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ABTRACT: 
 
The constant need for updated and accurate representation of our natural environment, which can be produced from various mapping 
and observation tools, is one of the major missions the geoinformation community has to provide a solution for. Digital Terrain 
Model (DTM) datasets that exist for the last few decades are amongst the main geospatial data widely used and applicable. Light 
Detection and Ranging (LiDAR), on the other hand, is relatively a newer geospatial measurement tool, which enables the quick 
production of the scanned surface and its coverage representation. Consequently, utilizing up-to-date and accurate datasets produced 
from LiDAR measurements for GIS related tasks, such as updating existing Digital Elevation Model (DEM) datasets, should be 
considered. Nevertheless, using simultaneously these geospatial datasets produced from various sources, which consists of different 
data class, requires addressing the issue of integrating data produced on different epochs. A simple 'insertion' of scattered LiDAR 
patches based solely on the reference coordinates systems may result in an ambiguous modelling and evident discontinuities in the 
produced updated terrain representation. Moreover, raw LiDAR datasets present surface features that need to be filtered out prior to 
the integration process. This paper presents a novel LiDAR data filtering algorithm accompanied by a two-stage hierarchical 
integration process. Implementing these enabled a precise global and local monitoring analysis of the inherent inconsistencies in the 
different datasets, which yields an accurate and continuous modelling and updating of LiDAR data within a wide DEM dataset. 
 
 

1. INTRODUCTION 

Nowadays, spatial topographic datasets are amongst the main 
resources for a variety of terrain relief and natural phenomenon 
analysis and research applications, such as hydrogrpahy, urban 
mapping, risks and damages assessments, etc. A majority of 
these applications are based on spatial digital datasets, which 
enable precise and fast geometric and visual analysis of the 
terrain, such as slope, flow direction, visibility-lines, and more. 
DEM datasets analysis is widely used and many known 
algorithms make use of this data type. LiDAR datasets, on the 
other hand, which are produced by Airborne Laser Scanner 
(ALS) systems, are relatively new data type for terrain relief 
representation. Mathematical algorithms that make use of the 
vast potential of this data are constantly developed. LiDAR data 
presents much more dense and accurate data in respect to DEM 
datasets: up to 16 points per 1m2 and position accuracy around 
0.1m are now common. Consequently, LiDAR data represent in 
a more accurate and dense form the terrain relief, yielding a 
reliable and up-to-date model for updating purposes of existing 
topographic datasets. Nevertheless, both datasets present 
fundamental different data class (format, resolution, accuracy, 
datum, etc.). As a result, a local thorough investigation of the 
relative spatial correlations exist between the datasets is 
essential. In addition, both datasets were acquired on different 
epochs and were produced by different technologies. These 
contribute to the existence of distinct topographic changes, 
which further contributes to the existence of systematic and 
random morphologic discrepancies between both datasets 
(Hutchinson and Gallant, 2000). These discrepancies are 
categorized by two groups: global systematic ones that can be 

monitored and modelled; and, local random ones that can be 
quantified only by local rigorous analysis. As a result, a direct 
superimposition of a LiDAR patch into an existing wider DEM 
datasets, which is based solely on their reference coordinates 
systems, will result in an ambiguous and ill-defined modelling 
and updating. Alternative updating mechanisms, such as height 
averaging and height smoothing, will not produce better results. 
This is mainly because they do not implement spatial 
monitoring processes and ignore accuracy adjustments, which 
are clearly needed when the mentioned types of discrepancies 
exist: the updated terrain relief will appear truncated and 
discontinuous (artificial break-lines). Figure 1 depicts a 
superimposition of 0.25 points per meter resolution LiDAR data 
on top a 25m resolution DEM (continuous white line) showing 
distinctive terrain discontinuities. 
 
