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ABSTRACT 
 
Estimation of camera geometry represents an essential task in photogrammetry and computer vision. Various algorithms for recover-
ing camera parameters have been reported and reviewed in literature, relying on different camera models, algorithms and a priori ob-
ject information. Simple 2D chess-board patterns, serving as test-fields for camera calibration, allow developing interesting automa-
ted approaches based on feature extraction tools. Several such ‘calibration toolboxes’ are available on the Internet, requiring varying 
degrees of human interaction. The present contribution extends our implemented fully automatic algorithm for the exclusive purpose 
of camera calibration. The approach relies on image sets depicting chess-board patterns, on the sole assumption that these consist of 
alternating light and dark squares. Among points extracted via a sub-pixel Harris operator, the valid chess-board corner points are 
automatically identified and sorted in chess-board rows and columns by exploiting differences in brightness on either side of a valid 
line segment. All sorted nodes on each image are related to object nodes in systems possibly differing in rotation and translation (this 
is irrelevant for camera calibration). Using initial values for all unknown parameters estimated from the vanishing points of the two 
main chess-board directions, an iterative bundle adjustment recovers all camera geometry parameters (including image aspect ratio 
and skewness as well as lens distortions). Only points belonging to intersecting image lines are initially accepted as valid nodes; yet, 
after a first bundle solution, back-projection allows to identify and introduce into the adjustment all detected nodes. Results for data-
sets from different cameras available on the Web and comparison with other accessible algorithms indicate that this fully automatic 
approach performs very well, at least with images typically acquired for calibration purposes (substantial image portions occupied by 
the chess-board pattern, no excessive irrelevant image detail). 
 
 

1. INTRODUCTION 

Camera calibration (estimation of interior orientation or camera 
geometry parameters) is a task fundamental to photogrammetry 
as well as computer vision. Methods for camera calibration (re-
viewed e.g. by Clarke and Fryer, 1998; Salvi et al., 2002; Villa-
Uriol et al., 2004) may differ in various respects: 

 They may involve single or several overlapping images. 
 Different camera models may be adopted. 
 The observed features may be points but also lines (e.g. 

Grammatikopoulos et al., 2007). 
 Both linear and non-linear algorithms may be used. 
 Targeted 3D or 2D test-fields are often used, yet camera 

calibration is also possible with no a priori object infor-
mation. 

 
Indeed, bare image correspondences among >2 frames from the 
same camera allow self-calibration; however, the use of reliable 
external control, whenever possible, produces calibration results 
which stand in close agreement with object space constraints. In 
addition, for practical close-range photogrammetric tasks it may 
often be preferable to ‘pre-calibrate’ a camera through suitable 
image networks (Remondino and Fraser, 2006). 
 
In this sense, approaches for estimating camera parameters rely 
usually on test-fields and the correspondences of targets to their 
images on one or more views. However, 3D test-fields may be 
replaced by simple 2D patterns, typically of a chess-board type, 
imaged in several perspective views. If we accept that a camera 
should ideally be automatically calibrated through rapidly taken 

image sets (Fiala and Shu, 2005), an essential advantage of such 
patterns is their suitability for automation, based on feature ex-
traction, thanks to their marked contrast and regularity. Indeed, 
there exist several freely available tools, employing chess-board 
patterns recorded in different perspective views, for estimating 
interior and exterior orientation camera parameters. 
 
These tools have been mainly inspired by ‘plane-based calibra-
tion’ (Sturm and Maybank, 1999; Zhang, 1999), a process rely-
ing on the homographies between a plane having known metric 
structure and its images. The 2D projective transformations pro-
duce a linear system in the camera elements; thus, the initialisa-
tion step yields a closed-form solution for these parameters, in 
which lens distortion is generally not included (Sánchez et al., 
2006). This step is usually followed by a non-linear refinement 
step, based on the minimization of the total reprojection error. 
 
