
3D DETERMINATION OF VERY DENSE PARTICLE VELOCITY FIELDS 
BY TOMOGRAPHIC RECONSTRUCTION FROM FOUR CAMERA VIEWS 

AND VOXEL SPACE TRACKING 
 
 

Torsten Putze, Hans-Gerd Maas 
 

Dresden University of Technology Helmholtzstr.10 D-01062 Dresden, Germany 
-torsten.putze@tu-dresden.de, -hans-gerd.maas@tu-dresden.de 

 
WG V/1 Industrial Vision Metrology Systems and Applications 

 
 

KEY WORDS: Tomographic Reconstruction, Flow Measurement, Tracking 
 
 
ABSTRACT: 
 
The paper presents some improvements to a novel approach for the determination of 3-D flow velocity fields, which is based on 3-D 
particle tracking in a tomographic reconstruction of an observation volume seeded with tracer particles. The basic idea of the 
approach is using multiple camera views for a full tomographic reconstruction of the object space, which is represented by a 3-D 
voxel structure with a resolution adapted to the camera resolution. Based on the images of four or more convergent cameras with 
their orientation known from a prior calibration procedure, a complete 3-D light intensity distribution in the observation volume can 
be reconstructed by a projective transformation of each camera image contents into each depth layer of the object space and a 
consecutive minimum search. 3-D velocity field information can then be obtained by volume-based tracking in time-resolved voxel 
space representations. This procedure represents a rather elegant way of completely avoiding detection and matching ambiguities, 
thus allowing for a significant increase of the spatial resolution of 3-D particle tracking. The paper will show the basic concept of 
tomographic reconstruction and tracking in 3D-PTV and show some first results from processing synthetic data sets. The 
computational effort, accuracy and spatial resolution potential of the technique will be compared to conventional 3-D particle 
tracking velocimetry. 
 
 

      1. Introduction 

Flow measurement techniques are used in many science and 
engineering tasks, where quantitative flow velocity information 
in liquid or gas flows has to be determined. Flow measurement 
techniques determine velocity vectors or velocity vector fields 
in a defined observation volume of a natural flow, an engine or 
a laboratory facility. The techniques can be classified into 
different categories: 
 
Non-contact or contact measurement techniques. 

 Observation volume: Point-wise (0-D), profile-wise (1-D), 
sheet-wise (2-D) and full-field (3-D) measurement.  

 Velocity information: Determination of absolute velocity 
only or determination of one, two or all three components 
of the velocity vector. 

 Determination of instantaneous velocity vectors or longer 
particle trajectories.  

 Necessity or needlessness of particle seeding. 
 
See e.g. Nietsche and Brunn, (2006) or Raffel et al. (2007) for a 
general overview of flow measurement techniques. In fluid 
mechanics there is a special interest for non-contact time-
resolved fully 3C3D (= determination of 3 components of 
velocity in 3-D space) measurement techniques. Most methods 
base on seeding particles, which visualise the flow and can be 
recorded by an imaging system. 3-D particle tracking 
velocimetry (3D-PTV, section 2) is an established method to 
determine 3-D trajectories of a large number of particles in a 
flow from multiple camera particle image sequences. It is based 
on the detection of discrete particles in the images, the 

establishment of multi-image correspondences, the 
determination of 3-D particle coordinates and a subsequent 
discrete particle tracking in 3-D object space. The spatial 
resolution potential of 3D-PTV is limited by ambiguities 
occurring in the processes of particle detection and multi-image 
correspondence establishment (Maas et al., 1993).  
 
Recently, Elsinga et al. (2005) have proposed an alternative 
approach to 3-D particle tracking, which is based on a 
tomographic reconstruction of the observation volume (section 
3). In section 4, we show some improvements to the 
tomographic reconstruction approach. Section 5 and 6 shows 
some first particle tracking results from the tomographic 
approach.  
 