 

  
  

 
 

Figure 1. Spatial datasets superimposition showing truncated 
entities morphology, spatial ambiguity (zoomed area on the 

right), and planes intersections (dashed circles) 
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Moreover, the data represented by LiDAR data contains not 
only terrain features, but surface (off-terrain) features as well, 
such as vegetation and buildings. LiDAR data do not store 
semantic information regarding the scanned objects. This yields 
that a preliminary robust and reliable filtering algorithm on the 
raw LiDAR data is mandatory, in which automatic 
classification of terrain, trees, vegetation, buildings, etc. will 
take place. Vosselman (2000) suggested employing a 
morphological filter based on height differences among scanned 
points. Kraus and Pfeifer (2001) suggested dividing the scanned 
data into strips and then iteratively apply an interpolation to 
define points that belong to the DEM. Morgan and Habib (2002) 
proposed a region growing algorithm, which applies a least-
square adjustment on the laser data linked topologically by a 
Triangular Irregular Network (TIN) definition. 
 
No literature on updating DEM with up-to-date LiDAR was 
found. Still, the problem of integrating multiple DEM datasets 
with various accuracies was carried out by (Podobnikar, 2005) 
and (Frederiksen et al., 2004). In both studies the datasets 
utilized for the task were preliminary mutually geo-referenced, 
while a localized weighting process on the datasets' heights was 
implemented. Koch and Heipke (2004), and Walter and Fritsch 
(1999), among others, have addressed the issue of integrating 
DEM datasets with other types of data structures, such as 2D 
and 2.5D vector-data, mainly for the purpose of GIS semantic 
visualization. Furthermore, while vector data represent entities, 
such as networks or discrete data structures (points, polylines 
and polygons), the hypothesis of DTM geospatial datasets is 
that they represent continuous reality, i.e. terrain. 
 
Recent studies implement various methods of LiDAR data - 
mainly terrestrial scans - and image registration. Bae and Lichti 
(2004) suggest using variation in curvature as the matching 
criterion on local points. Dold and Brenner (2006) proposed an 
autonomous matching based on planar patches via geometric 
constraints. Al-Manasir and Fraser (2006) suggest an 
autonomous registration supported by the placement of artificial 
signalized targets. 
 
 

2. ALGORITHM OUTLINE 

An updating process requires complete knowledge regarding 
the spatial relations exist between datasets. This can be 
achieved by implementing 3 main stages: 
1. Registration (geo-referencing) - selecting a common mutual 

working schema (spatial reference frame) while relying on 
topologic relations between conjoint unique entities that 
exist in both datasets. This can be achieved by 
implementing various schemas, such as invariant property 
or clustering approach. 

2. Matching - spatial analysis process, which uses the 
registration knowledge, where a qualitative reciprocity is 
extracted for both datasets. This enables precise and 
complete modelling of existing geometric conditions 
between datasets. The matching schema is derived from: 
data type and volume, its semantic and geometric 
characteristics, the topologic relation, and more. 

3. Updating - a process that uses the quantitative matching and 
modelling knowledge for a correct data insertion. 

 
In order to solve the inherent discrepancies we propose to 
divide the mutual coverage area into several separate 
homogenic topographic areas. An independent modelling 
process on each of these areas will satisfy the need for a precise 

spatial monitoring. Two-stage hierarchical process is proposed: 
first, implementing an accurate datasets' geo-referencing, which 
enables global discrepancies monitoring; then, this value is 
utilized for local spatial matching, which enables monitoring 
the local random discrepancies that still exist. Prior to this, the 
implementation of a novel filtering algorithm is carried out on 
the raw LiDAR data, which results in an accurate and reliable 
representation of the terrain relief. The complete stages of this 
process - from global to local, as depicted in Figure 2 - 
validates that the updated representation preserves the geometry 
of existing features and their topology, while preventing the 
existence of distortions. In the next section the concept and 
contributions of the proposed automated two-stage hierarchical 
updating process are outlined; experimental results and the 
conclusions sections are given afterwards. 
 