The Camera Calibration Toolbox for Matlab® of J.-Y. Bouguet 
(implemented also in C++ and included in the Open Source 
Computer Vision library distributed by Intel) is the best known 
among the functional tools presented in this context. Initialised 
through manual pointing of the four chess-board corners on all 
images and a priori information regarding number of nodes per 
row and column, this algorithm approximates the locations of 
chess-board nodes on all images and then identifies them with 
sub-pixel accuracy by an interest point operator (in the presence 
of strong lens distortion users may be required to approximate 
its coefficients). Initial approximations for the unknown para-
meters are supplied by the closed-form plane-based calibration 
algorithm. Ultimately, an iterative bundle adjustment refines the 
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solution for camera and pose parameters. Other approaches with 
higher degree of automation (see the website of Bouguet), some 
of which represent ‘add-ons’ to this toolbox, presuppose special 
target types, non-symmetric chess-board and assumptions about 
the magnitude of lens distortion, or require that the full calibra-
tion pattern appears on the images. 
 
More recently a calibration toolbox has become freely available 
from the Institute of Robotics & Mechatronics, DLR, Germany 
(cited DLR CalDe – DLR CalLab website). Here the calibration 
pattern does not have to be fully imaged (thus, in principle, the 
whole image format may be exploited for the estimation of lens 
distortion). The procedure runs fully automatically if the chess-
board includes three circular targets in its centre, otherwise such 
points are to be given manually. After a first solution, the user 
is provided with a tool to identify and remove corners detected 
erroneously by setting a threshold for image residuals. This step 
has not been automated (such decisions are regarded as depend-
ing to a great extent on the particular cameras). 
 
In the framework described above, our contribution extends the 
implemented automatic method of Douskos et al. (2007) for the 
exclusive purpose of calibration (image exterior orientations are 
of no relevance). It relies on image sets of standard chess-board 
patterns (i.e. light and dark squares of equal size), this being the 
only a priori assumption made. Among extracted image points, 
only those are kept which may be ordered in two groups of lines 
referring to the main orthogonal directions of the planar pattern. 
The subsequent establishment of point correspondences among 
views is, thanks to the pattern regularity, a trivial task – though 
possibly involving object systems which differ in in-plane rota-
tion and translations. Yet the fact that homologue image points 
do not necessarily refer to the same physical node of the pattern 
affects only exterior orientations. With initial values found from 
the image vanishing points, a bundle adjustment allows estima-
ting the parameters of camera geometry. After the first solution, 
back-projection permits to identify possible missing nodes and 
include them into the final adjustment. The process is described 
in detail in the next sections. Calibration results from image sets 
available on the Web are presented and evaluated against those 
from other calibration toolboxes. It is to note that the algorithm 
has been tested only with ‘reasonable’ images taken for calibra-
tion purposes (significant perspective differences among views; 
the pattern occupying substantial parts of the frames; no objects 
interfering with the imaged pattern). 
 
 

2. CAMERA CALIBRATION ALGORITHM  

The main features of the algorithm, as described in Douskos et 
al. (2007), will be outlined; next, the innovations of the present 
contribution will be presented. 
 
2.1 Initialisation phase 

2.1.1 Corner extraction. After certain experiments with its pa-
rameters, the Harris corner operator with sub-pixel accuracy (as 
made available by Bouguet in his website) is applied to gray-
scale images with equalized histograms. Image standard errors 
of bundle adjustments have corroborated the assertion that the 
corners are extracted to a precision of ~0.1 pixel. In all tests this 
step gave quite good results, by extracting practically all pattern 
nodes and few redundant points. Indications for the satisfactory 
performance of the sub-pixel Harris operator in cases of chess-
board patterns are also found in Ouyang et al. (2005). 
 

2.1.2 Point selection and ordering. For each image the median 
coordinates xm, ym of all extracted feature points are calculated; 
normally, these will indicate a point close to the centre of the 
pattern. The median, rather than the mean, is preferred due to its 
lower sensitivity to ‘noisy’ points outside the pattern area. The 
feature point closest to M(xm, ym) is chosen as a ‘base point’ B 
for initialising the point selection and ordering process (Figure 
1). 
 