2. 3D-PTV 

In terms of the categorization made in section 1, 3-D particle 
tracking velocimetry can be characterized as a non-contact 
seeding-based full-field 3-D flow measurement technique 
delivering 3-D trajectories for a large number of particles in a 
flow. It is based on seeding a flow with neutrally buoyant tracer 
particles, which are imaged by a stereo camera system. Discrete 
particle image coordinates in the images (Figure 1) are 
determined by image analysis techniques.  
 
The core of a 3-D PTV data processing schedule is the spatio-
temporal matching process (Figure 2). In the 3D-PTV approach 
shown by Maas et al., (1993), multi-image correspondences 
between these particle image positions are established using 
multi-ocular epipolar line information. Based on these particle 
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image correspondences, particle 3-D coordinates can be 
determined by spatial intersection. In liquid flow measurement 
applications, where particles in a liquid are observed by outside 
cameras through a plane glass interface, multimedia 
photogrammetry techniques (e.g. Maas, 1995) are employed to 
handle the spatial intersection of twice-broken beams. In a last 
processing step, 3-D particle trajectories are determined by 
applying tracking techniques to discrete 3-D particle 
constellations.  
 
Netzsch and Jähne (2005) reverse the processing step order in 
spatio-temporal matching by first tracking particles in 2-D 
image space and then establishing stereo correspondences 
between image space trajectories. A step towards integrated 
spatio-temporal matching is shown by Willneff and Grün (2002), 
who combine the two approaches by a back-projection search of 
missing trajectory links.  
 

 
Figure 1. PTV image with ~ 1000 particles 

 

Figure 2. 3D-PTV spatio-temporal matching process 
 

a. b. c. 
Figure 3. 3-D PTV with 3-D priority (a.), tracking priority (b.) 
and integrated spatio-temporal matching (c.) (Willneff, 2003) 

3. Tomo-PIV 

Recently, a tomography-based 3-D particle tracking approach 
has been introduced by Elsinga et al. (2005). In analogy to the 
established 2-D PIV (particle image velocimetry) technique 
(Adrian, 1986), the technique is called tomo-PIV. PIV is based 
on a double pulse exposure of particles in a flow and the 
determination of flow velocity vector fields by area-based 
image correlation techniques. The advantage of PIV, besides a 
rather simple implementation, can be seen in the insensitivity to 
high seeding densities. While high seeding densities will cause 
ambiguities in the detection of discrete particles in the images in 
PTV, the area-based matching tracking approach in PIV does 
not rely on discrete particles detected in the images. A major 
drawback of standard PIV is in the fact, that it determines only 
two components of the velocity vector in a thin layer in the 
observation volume (2D2C technique). Extensions like 
scanning-PIV (Brücker, 1995; Hoyer et al., 2005) or multiple-
plane stereo-PIV (Kähler and Kompenhans, 2000) can partially 
solve these limitations, while holographic PIV (Hinsch, 2002) 
requires a large instrumental effort. These drawbacks of 
standard PIV are solved by tomo-PIV.  
 
Tomo-PIV generates a tomographic reconstruction of a 3-D 
particle constellation from a limited number of camera views in 
an approach similar to shape-from-silhouette (e.g. Matusik et al., 
2000). As the particles are moving, the camera views (typically 
four) have to be captured simultaneously by synchronized 
cameras. A 3-D observation space reconstruction can for 
instance be performed by the MART (multiplicative algebraic 
reconstruction technique) algorithm (Herman and Lent 1976). 
The basic idea of the technique is to represent the observation 
volume by a 3-D voxel structure with a resolution adapted to the 
camera resolution by the following procedure: 
 
Every pixel of the first image is projected into the voxel space 
through the projection center of its camera. Every voxel, which 
is hit by the projected ray, gets a greyvalue obtained by 
interpolation from the originating pixel (Figure 4a).  
 