 

 
 

 
Figure 2. Block diagram of the proposed procedure 

 
2.1 Pre-Processing 

As mentioned earlier, raw LiDAR data contains surface 
representation, i.e., objects, so a filtering process is required. 
The purpose of a filtering process is to predict - according to a 
specific set of geometric rules - the terrain relief. This translates 
to a classification process, in which every LiDAR point is 
categorized into one of two groups: terrain; and, off-terrain. 
Here, the implementation of high degree orthogonal 
polynomials was carried out (Abo-Akel et al., 2007). The use of 
orthogonal polynomials makes it possible to predict with high 
certainty a continuous representation of the terrain from the 
data, and hence classify off-terrain points, which lie at a certain 
distance from the predicted terrain. This technique is not 
sensitive to noise, data-errors, truncated and singular data. 
The orthogonal polynomials are two-dimensional, thus the data 
was divided into strips along the primary and secondary axes 
(the stripes' width is derived by the data density). A set of 
polynomials are orthogonal over a set of points {xi} if the 
condition in Equation 1 is met. 
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where i is the index of the points set, j and k are the indexes of 
the polynomials p, and w is a weighting function. 
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Points' classification is based on the residuals between the 
measured heights and the extracted orthogonal polynomials' 
calculated heights. This translates to terrain points, which are 
characterized with a negative residual (or a relatively small 
positive residual); and, off-terrain points, which are 
characterized with a positive residual. Hence, the weight of the 
points should be updated iteratively during the process. Here, 
we suggest using a weighting function, depicted in Equation 2. 
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where dhi is the height residual, and th and Th are the minimum 
and maximum thresholds, respectively. 
 
The process initiates with high degree orthogonal polynomials, 
while their degree is reduced each iteration. As the process 
progresses, the polynomial becomes a better representation of 
the terrain, i.e., the residuals are small. The process convergent 
when the number of filtered off-terrain points in a certain 
iteration is larger than the one in the previous iteration. This 
indicates that the polynomial describes a smoothed version of 
the terrain description. The points that were filtered in the last 
iteration are added as terrain points. When the process 
terminates on both axes a point can be classified as terrain only 
if it is classified as one simultaneously. 
 
In addition to implementing this mechanism, the execution of a 
morphological filtering process is carried out. This process is 
designated to examine off-terrain points that were erroneously 
classified as terrain points. The morphological filter is based on 
height and distance differences. Each classified terrain point is 
examined in relation to its neighborhood at a given distance. 
The neighboring points are chosen based on TIN topology. If 
the majority of neighboring points are classified as off-terrain 
points and the height difference is below a certain threshold, 
then the classification of the point is changed from terrain to 
off-terrain. The outcome of this complete algorithm is LiDAR 
points that are classified as terrain with high level of certainty. 
 
2.2 Interest Points Extraction 

The geo-referencing process is carried out while relying on sets 
of unique selective homologous features. Here, we referred to 
distinctive interest points in the topography. A novel extraction 
mechanism of surface-derived geomorphologic maxima unique 
features, such as local hill peaks, was implemented (Dalyot and 
Doythser, 2006). This mechanism is based on designated 
geometric, topologic, and topographic conditions. A 
generalization algorithm for interest area recognition is 
established by constructing four local second degree 
polynomials around each grid-point - one for each principal 
direction. These polynomials represent a generalized version of 
the point's topographic surroundings, making it possible to 
extract local maxima, as depicted in Figure 3. It is worth noting 
that this mechanism is implemented on grid-domain. As a result, 
in this stage the filtered LiDAR data was gridded (it should be 
emphasized that this is the only occurrence where an 
interpolation was carried out on LiDAR data, and all the other 

algorithms and processes preserved and utilized its raw data 
structure). 
 
2.3 Geo-Referencing 

In order to extract a coarse reference frame, a geo-referencing 
process is executed on the selective homologous interest points 
identified in both datasets. The suggested process relies on the 
Hausdorff distance algorithm, which does not require any 
constraints or a-priori knowledge on the points' dispersal or 
their topologic relations. Given two sets of points A = {a1,…,am} 
and B = {b1,…,bn}, the forward Hausdorff distance - h - 
measures the degree of mismatch between the two sets, as 
defined in Equation 3 (Huttenlocher et al., 1993). This equation 
identifies point a ∈ A that is farthest from any point in B, and 
then measures the distance from a to its nearest neighbor b in B. 
This Euclidean spatial distance gives an initial estimation of the 
global registration value, which is statistically evaluated by the 
correspondence it obtains between the remainder points in sets 
A and B. 
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The minimum number of paired-up points required is derived 
from the transformation model used in the geo-referencing 
process. Here, we referred to 3D translation vector: dx0, dy0, 
and dz0, while requiring at least 4 pairs to obtain a statistical 
evaluation of the standard deviation values. 
 
