-ground points using 
TerraScan are shown in Figures 12(a ) and 12(b). 
 
The experimental results show that our algorithm can produce 
competitive results when compared with those obtained from 
TerraScan. In some areas, our approach can delivered better 
results. The default parameters of our algorithm can produce 
stable results in most cases; however, the parameters for the 
TerraScan function need to be adjusted iteratively for each case. 
Because the function of non-ground and ground point 
classification in the TerraScan software is designed mainly for 
DTM generation, the accuracy of the ground and non-ground 
classification is not so critical for the purpose of approximated 
DTM generation. Once enough ground points can be sampled, a 
DTM can be computed using an interpolation method. 
 
 

4. CONCLUSION 

This research presented a robust algorithm for the automated 
extraction of non-ground points from LiDAR point clouds by 
detecting points that produce occlusions. Following the 
occlusion detection, a statistical filter can be used to remove the 
effects of the terrain roughness and noise. Throughout the 
experiments, the proposed procedure separated the LiDAR non-

ground and ground points from one another successfully. The 
results have also shown that the algorithm performs effectively 
in simulated hilly terrain and in urban areas. In a comparison 
with the results obtained with the TerraScan software, our 
algorithm demonstrated the capability of producing more 
competitive outputs. 
 
Future research will be extended to more complex scenes. In the 
next stage of research, non-ground points can also be classified 
into different objects such as buildings, trees, and cars, etc. 
Multi-return and intensity information will be taken into 
consideration in future work. 
 

   
(a) (b)  
 

Figure 10: (a) The referenced aerial photo over the area covered 
by the LiDAR dataset. (b) The resampled DSM using LiDAR 

data. 
 

  
(a) (b)   
 

Figure 11: (a). Ground points and (b). non-ground points 
extracted using the proposed method. 

 

  
(a)    (b) 
 

Figure 12: (a). Ground points and (b). non-ground points 
extracted using TerraScan. 
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