All extracted points around B in a window of size equal to ⅓ of 
the image size are sorted according to distance from it. If B is a 
valid node, the principal directions of the pattern must now be 
identified by avoiding points not corresponding to pattern nodes 
but also points on chess-board diagonals. The linear segment s 
from B to the nearest extracted point is formed. Identification of 
the two main pattern directions succeeds by comparing the gray 
values of pixels on either side of s (Figure 1). If segment s 
indeed belongs to one of the two main chess-board directions, a 
large difference in gray values between either sides of s is 
expected. The representative gray value on either side is 
calculated from a sample along a line parallel to s, with length 
equal to ⅓ of the length of s and with its midpoint distanced 
half the length of s away from the midpoint of s. In case the 
difference between the mean gray values of these samples on 
either side of s is found to exceed the overall standard deviation 
of image gray values by more than a factor of 3, this segment s 
is accepted as belonging to one of the principal chess-board 
directions. 
 

Figure 1. Extracted points (cyan); ‘median’ (M) and ‘base’ (B) 
points; possible directions (yellow); auxiliary lines (green) used 

for checking the validity of directions. 
 
This is repeated for the next 7 closest points around B. If the 
other principal direction (perpendicular to the first on the chess-
board) is also found, the two segment lengths and directions are 
stored as initial reference values, and the algorithm continues to 
identify the rows and columns of the pattern. If it is not possible 
to establish both directions, this ‘base point’ B apparently does 
not represent a chess-board node (or only few points are around 
it). The process is resumed by using as new ‘base point’ B that 
next closest to M. This procedure is continued until both main 
directions have been established. 
 
A similar search evolves as regards the adjacent points on these 
two lines. Using the stored values for segment length and angle 
of the respective main direction, the position of the next point 
on the line is anticipated. The algorithm searches within a small 
region (fixed by thresholds in segment length and angle) around 
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the estimated point position to locate extracted feature points. If 
a point is found, it is considered as belonging to the same line 
(optionally the gray-value criterion can also be used here, but in 
all performed tests this has not been necessary). This point now 
represents a ‘base point’ for the next search. Values for segment 
length and slope are updated accordingly; next segments define 
new search lengths and slopes. It is noted that here – as opposed 
to approaches where the estimation of point locations relies on 
the manual introduction of the four corner points of the chess-
board – the effect of lens distortion on the directions defined by 
neighbouring nodes on a line is regarded as negligibly small. 
 
It is not necessary to locate every individual node of the pattern. 
In case of a missing node, the position of the next one is estima-
ted, and an acceptable extracted point is again searched for. If 
three successive ‘missing points’ are encountered, it is assumed 
that all points of a line have been found and the search is halted. 
This is repeated for locating all points of the orthogonal pattern 
line. Lines with less than four points are regarded as unreliable, 
and a ‘gap’ is considered in their place. 
 
Next, from the central point of the first line (via the orthogonal 
direction and the corresponding segment length) the location of 
a point of the next parallel line is estimated. If a point is found, 
the same process is continued; else, starting from points next to 
this central point, corresponding points on the parallel line are 
searched for. If it is not possible to locate points on this line, a 
‘gap’ is set in its place, and the algorithm continues to look for 
a point of the next parallel line. When having encountered three 
successive ‘gaps’, the algorithm accepts that no further lines are 
detectable in this direction, and continues with a similar search 
for converging image lines (i.e. parallel pattern lines), steered as 
before by local segment length and direction. 
 
After the detection process for pattern lines is terminated, these 
are ordered. The pattern line through the original ‘base point’ B 
which forms the smaller angle with the image x-axis establishes 
the set of ‘rows’; the other line fixes the ‘columns’. Rows and 
columns are then sorted according to the coordinate of their in-
tersection with the respective image axis (x for columns and y 
for rows). As a basic precaution, in Douskos et al. (2007) only 
points which belong to both a row and a column are accepted as 
valid chess-board nodes. This allows excluding outliers, namely 
points (particularly outside the pattern) which might happen to 
be roughly collinear with a chess-board line, while at the same 
time their distance from a point of the line falls within the local 
tolerance of segment length. Such a measure to discard possible 
blunders is indispensable to ensure convergence in bundle ad-
justment. As outlined below, however, an additional last step is 
introduced here in order to exploit all available extracted chess-
board corners in a subsequent final solution for calibration. 
 