 

 
 

Figure 3. Four polynomials (bold red lines and dots) 
representing a generalized version of topographic surroundings 
 
2.4 Local Matching 

The registration value extracted gives knowledge on the 'global' 
reciprocal working reference frame, thus enabling the 
implementation of an adequate matching process on 
homologous corresponding local data frames divided from the 
complete mutual coverage area. It is obvious that by matching 
small frames more effective monitoring and modelling of the 
local random incongruities, i.e., inherent 'errors' exist between 
the datasets, is feasible. Monitoring errors is achieved by 
minimizing the target function, i.e., extracting the best possible 
correspondence between the datasets. The geometric target 
function implemented is defined by a spatial transformation 
model. In this research, a constrained ICP algorithm (Besl and 
McKay, 1992) was implemented independently on each local 
frame, which was derived from the constraints that the data 
characteristics and problem imposed. 
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Three geometric constraints were implemented in the ICP 
process - outlined in Equation 4 - to assure that the nearest 
neighbor search criteria will be achieved correctly and fast 
between two homologous local frames. These constraints verify 
that each of the paired-up points is the closest one exists, as 
well as having the same relative topography surroundings. 
Moreover, the algorithm was modified so it could suit the 
different data formats, i.e., structures: TIN vs. grid. It is worth 
emphasizing that the two datasets will usually present 
significant point density disparity that can reach up to 1:1000 
(DEM vs. LiDAR) in a single ICP matching frame. As a result, 
it was decided to match each LiDAR point to its corresponding 
DEM point. This allowed the preservation of the high resolution 
and accuracy of the LiDAR observations. 
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where h1 to h4 are calculated from the height of local DEM grid 
cell corners: Z1 to Z4 (h1=Z1-Z0, h2=Z2-Z0, h3=Z3-Zo, h4=h2-h1-h3); 
D denotes the DEM grid resolution; G and F denotes the 
datasets DEM and LiDAR, correspondingly; (Xg

i, Yg
i, Zg

i) 
denotes the paired-up nearest neighbor in G; and, (xf

', yf
', zf

') 
denotes the transformed point from dataset F. 
 
The transformation model implemented in the matching process 
is composed of three translation parameters: dx, dy, and dz. 
Based on the assumption that both datasets are already 
registered northward, the three rotation angles: φ, κ, and ω are 
ignored, because their values are almost zero (if required, the 
rotation angles can easily be added to the transformation model). 
Every zonal ICP process used the registration value extracted in 
the geo-referencing stage as the approximated translation vector, 
i.e., dx0, dy0, and dz0. 
 
Each matching set includes three geo-registration parameters 
(i.e., transformation, which in this case is equivalent to spatial 
translation) that best describe the relative spatial geometry of 
the mutual homologous frames that were matched. Since this 
process yields better localized geo-registration definition, it 
ensures matching continuity on the entire area (as opposed to 
matching the entire data in a single matching process), as well 
as excluding local minima solution for the ICP process. These 
geo-registration sets can be described as elements stored in 2D 
matrix: each set is stored in the cell that corresponds spatially to 
the homologues frames it belongs to (Dalyot and Doythser, 
2007). This data structure contributes to the effectiveness of the 
integration and updating processes. 
 
2.5 DEM Update 

Knowing the complete and accurate sets of local spatial 
relations enables the implementation of an update process. Still, 
the resolution and data-structure of the geo-registration matrix 
and both datasets are different. In order to preserve continuous 
modelling - semantically and topologically - as well as correct 
updating, an interpolation has to be carried out on the matrix's 
values in order to preserve the datasets denser resolution. The 
implementation of bi-directional third-degree parabolic 

interpolation was carried out (Doythser and Hall, 1997). For all 
LiDAR points the precise corresponding transformation 
parameters are calculated via the interpolation algorithm in 
respect to their location within the matrix cells and the geo-
registration values these cells store. These transformation 
values are then used to calculate the correct and accurate 
location of the LiDAR points within the DEM dataset - hence 
an updating process is achieved. 
 
