
AUTOMATIC BUILDING DETECTION FROM LIDAR POINT CLOUD DATA 
 
 

Nima Ekhtari, M.R. Sahebi, M.J. Valadan Zoej, A. Mohammadzadeh 
 

Faculty of Geodesy & Geomatics Engineering, K. N. Toosi University of Technology, P O Box 15875-4416, Tehran, 
Iran - nima_e1983@yahoo.com, sahebi@kntu.ac.ir, valadanzouj@kntu.ac.ir, ali_mohammadzadeh2002@yahoo.com 

 
Commission, WG IV/3 

 
 

KEY WORDS: Building Detection, LIDAR, DSM, DTM, Normalized DSM 
 
 

ABSTRACT: 
 
This paper proposes an automatic system which detects buildings in urban and rural areas by the use of first pulse return and last 
pulse return LIDAR data. Initially both first and last pulse return points are interpolated to raster images. This results to two Digital 
Surface Models (i.e. DSM) and a differential DSM (i.e. DDSM) is computed by them. Then using a height criterion, rough and 
smooth regions of the DDSM are found. Then last pulse points lying inside smooth regions are filtered using a simplified Sohn 
filtering method to find the so called on-terrain points by which the Digital Terrain Model (i.e. DTM) is generated. The normalized 
DSM (i.e. nDSM) is calculated using first pulse-derived DSM and the calculated DTM. Afterwards two separated classifications are 
applied on the nDSM. The final results of classifications are a set of nDSM pixels belonging to building roofs. The accuracy of the 
proposed algorithm is evaluated using some metrics and has proved an overall accuracy of 95.1% and a correctness equal to 98.3% 
and a completeness factor equal to 89.5% which show the level of the efficiency and accuracy of the system. 
 
 

1. INTRODUCTION 

Nowadays there is an increasing demand for 3D urban models 
produced from Earth Observation data. Such a model contains 
all buildings of a city superposed on an accurate DTM. 3D 
urban models are being widely used in the development of 3D 
GIS databases which has many applications in utility services, 
traffic management, air pollution control, etc.  
 
A 3D City Modeling procedure consists of three phases that is 
building detection, building extraction, and building 
reconstruction. The purpose of first phase is to detect (the pixels 
belonging to) some regions representing buildings. The subject 
of second phase is to compute the geometry of polygons which 
best fit the detected pixels. The third phase aims to compute and 
fit the best planar roof type for buildings.  
 
Among all available methods to extract building models of a 
city, those who use integrated data sources appear more 
successful since the weakness points of either data sources can 
be compensated by the other one. Many researches have been 
done on the combination of high-resolution imagery and 
LIDAR data to detect and extract buildings (Sohn and Dowman 
2007; Schenk and Csatho 2002; Rottensteiner et al. 2005; Guo 
and Yasuoka 2002). 
 
Considering the capability of dense LIDAR data, there is no 
necessity to involving any aerial images in the building 
detection task. Even single-source data systems can work faster 
and more automatically. Many researches have shown the 
capability of LIDAR data in detection and extraction of the 
buildings (Vosselman 1999; Maas and Vosselman 1999; Zhang 
et. al 2006).  
 
Two ways are often utilized to identify building measurements 
from LIDAR data. One is to separate the ground, buildings, 
trees, and other measurements from LIDAR data simultaneously. 
The more popular way is to separate the ground from non-
ground LIDAR measurements first and then identify the 

building points from non-ground measurements [Zhang et. al 
2006]. The proposed algorithm here is also among the latter 
way. 
 
Although there have been some automatic and semi-automatic 
methods of building modeling proposed by many researchers, 
all the three phases still can be studied and developed more. The 
fact that the accuracy of building detection phase has a 
dominant direct effect on the buildings extraction task, suggests 
that there is a need for more accurately detected building pixels. 
Because the geometry of buildings are extracted wherever 
building pixels are detected. This paper develops a building 
detection system. 
 