Then, every pixel of the second image is projected into the 
voxel space. In every voxel, which is hit by the projected ray, 
the existing voxel greyvalue (obtained from the first image) is 
multiplied by the greyvalue of the originating pixel (Figure 4b).  
Likewise, the content of all other camera views is projected into 
the voxel space (Figure 4c).  
 
As a result, the voxel space will contain multiplicatively 
accumulated image intensity information of the instantaneous 
particle constellation. It is obvious, that only voxels at valid 
particle positions will show very high values (as it has high 
values in all factors of the greyvalue multiplication), while all 
remaining voxels will show rather low values. Repeating the 
procedure for each time step, a time-resolved 3-D voxel space 
representation is obtained. In this voxel data sequence, 3-D flow 
velocity vectors can be obtained by 3-D cross correlation or 
similar techniques. 
 
Elsinga et al. (2005) show, that four camera views will usually 
be sufficient for the reconstruction. The requirements to the 
geometric camera configuration are identical with those for 
conventional 3D-PTV (Maas et al., 1993). The advantage of 
tomo-PIV over 3D-PTV is in the fact that it avoids the 
ambiguity-prone processing steps of discrete particle detection 
and establishment of multi-view correspondences, thus allowing 
for a higher seeding density and delivering denser flow velocity 
field information.  
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  a. 

  b. 

  c. 
 

Figure 4. Tomographic reconstruction principle 
 
In the following, we will show several enhancements to tomo-
PTV to improve the speed of the tomographic reconstruction 
process and to optimize the tracking.  
 
 

4. Tomographic reconstruction 

The pixel-wise projection method as described in section 3 is 
straightforward, but computationally rather inefficient and time 
consuming. The core of our new tomographic reconstruction 
technique, which is presented in detail in (Putze, 2008), is a 
multiple projective transformation based approach. The object 
space voxel structure is initialized by setting the value of every 
voxel to 255. The reconstruction of the object space light 
intensity field is performed by transforming the content of each 
camera image into each depth layer of the voxel space. Using 
homogeneous coordinates, a simple and fast computation can be 
performed. The relationship between the image coordinates x’ 
and the voxel coordinates of a depth layer Di in object space is: 

ii DHx ⋅='
 

 
 
Hi contains the 8 parameters of a projective transformation. For 
a layer D0, the elements of H0 can be determined from the 
parameters of the exterior and interior orientation of the camera 
(projection center X0,Y0,Z0, 3x3 rotation matrix r, camera 
constant c): 
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The transformation matrices Hi of all further depth layers can be 
determined by adding an increment hi to H0. Due to the 
parallelism of the depth layers, the determination hi of is 
simplified: 
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ii hHH += 0  
 
 
In homogeneous coordinates, it is sufficient to go through the 
transformation for the corner pixels of a layer. All other 
greyvalues can be obtained by a bilinear interpolation.  
 
The layer-wise rectification procedure is repeated for each 
camera view. Obviously, each object space voxel will obtain 
different greyvalues from different views. The voxel space 
particle reconstruction is based on a very simple rule: A voxel 
belonging to a valid particle must have a high greyvalue in 
every image. This rule has been realized by a multiplication of 
the greyvalues from each projection in the implementation of 
Elsinga et al. (2005). This way, only those voxels, which get a 
high greyvalue from every view, will ‘survive’. The rule can be 
implemented even more efficiently by a minimum operator, 
where the greyvalue of a voxel GV is the minimum of its 
greyvalues in all views gvj:  
 
 

{ }jgvGV min=
,    

{ }255...0∈jgv
 
 
A 3-D particle constellation can then easily be obtained by a 
thresholding in voxel space. 
 