 

3. EXPERIMENTAL RESULTS 

The proposed mechanism was tested on several datasets - 
synthetic and real. An evaluation of the filtering algorithm was 
carried out derived by the effectiveness of terrain points 
identification. Figure 4 depicts a side-view of LiDAR strip 
while using the proposed filtering algorithm. By examining this 
figure it is obvious that the polynomial (continuous black line) 
represents adequately the terrain while filtering the surface 
objects: building (in the middle), and vegetation (scattered). 
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Figure 4. Initial and final filtering stages: dark-grey points 

depict terrain points; light-grey points depict filtered objects; 
black line depicts calculated polynomial (values in meters) 

 
Figure 5 depicts an area before and after the implementation of 
the proposed filtering algorithm. The upper figure shows 
buildings as well as vegetation that were filtered - as depicted in 
the lower figure. Though a filtering process was carried out, it 
is visible that after a hole-filling interpolation process that was 
carried out the topography is still continuous, and that roads, 
which are part of the terrain representation, remained intact 
(lower image top-left corner). 
 
A complete update process was carried out on a DEM with 25m 
resolution, which was based on a digitization of 1:50K contour 
maps (produced approximately 20 yrs ago), and a LiDAR scan 
that presented 0.25 points per 1m2 (collected in recent 
campaign). The mutual area presented in both datasets covered 
approximately 3 km2. The automatic interest points extraction 
proved to be geo-morphologically accurate and precise - both in 
the DEM and LiDAR datasets - while achieving sub-cell 
resolution, which improved the reliability of the geo-
referencing process. Total of 48 interest points were extracted 
in the DEM dataset, and 7 in the LiDAR. Figure 6 depicts a 
section within the mutual area with extracted interest points in 
both datasets. 
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Figure 5. A shaded relief representation of LiDAR scan (up); 
and, the outcome of the proposed filtering algorithm (down) 

 

 
 

Figure 6. Contour representation of the same coverage area 
(DEM on the left and LiDAR on the right) depicting the 

reliability of the interest points identification process 
 

The forward Hausdorff distance algorithm proved to be robust 
and fast, while it succeeded in extracting the correct global 
inconsistencies exist between the DEM and LiDAR. Out of 
several hundred possible couplings, the algorithm was able to 
identify 4 pairs with similar reciprocal spatial relations. The 
calculated geo-referencing vector values were: 9.3m in X 
direction, 15.6m in Y direction, and 3.0m in Z direction. The 
standard deviation for X and Y values was less than ±3m. A 
visual inspection of the datasets verified these values. 
 
The entire DEM dataset was composed of 40,401 points, while 
the LiDAR had more than 630,000 points. Within the mutual 
coverage area the DEM had less than 3,800 points, which 
translates to a ratio of 1:165 (DEM vs. LiDAR). After the 
filtering process, the LiDAR dataset presented more than 
510,000 points, which translates to a ratio of 1:135. The 
matching process was carried out separately and independently 
on 100x100m frames (approximately 200 frames). The ratio 
between the LiDAR and DEM number of points in each frame 
varied between 1:165 (a frame with almost no filtered points) 
and 1:2 (a frame with massive filtering). As will be proved later 
- there was a clear correlation between this ratio value and the 
reliability and accordance of the matching process. A frame that 
had gone through a massive filtering process suffered from 
positioning uncertainty of the remaining points, and had low 
signal to noise ratio. As a result, the matching process did not 

achieve a qualitative matching, i.e., frames with no 'spatial 
accordance'. This phenomenon is a result of massive time 
dependent morphologic changes that had gone in that area, or 
the fact that a certain area is dominated by surface objects. 
 