 Our building detection algorithm (system) is therefore a single-
source data system, since it only utilizes LIDAR data to detect 
buildings. Our system generates some Digital Elevation Models 
by the interpolation of LIDAR points. The result of our system 
is presented in a raster format. In other words our algorithm 
uses vector data (3D coordinated points) as inputs and gives the 
information in raster format (Building pixels with their 
elevation). 
 
 

2. STUDY AREA 

The LIDAR point cloud data used to evaluate our system 
comprises of two recorded laser pulse returns; First pulse and 
Last pulse return points. FP (i.e. First Pulse return) points are 
those recorded from the first reflection of the laser pulse. As a 
result they might belong to the edges or surfaces of objects on 
the terrain rather than the ground beneath them. While the LP 
(i.e. Last Pulse return) points are more likely to belong to the 
terrain surface, especially for points of vegetation-covered 
regions and those near walls of buildings. That’s why we prefer 
LP points to create DTM and FP points to create DSM.  
 
The dataset used to evaluate the accuracy of our algorithm 
contains both the FP and LP data. The points of either have a 
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1.2 meters across-track and 10 centimeters along-track spacing. 
The dataset is provided by the ISPRS Commission III Working 
group8 official web-site, and is available on-line at:  
http://isprs.ign.fr/packages/zone3/package3_en.htm 
 
An aerial image with 25 centimeters ground pixel size is also 
provided from the scene which is shown in Fig. 1. This image 
can be useful for visual comparisons. 
 

 
 

Figure 1 – Aerial image of the study area 
 
 

3. IMPLEMENTATION 

The building detection system starts with a classification 
process which makes use of both FP and LP points. This 
classification divides the LIDAR points into “Rough” and 
“Smooth” classes. Of course as will be described later, many 
points within dense trees will be misclassified in “Smooth” 
point class. Then a simplified version of the so-called Sohn 
filter is used to extract on-terrain points from the points of 
“Smooth” class and the DTM is generated using these points. 
The normalized DSM can be computed by the DSM and DTM. 
Then a thresholding separates high-rise pixels from the nDSM. 
These pixels may belong either to building roofs or to dense 
vegetation covers. Then a slope thresholding applied on the 
slope map of the nDSM arranges the pixels of nDSM into either 
of the two classes of “Severely” and “Slightly” variable slope 
pixels. Finally building pixels are detected among the members 
of “Slightly Variable” class which simultaneously belong to the 
“High-rise” class. The whole procedure is described in details in 
the following subsections. 

 3.1. DSM roughness analysis 

As mentioned before, in order to reduce the amount of 
calculations in the Sohn filter, our system tends to find the 
points belonging to “Rough” areas and filters them out. Such 
points in both FP and LP data have different heights due to the 
canopy penetration capability of laser pulse. So a simple way to 
detect these points is the subtraction of the heights of all points 
in last pulse return from corresponding points in first pulse 
return. The only problem is that the height differences from the 
first and last returns do not work for areas covered by dense 
trees where laser pulses cannot penetrate [Zhang et. al 2006]. 
This will cause many points of dense vegetated areas to remain 
among “Smooth” points.  
 
 Often the points of first and last returns of laser do not 
necessarily have the same exact planar coordinates since the 
scan angle is not perpendicular to terrain. This case happens 
predominantly wherever the elevation changes abruptly like 
vegetated areas and near the walls of buildings. To tackle this 
problem we generate two Digital Surface Models (i.e. DSM) by 
interpolating FP and LP points individually. The height 
difference of corresponding pixels in these two models is stored 
in an image called the differential DSM (i.e. DDSM) image. 
The value of the pixels of DDSM is more wherever the pixels 

belong to vegetations or walls.  
 
 A threshold equal to 15 centimeters is set to discriminate 
vegetation from other covers in the DDSM. Pixels with values 
more than the threshold are classified as “Rough” pixels and the 
rest of pixels will be assigned the “Smooth” label. The pixels of 
“Smooth” class then make a mask image (Fig. 2). Every LIDAR 
point which lies inside the mask should contribute in the 
generation of the Digital Terrain Model and hence these points 
are stored in an individual file labeled “Smooth points”. Fig. 2 
shows the classified DDSM on which the pixels of “Rough” 
class are assigned a green color, while yellow pixels represent 
the “Smooth” class.  
 