In Figs. 2 and 3 some examples are presented – from two of the 
image sets used for the practical evaluation and documented in 
Section 3 – which illustrate the three basic steps outlined so far 
(namely, point extraction, line formation and selection of chess-
board nodes). One may note there that, thanks to an appropriate 
choice of the parameters of the point operator, only few points 
outside the pattern are extracted. Nonetheless, it is seen that in 
some cases (top and bottom images in Figure 2) points beyond 
the limits of the pattern are initially assumed as belonging to a 
line; such points are subsequently excluded, since they are not 
found to belong to both a column and a row of the grid (right 
column in Figure 2 and Figure 3). Yet, it is obvious in these 
Figures that this necessary measure tends to ‘decimate’ the 
valid nodes, mainly near the image edges, and thus actually 

‘narrows’ the bundle of rays. Such valid nodes are later 
‘regained’ by the algorithm, as explained in Section 2.2.2. A 
final remark is also to be made as regards the chess-board of 
Figure 3. This particular pattern carries three near-circular 
targets at its centre (intended to fix the object reference system). 
In some cases the algorithm is ‘disturbed’ by points extracted 
on these targets; as a consequence, certain rows and columns 
display significant ‘gaps’ (this is clearly illustrated in the 
second image of Figure 3). These points are, too, regained later 
(cf. Figure 5). 
 
2.1.3 Point correspondences. 
 Final outcome of preceding steps is a set of points coded 
according to the respective chess-board rows and columns with 
which they have been associated (right column in Figs. 2 and 3). 
The lower row appearing on an image is defined as ‘Row 1’ and 
is arbitrarily considered as coincident with the object X-axis; 
the column to the far left is defined as ‘Column 1’ and is 
associated with the object Y-axis. Thus, the node which belongs 
to these two lines is now point (1,1) of this particular image and 
is associated with the origin (point 1,1) of the chess-board XY 
system. If the intersection of the first row and column (point 1,1) 
does not actually appear on an image, or has not been detected, 
the adjacent node detected on this image is numbered 
accordingly, e.g. (2,1) or (1,2) etc. The process is repeated for 
all images. Hence – thanks to the symmetric nature of the 
pattern – it may be assumed that point correspondences among 
frames, as well as correspondences with the chess-board nodes, 
have been fully established. In our context, this provides an 
answer to the problem of correspondences, which is regarded as 
the most difficult part in automatic camera calibration and is 
often solved manually (Fiala and Shu, 2005). 
 

 
Figure 2. Four examples from the image set of Bouguet. 

Left: Initially extracted points. Centre: Points ordered along the 
two principal directions. Right: Only points belonging both to a 

row and a column are kept. 
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Figure 3. Four examples from the image set of DLR (camera I).
Left: Initially extracted points. Centre: Points ordered along the 
two principal directions. Right: Only points belonging both to a 

row and a column are kept. 
 
Evidently, exterior orientations (image pose) are irrelevant here. 
The images refer to their own object systems, which may differ 
by in-plane shifts and rotations. Consequently, the point corres-
pondences among views established above will not necessarily 
refer to identical physical points of the pattern. But this can be 
ignored, thanks to the symmetry of the chess-board. In fact, in a 
camera calibration process with 2D control it is the perspective 
distortions of images which really matter, i.e. their relation to 
the planar object and not to a system fully fixed in object space. 
 
It is to note that this approach – in which images acquired from 
different sides of the pattern are possibly treated as taken from 
the same side – has its effect on ray intersection angles in self-
calibration. If no ground control is used, this will be reflected in 
the precision of interior orientation parameters (Douskos et al., 
2007, have presented results without ground control). But since 
our approach presupposes pattern squares of equal size, object 
coordinates (arbitrarily scaled) may be introduced in bundle ad-
justment. If these are treated as error-free (or highly weighted), 
the independent selection of a 2D system for each image is not 
expected to significantly affect precision of camera calibration. 
 