Figure 7 depicts the values that were extracted in the matching 
process for all frames. It is clear that the local matching values 
for most frames are similar to the initial geo-referencing value 
used in the process. The value of dz, on the other hand, showed 
inconsistencies within the entire area. This can be explained by 
the spatial relations between the datasets that showed rapid 
height changes - one plane intersecting the other. Moreover, it 
is evident that frames that show matching values anomalies are 
frames that had gone massive filtering or morphologic changes. 
A statistical test was carried out on the values extracted to 
evaluate their correctness in respect to the given topographic 
conditions. Each LiDAR point was transformed while using the 
transformation values calculated via the proposed interpolation 
on the geo-registration matrix values. The calculated height was 
then compared to the DEM height at that same position. The 
average of all the differences values per frame - z_avr - gave a 
qualitative statistical evaluation for the transformation values 
extracted. By inspecting top row of Figure 8 it is evident that 
other than several frames that showed relatively high z_avr 
values, all the other frames showed values between (-3)m and 
3m - a value that is smaller than the estimated 5m accuracy of 
the DEM. More than 85% of all the frames showed these values. 
Moreover, the standard deviation of z_avr was calculated - 
z_std, which in most frames was less than 3m. If z_avr and 
z_std were re-calculated based only on the frames that had gone 
thorough relatively small filtering process, these values were 
0m and 1-2m, correspondingly. Another statistical evaluation 
was the number of coupled points in the matching process for 
each frame. This number was much smaller in frames that had 
gone thorough filtering process - almost half the number in 
respect to other frames. It is worth emphasizing that when an 
alternative geo-referencing value was used in the ICP matching 
process, z_avr and s_std were much higher - reaching up to 20m 
- as shown in lower row of Figure 8. This fact emphasizes the 
significance of using a correct geo-referencing vector to the 
completeness of the updating process. 
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Figure 7. Transformation values calculated in the matching 

process (color bar values in meter) 
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Figure 8. Statistical values: z_avr and z_std. 1st row - using the 
extracted geo-referencing vector in ICP process; 2nd row - using 

an alternative value (color bar values in meter) 
 

The data in the LiDAR dataset can now be superimposed onto 
the existing DEM dataset in its correct and precise position. 
First, the heights of the filtered points are re-calculated while 
relying on the orthogonal polynomials extracted that pass 
through them. Then, for each LiDAR point a local-precise 3 
transformation parameters are calculated while relying on the 
bi-directional third-degree parabolic interpolation. Figure 9 
depicts the hybrid and updated dataset that is the result of these 
stages. It is clear that the topology of the LiDAR and DEM data 
- as well as among them - is fully preserved representing 
continuous entities on both sides of the mutual coverage area. 
 
 

 

 
Figure 8. 5m resolution hybrid DEM dataset covering approx. 
25km2 - LiDAR dataset superimposed in lower-right region 

 
 

4. CONCLUSIONS 

Updating geo-spatial DTM datasets that have different data 
structures and were acquired on different observations epochs 
demand local and precise monitoring procedures of their mutual 
topology. This is vital for a correct modelling of their inherent 
relations and inconsistencies. Only then, the preservation of 
their inner morphology, and hence the production of an accurate, 
reliable and continuous updated terrain representation is 
feasible. The approach suggested here, starting with the 
implementation of a robust and reliable filtering algorithm on 
LiDAR data; and, continue with an adequate geo-referencing 

and local matching processes that preserve each of the datasets 
inner data-frame assure a reliable and correct updating process. 
 
Although no a-priori information or approximation regarding 
the relative position of the datasets is required, the method and 
its implementations are fully automatic. The extraction of 
interest-points in both datasets was successful - in terms of 
topographic accuracy and topographic morphology. Matching 
TIN and grid datasets yielded new algorithms and constraints 
implementation, resulting in correct spatial datasets modelling 
that preserved local geometric features and their topological 
relations, while preventing distortions. 
 
It was concluded that in dense vegetation or urban areas, a 
massive filtering process might result in a small signal to noise 
ratio. This may result in a process that is not reliable enough 
due to data defects. These areas will require local handling on 
latter stage. 
 
The mathematical concepts and algorithms presented here can 
be utilized with minor modifications to other spatial models, as 
well as analysis of terrain alterations that are time-derived, such 
as monitoring natural phenomenon, risks and damages 
assessments, etc. 
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