 
 

Figure 2 – The result of the classification of DDSM pixels into 
“Smooth” (light tone) and “Rough” (dark tone) 

 
3. 2. Filtering the LP data 

In order to generate the Digital Terrain Model from LIDAR data, 
a filtering process is implemented on the LP data. The result of 
this filtering is a set of points which lie on the terrain. A 
filtering method called the “Sohn filter” (G.Sohn, I.Dowman 
2002) -also called “Progressive TIN densification/ 
Regularization method” by some authors- is the basis of our 
filtering step. Their algorithm is based on a two-step progressive 
densification of a TIN; the Points in the TIN at the end of the 
densification are accepted as a representation of the bare earth, 
and the rest as object [Sithole 2005]. We have done our filtering 
based on a simplified version of their algorithm. The first step 
of densification in our filtering is somehow the same as Sohn’s. 
The only difference is that we select more than four points as 
initial on-terrain points. But we have made some simplifications 
in the second step, where we have ignored the MDL (i.e. 
Minimum Description Length) criterion. Our study area is 
almost a flat, smoothly sloped area with a few flat roofed 
buildings. Since there is no dominant topographic influence in 
the scene, investigating the MDL criterion is not a necessary 
task. That’s why we have made the aforementioned 
simplification. 
 
All the points inside the “Smooth points” file are the inputs to 
the filtering step. A set of initial on-terrain points including four 
points covering the study area, and a few points (three points in 
this case) at the middle of the scene are selected and the 
triangulation is triggered by them. The selection of these points 
is not a difficult task since they are members of the “Smooth” 
class of the DSM. Then lowest point in each triangle is found 
and added to the on-terrain points group and the triangulation is 
repeated again. This procedure is iterated until there is no point 
below any triangle. All the points of the last TIN are assigned 
an on-terrain label. 
 
The second step of densification starts with the final TIN made 
in the last step. A buffering space with a distance of 50 
centimeters is defined above each triangle. All of the points in 
the “Smooth points” file except for those used in the TIN are 
examined. Every point within the buffer is assigned an on-
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terrain label. This procedure is not iterative. Finally the on-
terrain points are interpolated to a raster image using the Natural 
Neighbor interpolation method to produce the Digital Terrain 
Model (i.e. DTM). Every pixel of DTM has a real coordinate in 
the object space and its value is proportional to the elevation of 
the terrain at that position. Fig3 shows the calculated DTM 
which is classified into 5 classes to show the slope aspect of the 
study area. The maximum and minimum elevations of DTM 
pixels are 25.94 and 23.17 meters respectively. 

 
Figure 3 – Calculated Digital Terrain Model (darker tones 

symbolize the higher pixels) 

3.3. Elevation analysis of nDSM 

Since buildings are highly elevated objects in a scene our 
system looks for high-rise objects in the study area in this step. 
A high-elevated pixel on a DSM may belong to any objects as 
well as a high region of terrain. To eliminate the effect of 
topography from a DEM, one should normalize the model. A 
surface model is normalized by the use of the corresponding 
terrain model. To normalize the DSM, we subtract the value of 
each pixel of DTM from the value of the corresponding pixel in 
DSM. The result is a normalized model called nDSM (i.e. 
normalized DSM). 
 
As shown in Fig. 4 on-terrain pixels have values (i.e. elevations) 
less than 10 centimeters. A 10 centimeters threshold classifies 
these pixels. This supports the fact that bare-earth segments of 
the scene have the same elevations in both DSM and DTM. A 
“Terrain” label is assigned to these pixels. The next pace is 
finding the locally highest pixels of the nDSM. These pixels 
represent objects which lie on the terrain. A threshold equal to 3 
meters derives the high-rise objects of the scene. As shown in 
Fig. 4 this threshold has classified the rest of nDSM pixels into 
two other classes which are “Low- rise” and “high-rise” objects 
classes. 
 

 
 

Figure 4 – Classified normalized DSM (height thresholding) 
So we classified all nDSM pixels into three classes; “Terrain”, 
“Low-rise”, and “High-rise”. The pixels of “High-rise” class are 
the input to the last step of our building detection procedure. 
 