A background image obtained from spatio-temporal histogram 
analysis is subtracted from each image beforehand to eliminate 
the effect of background reflections. Multimedia geometry (i.e. 
the handling of a broken optical path when observing particles 
in liquids through a glass interface, see e.g. Maas 1995) can be 
incorporated into the rectification process by ray tracing from 
the camera through the air-glass interface to the glass-water 
interface and consecutive linear linear depth layer mapping 
using a matric hi with direction vector components obtained 
from the ray tracing process using Snell’s Law. 
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Figure 5. Tomographic reconstruction from synthetic data 
(Putze, 2008) 

 
Figure 5 shows a reconstruction of a synthetic 50x50x50 voxel 
volume. The dark voxels show the hulls of particles in the 
synthetic data, the grey voxels show artefacts from the 
reconstruction process. These artefacts usually have a greyvalue 
in the order of only 1 ... 5 in 8 bit data. They can easily be 
discarded in a thresholding process and have negligible 
influence to the results of tracking. Putze (2008) shows on the 
basis of simulated data, that the effect of these artefacts on the 
particle motion vector is < 0.02 voxel.  
 
 

5. Voxel space tracking 

While conventional 3D-PTV produces a large number of 
discrete particles with metric 3-D object space coordinates, 
tomo-PIV produces a 3-D voxel space containing the particles. 
This facilitates the implementation of volume-based particle 
tracking techniques without the necessity of detecting individual 
particles. Techniques for tracking discrete particle constellations 
in 3-D PTV have been presented by Papantoniou and Dracos 
(1989). These procedures may produce unsolvable ambiguities 
at high seeding densities. Generally, PIV with its area-based 
matching between consecutive images is less sensitive to 
ambiguities and can handle higher seeding densities. Likewise, 
tomo-PIV allows using volume-based matching techniques for 
tracking in consecutive voxel datasets, thus enabling 3-D 
tracking at significantly higher seeding densities than 
conventional 3-D PTV. These volume-based matching 
techniques could for instance be 3-D cross correlation like in 
Elsinga et al. (2005) or 3-D least squares matching (Maas et al., 
1994).  
 
3-D cross correlation depicts a rather simple technique to 
determine the 3-D displacement vectors between cuboids of the 
dimension (2K+1)x(2L+1)x(2M+1) in the voxel space of two 
consecutive epochs A,B:   
 
 

∑ ∑ ∑∑ ∑ ∑

∑ ∑ ∑

−= −= −=−= −= −=

−= −= −=

−⋅−

−⋅−
=

K

Kk

L

Ll

M

Mm
klm

K

Kk

L

Ll

M

Mm
klm

K

Kk

L

Ll

M

Mm
klmklm

BBAA

BBAA

22 )()(

)()(
ρ

 
 
 
Subvoxel precision can be obtained by fitting a Gaussian 
function into the cross correlation coefficient field. Cross 
correlation offers the advantage of a simple implementation. 
Elsinga et al. (2005) implemented it in a hierarchical manner 

(multigrid correlation) to improve the convergence behaviour. It 
is, however, limited to the determination of three cuboid shift 
parameters. Cuboids with significant deformations will not be 
tracked well. This may be partially compensated by iterative 
window deformation techniques, which have been presented for 
2D-PIV (Scarano, 2002), but at a much larger computational 
effort.  
 
As an alternative, 3-D least-squares-tracking (3-D LST) is a 
volume-based tracking technique, which is adaptive to cuboid 
deformation and rotation. In analogy to 2-D least-squares-
matching (LSM), 3-D LST minimizes the sum of the squares of 
voxel value differences by determining the coefficients of a 3-D 
affine transformation (Maas et al., 1994). In addition to the 
three displacement vector components, the 12 parameter of the 
3D affine transformation in 3-D LST contain scale, rotation and 
shear information. This allows for a higher precision in case of 
velocity gradients in the interrogation volume. Moreover, these 
parameters enable to determine a deformation tensor for each 
interrogation cube. The result of 3-D LST applied to sequences 
of tomographically reconstructed voxel structures is a dense 3D 
velocity vector field with additional shear tensor information.  
 