On the other hand, it is well-known that orthogonal image roll 
angles (κ) weaken correlations between the elements of interior 
and exterior orientation. Clearly, our approach is inherently in-
capable of recognizing such rotations – a price paid for employ-
ing plain chess-board patterns without special targeting for the 
orientation of the object system. Interchange of X and Y object 
axes in some images might provide a possible answer. In a test 
reported in Douskos et al. (2007) this has significantly loosened 
larger correlations (of yo with rotations ω and κ) at the expense 
of an increase in the smaller correlations (of yo with φ, and of xo 
with ω and κ). This is a point for further investigation. 
 
2.1.4 Initial values. Instead of a direct solution via plane-based 
calibration, estimation of approximate values for the unknowns 
is based here on the vanishing points (VP) of the two principal 
chess-board directions. These are found by line-fitting to points 

already classified in pencils of converging image lines. For each 
direction, an initial estimate of VP location is obtained from the 
two lines with >3 points forming the largest angle. In case the 
distance of some VP from the image centre exceeds the image 
size by a factor of 40 (which corresponds to a rotation angle of 
~1.5° for moderately wide-angle lenses), this VP is considered 
at infinity. If both VPs are finite, their locations are refined in a 
single adjustment, in which coefficients of radial lens distortion 
are also included as unknowns. Using diagonals with >3 points, 
the VP of the diagonal direction of the pattern falling between 
the two main VPs is also included as an unknown to enforce the 
vanishing line constraint. If only one VP is finite, it is estimated 
from all participating lines along with the coefficients of radial 
distortion. It is noted that this approach supplies simultaneously 
good estimates for the radial distortion coefficients. 
 
Assuming that the principal point is at the image centre, camera 
constant c and image rotation matrix may be estimated through 
the two principal VPs of each image (Karras et al., 1993). The 
estimates of camera constant c and of the distortion coefficients 
with smallest standard error (σc is estimated by error propaga-
tion) are used as initial values in bundle adjustment. If one of 
the two VPs is close to infinity, the corresponding out-of-plane 
rotation (ω or φ) is set to zero, the other is found by using the 
mentioned ‘best’ value for c; estimation of roll angle κ is trivial. 
 
Coming now to the approximation of parameters of image pose, 
the largest dimension in X seen on all images is chosen, scaled 
arbitrarily, to estimate camera altitudes (Karras et al., 1993). In 
the XY system of each image, the location of projection centre 
is then estimated through the image coordinates of the origin 
(point 1,1). In case this latter point has not been detected on an 
image, it is found as the intersection of row 1 and column 1. 
 
2.2 Bundle adjustment 

Having determined image-to-pattern point correspondences and 
initial parameter values, an iterative bundle adjustment is then 
carried out for estimating camera geometry.  
 
2.2.1 Mathematical model. The model employed here adopts a 
typical camera matrix (Hartley and Zisserman, 2000), i.e. next 
to camera constant c and principal point location (xo, yo) it also 
incorporates image aspect ratio – equivalently camera constants 
cx, cy – and image skewness s. Coefficients k1 and  k2 for radial 
symmetric lens distortion are, too, present. Coefficients p1, p2 of 
decentering distortion also take part, although in current digital 
cameras this error appears as mostly negligible when compared 
to sensor quantisation, and thus represents a possible source of 
instability (Zhang, 1999) – a phenomenon also met in our tests 
(values hardly exceeding 1 pixel in the useful image area). The 
distortion model of Brown (1966) is used here, with image radii 
referring to corrected image coordinates. Finally, it is noted that 
the algorithm may also function in a pure self-calibration mode, 
i.e. without control (Douskos et al., 2007 have presented such 
tests). For reasons already referred to, results presented below 
rely on control points with coordinates assumed as error-free. 
 
2.2.2 Refinement through back-projection. As mentioned, the 
first solution is performed using only points identified on both a 
row and a column of the pattern (right column in Figs. 2 and 3), 
as a ‘double-check’ on the validity of identified nodes. Besides 
few extracted nodes in the central part of the pattern which have 
been excluded for some reason (as in the case of the additional 
targets of Figure 3), the discarded nodes are mainly situated on 
the outer rows and columns, thus producing ‘narrower’ bundles. 