3.4. Roughness analysis of nDSM 

It is conspicuous that not all “High-rise” pixels belong to 
buildings. As explained earlier (section 3.1) some dense 
vegetation regions weren’t detected as “Rough” regions. So the 
presence of tree pixels in “High-rise” pixels is also expectable 
as shown in Fig. 5. The goal of this step is the detection of 
building pixels among the pixels of “High-rise” class. 

 
To fulfill this task we have used a simple concept of surface 
roughness that is the computation of the slope map of the nDSM 
image. The main motivation is that the slope of the roofs of 
buildings doesn’t often change abruptly. In addition, our study 
area contains a few flat-roofed buildings. Consequently we 
computed the slope map of the nDSM using the ESRI 
ArcGIS9.2 software. The amount of slope for each pixel is 
computed by this software using this formula [Burrough 1998]: 
 

slope_radians = ATAN ( √ ( [dz/dx]2 + [dz/dy]2 ) ) 
 

Where [dz/dx] and [dz/dy] are the rate of height change in X 
and Y directions respectively. These rates are computed for a 3 
* 3 cell neighborhood around every pixel. 
 
So the slope map of the nDSM image is computed and 
generated.  Then a quick trial and error method leads a human 
operator to define an appropriate threshold by which the slope 
map of nDSM can be divided into two classes; “Severely 
variable” and “Slightly variable” regions. The members of the 
former class are those pixels representing high-rise vegetations 
and walls of buildings, and the members of the latter class are 
the representatives of building roofs and relatively flat areas on 
the terrain. Fig. 5 shows the results of the thresholding the slope 
map of nDSM where the threshold is set to 5% of the slope 
range of the slope map. 

 

 
 

Figure 5 - Classified normalized DSM (slope thresholding) – 
Dark and light tones represent “Severely” and “Slightly” 

variable areas respectively 
 

3.5. Detection of building pixels 

So far we have obtained an nDSM image with three classes; 
“Terrain”, “Low-rise”, and “High-rise” regions, as well as a 
slope map of nDSM with two classes; “Severely variable” and 
“Slightly variable” regions.  
 
As stated in section 3.3 buildings are highly elevated objects in 
a scene. In section 3.4 we also mentioned that the most of the 
buildings have smoothly sloped roofs. These facts suggest that 
the building pixels are those pixels of “high-rise” regions which 
their counterpart in the slope map belongs to the “Slightly 
variable” regions. In other words each pixel which belongs to 
both of these classes is a building point. This way our system 
detects building pixels and labels them as “Building”. All the 
remaining pixels of the scene are classified as “Non-building”. 
 
 The resulting image is shown in Fig. 6(a). It is obvious that still 
some dense, high-rise vegetation are misclassified as building. 
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The main reason is that these high-rise segments of study area 
are covered densely by vegetations so that no laser penetration 
is possible there. This causes them to be classified in both 
“High-rise” and “Slightly variable” regions, and consequently to 
be misclassified as “Building”. In order to eliminate these 
erroneous pixels from “Building” class, an area threshold equal 
to 70 square meters is defined and applied to the resulting image. 
The final results are shown in Fig. 6(b). As can be seen all the 
remaining polygons are parts of the roofs of buildings.   
 

 
 

Figure 6 - (a) detected building pixels -including high-rise, 
dense vegetation- (b) Building detection final results 

 
At the middle of some building roofs in Fig. 6(b) there are some 
pixels classified as non-building while they also should belong 
to the building class. This happens wherever a high-rise feature 
exists on the roof. In the case of the large building at the east of 
the scene, the height difference on the roof changes so abruptly 
that our system fails to detect the whole building. As a result, 
our system has detected two individual buildings there. 
 

4. ACCURACY ASSESSMENT 

The final output of our system is a raster image with pixels 
classified into two classes; “Building” and “Non-building” 
pixels. To assess the accuracy of the detected buildings, we 
have compared our results of building detection with the 
reference map provided by the data provider. Due to some 
unknown reasons one of the buildings of the scene is not 
defined in the reference map. So we excluded the corresponding 
detected pixels from our results. Fig. 7 shows our results and the 
reference map. 
 