 

6. Validation with simulated data 

Simulated data were used for a first validation of the 3D cross 
correlation tracking approach. The dataset consists of a 
100x100x100 voxel volume with 300 randomly distributed 
particles. The average distance between neighbouring particles 
is 10.6 voxels (center-center). Two experiments were performed, 
both with 300 particles in two time instances. In the first 
experiment, a linear translation of (1.3/-1.3/0.0) voxels was 
applied to the particles. In the second experiment, a shear of 
about 4° was applied (vx = vy = 0.07z ). The particle positions 
were projected into the images of four synthetic cameras, where 
particle images were generated using the point spread function. 
These synthetic images were then used to reconstruct a voxel 
representation of the object space applying the reconstruction 
method as described in section 4.  
 
The resulting voxel data were processed by 3D cross correlation 
using cuboids of 15x15x15 voxels on a 3D grid with 5 voxel 
spacing. The cuboids contained 2 ... 8 particles. The resulting 
motion vector fields are shown in Figure 6(shift) and Figure 
7(shear). As expected, the 3D cross correlation performed very 
well in the presence of a pure translation in the particle motion 
field. The rms deviation of the reconstructed motion vectors 
from the simulated flow is 0.17/0.16/0.16 voxel in the three 
vector components, with slightly larger errors occurring in the 
corners of the dataset.  
 
The results become much worse, when a moderate shear of 0.07 
is introduced: The rms deviation of the reconstructed motion 
vectors increases to 0.48/0.45/0.83 voxels. Moreover, the 
presence of shear effects in the cuboid may lead to larger errors 
in case of sparse and asymmetric particle density within the 
cuboid. This can be checked automatically with the option of 
omitting cuboids with a poor particle distribution. An adaptive 
cuboid growth technique is not a good solution here, as the 
shear-induced errors will grow with increasing cuboid size.  
 
While 3D cross correlation is a simple and fast method for 
tracking in voxel data, its sensitivity to non-translational 
movements is known and is explained by the purely 
translational movement of the correlation cuboid over the search 
area. A possible solution for this limitation could be the 
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application of a volume deformation technique as suggested for 
2D-PIV by Scarano (2002) or by 3D-LST (Maas et al., 1994 – 
cmp. section 5).  
 
 

 
 

Figure 6. Vectors from tracking (blue) and difference to the 
simulated data (red) of a flow with a translation 

 
 

 
 

Figure 7. Vectors from tracking (blue) and difference to the 
simulated data (red) of a flow with a shear 

 
 

7. Conclusion 

A 3-D tomographic object space reconstruction forms a viable 
alternative to conventional photogrammetric 3-D coordinate 
determinations in applications of 3-D particle tracking 
velocimetry. Four views of an observation volume seeded with 
tracer particles are sufficient to reconstruct a voxel space 
representation of a particle constellation. This procedure avoids 
the ambiguity error prone processing steps of detecting discrete 
particles in camera images and establishing multi-view 
correspondences in a conventional photogrammetric data 
processing chain. Moreover, the voxel space representation 
forms a basis for the application of volume-based 3-D tracking 
techniques such as cuboid cross correlation or 3-D least squares 
tracking, which are again less ambiguity error prone. As a result, 
a significantly higher particle seeding density can be processed, 

allowing for a higher resolution in the quantitative description 
of flow fields.  
 
The computational efficiency of the tomographic reconstruction 
can be increased significantly by a sequential projective 
transformation approach in homogeneous coordinates. Particle 
tracking in a voxel space representation can easily be performed 
by cuboid cross correlation with subvoxel interpolarion or – 
more complex, but adaptive to cuboid deformations – by 3-D 
least squares tracking.  
 
The tomographic reconstruction and cuboid tracking has been 
implemented and tested with simulated data. Future work will 
concentrate on tests with real data, the verification of the 
obtainable gain in seeding density, the interpretation of the 3D-
LST transformation parameters and the implementation in a 
multimedia photogrammetry environment.  
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