24

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing 2008 

 



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing 2008 

A remedy is to recover such valid nodes by back-projection of 
the XY node coordinates onto the images. 
 

Figure 4. Additional valid nodes (in green and red) identified on 
the four images of Figure 2 and introduced in the final 

adjustment. 
 
Thus, using the information gained from the first bundle adjust-
ment, pattern nodes are back-projected as follows. First, among 
the total of the already established chess-board nodes (i.e. nodes 
identified on at least one image) all missing nodes are projected 
on each image. A search for extracted points within a window 
around the projected node thus allows detecting missing nodes. 
Here the window size is ~2×2 pixels (±10×σo), but an adaptive 
window might also be used based on local image scale. Besides, 
it is checked whether these points also belong to a column or a 
row. Such recovered nodes are seen in Figs. 4 and 5 marked in 
green. It is observed that in some instances, as in the case of the 
top right image in Figure 5, significant portions of columns and 
of rows may be ‘regained’ in this manner. 
 

Figure 5. Additional valid nodes (in green and red) identified on 
the four images of Figure 3 and introduced in the final 

adjustment. 
 
Second, three additional rows and columns on either side of the 
identified chess-board edges are projected on all images. This is 
intended to find acceptable outer rows or columns of the pattern 
which may have not been found up to now, in order to ‘widen’ 
the bundles of rays. The same search scheme is adopted here. It 
is noted that isolated nodes are not kept, namely only new rows 
or columns with a certain number of points (>6) are accepted; 
yet these points do not have to be successive, i.e. ‘gaps’ may be 

tolerated. It is seen in Figs. 4 and 5, where such points appear in 
red, that it has been indeed possible to establish such new lines. 
 
Using all identified points, a final bundle adjustment for camera 
calibration is carried out. 
 

3. TESTS AND EVALUATION 
 
The original implementation of the approach has been applied 
successfully to various cameras by Douskos et al. (2007), who 
also showed that under circumstances the method is applicable 
to moderately asymmetric patterns, like those of Zhang (1999). 
Further, results were also shown from three image sets available 
in Internet, for which there exist results from other toolboxes. In 
the present evaluation the same three image sets were used with 
the current implementation of the algorithm (inclusion of image 
skewness and addition of possibly all nodes via reprojection). 
 
• Image set 1. The algorithm has been applied to the 25 images 
(640×480) available in the web site of J.-Y. Bouguet (4 of these 
are seen in Figure 2). Results are shown in Table 1.  
 

 A B 
σο (pix)          0.12         0.12 
cx (pix) 657.31 ± 0.11 657.30 ± 0.10
cy (pix) 657.76 ± 0.11 657.74 ± 0.10
xo (pix) −16.81 ± 0.21 −17.28 ± 0.20
yo (pix)   −3.46 ± 0.20   −2.33 ± 0.19 
s(×10−03)   −0.33 ± 0.07   −0.42 ± 0.06 
k1(×10−07)   −5.89 ± 0.02   −5.87 ± 0.02
k2(×10−13)     6.69 ± 0.19     6.34 ± 0.17
p1(×10−06)    0.02 ± 0.07   0.08 ± 0.07
p2(×10−06)    0.45 ± 0.07 0.43 ± 0.06
Table 1. Calibration results for image set 1

A: our algorithm; B: Bouguet’s toolbox
 
Included in Table 1 (B) are also the corresponding results given 
for the same images by Bouguet using his Camera Calibration 
Toolbox for Matlab®. Since in this latter solution the two outer 
rows of the pattern had not participated, we have also excluded 
from our adjustment these rows (found via back-projection) to 
obtain results which will be directly comparable. Furthermore, 
in the results from the Bouguet toolbox as presented in Table 1, 
the distortion coefficients have been reduced by corresponding 
powers of c to become compatible with our model; the principal 
point location (xo, yo) has been referred to the image centre; the 
signs of skewness s and coefficient p2 are reversed to agree with 
the right-handed image system used in photogrammetry; finally, 
σo stands for the ‘reprojection error’. 
 