 
 

Figure 7 – Building detection results versus Ground truth  

The comparison of the resulting image with the reference map is 
done by the calculation of the Confusion Matrix using the RSI 
ENVI4.2 software. Table (1) shows the computed confusion 
matrix. 

 
Confusion 

matrix Reference Map 

Our Results Building Non-Building Total 

Building 82185  (TP) 1380      (FP) 83565 

Non-Building 9596    (FN) 133783  (TN) 143379

Total 91781 135163 226944
 

Table (1) The pixel-by-pixel comparison results for our system. 
 

In Table (1), TP (i.e. True Positive) shows the number of pixels 
which have a “Building” label in both datasets. Similarly TN 
(i.e. True negative) equals to the number of pixels having “Non-
building” labels in both compared datasets. The definition of FN 
and FP numbers is straightforward. 
 
The evaluated data in Table (1) are the results of a pixel-by 
pixel comparison between our results and the reference map. 
The two following objective metrics [Lee et. al 2003] are 
employed by some authors (Sohn and Dowman 2007) in order 
to provide a quantitative assessment of our building detection 
system. 
 

Completeness = 100 * (TP / TP + FN) 
Correctness = 100 * (TP / TP + FP) 

 
The evaluated amount of Completeness metric for our results 
equals to 89.5% which shows the building detection percentage 
[Sohn and Dowman 2007]. And the amount of Correctness 
metric for our results equals to 98.3% which shows this 
percentage of the “Building” detected pixels belong to buildings 
indeed. 
The commission and omission errors are also evaluated in 
percentages and listed in Table (2). Errors of commission 
represent pixels that belong to another class that are labeled as 
belonging to the class of interest. Errors of omission represent 
pixels that belong to the ground truth class but the classification 
technique has failed to classify them into the proper class. 
For instance, the amount of 1.65 for Commission error of 
“Building” class states that 1.65% of pixels in “Building” class 
do not really belong to building roofs. The Omission error of 
“Building” class in Table (2) shows that 10.46% of building-
roof pixels have been misclassified by our system as “Non-
building”. It’s obvious that Commission and Omission errors 
for “Building” class are complementary amounts to the 
aforementioned Correctness and Completeness metrics. 

 

Class Error Commission Omission 

Building 1.65 10.46 

Non-building 6.69 1.02 
 

Table (2) The evaluated Commission and Omission errors for 
our results in percentages 

 
The Overall accuracy is another metric which evaluates the 
accuracy of any classification process. This metric can be 
evaluated using the following formula: 
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Overall Accuracy = (TP + TN) / Total number of pixels 

 
The Overall accuracy of our building detection system equals to 
95.1% which shows the percentage of correctly classified pixels. 
 
 

5. CONCLUSIONS AND FURTHER REASEARCH 

This paper presented an automatic building detection system by 
the use of LIDAR point cloud data provided in two individual 
files as first pulse and last pulse returns of laser pulse. Our 
system is comprised of five steps explained successively in 
section 3. In the resulting image, pixels are assigned either 
“Building” or “Non-building” labels. 
 
The results of the pixel-by-pixel comparison method used here 
proved that our building detection system has made some 
improvements in the detection task in comparison with some 
previous works. In addition to the Completeness and 
Correctness metrics, the evaluated 95.1% Overall accuracy of 
our system proves its efficiency and relatively high accuracy. 
We hope to make a clear comparison between our method and 
the existing ones in future works to claim the capabilities of our 
method. 
 
The study area contains a few flat-roofed, distanced buildings 
with some high-rise vegetation between them. So the accuracy 
of the system is not tested for any other scenes including 
complex scenes or dense urban areas. It is also recommended 
that the main version of Sohn filtering be used for more 
complex scenes and areas with significant topographic change 
effects. 
 
Different datasets including buildings with various roof types 
are recommended to be included for the assessment of the 
system, or any further corrections to the whole algorithm. 
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