It is seen that results for all parameters from the two algorithms 
are practically identical. Differences in s or p1 are insignificant, 
and so is the difference of 1 pixel in the principal point location, 
particularly since the variability of principal point estimations is 
generally regarded as high compared to other camera elements 
(Ruiz et al., 2002). The radial distortion curves are coincident. 
 
• Image sets 2 and 3.  
The algorithm has also been evaluated on a group of 10 stereo 
pairs (780×580) from the DLR CalDe–DLR CalLab website. 
The pairs stem from two different cameras and are treated here 
as two separate sets from independent cameras I and II (4 
images from camera I are in Figure 3). It is noted that the 
pattern is recorded only in part on certain images. Results have 
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been concentrated in Table 2, where also corresponding results 
from the DLR CalDe–DLR CalLab software (B), run in single-
image mode, are included. Again, parameters mentioned above 
have been transformed to comply with our distortion model and 
also for reversing the left-handed system of the digital images 
usually used in ‘non-photogrammetric’ calibration toolboxes. It 
is also pointed out that this particular software does not supply 
standard errors of parameters. 
 

 Camera I Camera II 
 A B A B 
σο (pix)          0.11 0.14         0.11 0.14
cx (pix) 727.75 ± 0.08 727.28 732.05 ± 0.08 731.57
cy (pix) 726.98 ± 0.07 726.45 730.98 ± 0.08 730.42
xo (pix) −14.52 ± 0.10   −14.81 −19.18 ± 0.10 −19.23
yo (pix)   −0.19 ± 0.09       0.92   −5.07 ± 0.09   −3.84
s(×10−03)     2.38 ± 0.03    2.39     2.23 ± 0.03     2.23
k1(×10−07)   −3.85 ± 0.01  −3.87   −3.94 ± 0.01   −3.99
k2(×10−13)     3.61 ± 0.03    3.68     4.13 ± 0.03     4.36
p1(×10−06)      0.64 ± 0.04   0.75     0.21 ± 0.04     0.34
p2(×10−06)      2.10 ± 0.04   2.33     0.42 ± 0.04     0.78

Table 2. Calibration results for image sets 2 and 3 
A: our algorithm; B: DLR CalDe–DLR CalLab toolbox 

 
In a strict sense, results from the two algorithms are not directly 
comparable, since when running the DLR CalDe–DLR CalLab 
software some dozens of erroneous points near the image edges 
had to be discarded to obtain reasonable reprojection error. Yet, 
here again the calibration results stand in quite good agreement. 
 

4. CONCLUDING REMARKS 

Extending the algorithm of Douskos et al. (2007), an approach 
has been presented for the automatic multi-image calibration of 
cameras from images of plain chess-board patterns – under one 
single assumption, namely that these consist of adjacent equally 
sized squares. After the first solution, back-projection of object 
nodes allowed a considerable increase (which for image sets 2 
and 3 exceeded 20%) of the number of points participating in 
the final adjustment. Camera calibration results, using imagery 
from different Web sources, are considered as being essentially 
identical to calibration data available from other camera calibra-
tion methods, relying on planar test-fields. Characteristic for the 
approach is the fact that exterior orientation is of no relevance, 
due to the symmetry of the pattern. Being fully automatic, the 
presented algorithm presupposes that ‘reasonable’ – in quality, 
pattern coverage as well as in number – image sets are at hand, 
having significant differences in perspective to constitute strong 
configurations. 
 
This question of 2D projectivity is indeed central in all related 
approaches, including of course those which rely explicitly on 
homograhies (plane-based calibration). Thus, it is projectivities 
and not the particular exterior orientations which matter. In our 
approach where image pose per se is not relevant, for instance, 
one and the same image may well have been acquired with four 
different symmetric exterior orientations; clearly, this does not 
imply that a single image of a 2D pattern (a given projectivity) 
may ‘pretend’ to be four different images, and hence sufficient 
for ‘multi-image’ camera calibration. In this sense, studying the 
combinations of the projectivities optimal for estimating camera 
geometry is a very interesting question. With camera calibration 
by means of 2D patterns being an attractive simple approach of 

high potential, this aspect has to be further investigated. 
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