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ABSTRACT: 
 
Photogrammetric measurement and modelling procedures are dependent on accurate camera calibration and orientation. The 
accuracy of image-based registration and texture mapping approaches can be deficient up to the underlying camera projection. In the 
case of small objects an alternative to the conventional central projection model can be to use parallel projection cameras which 
deliver small volumes under constant sampling. Cameras of variant geometries have been studied by the computer vision community; 
but they impose algorithmic assumptions into the projective model which can degrade the stability of the solutions. This paper 
proposes the development of a multiphoto bundle adjustment for parallel cameras based on an analytical mathematical model with 
quality assessment. The model is treated for multiphoto situations; the image to object space correspondence is established under 
invariant scaling through the pseudo exterior orientation elements; the camera is calibrated for the first term of the radial lens 
distortion. Initialization is recovered indirectly through perspective-based strategies and direct solutions based on orthographic 
projection. The algorithmic stability is verified with true parallel projection image sequences of 3D calibration structures captured 
with a telecentric camera system within controlled calibration conditions.  
 
 

1. INTRODUCTION 

Accurate 3D measurements are fundamental prerequisites in 
close range engineering and archaeological applications. Image 
based approaches for the generation of textured 3D models are 
based on stereo or multi-image matching strategies (Remondino 
and Zhang, 2006). In a larger scale alternative techniques 
combine images with laser scan range data; the accuracy 
achieved is dependent on the registration and texture mapping 
methods (El Hakim et. al., 1998). The selected approach is 
constrained by the object geometry, texture and the metric 
requirements. Existing algorithmic approaches for image-based 
registration require that the cameras are calibrated within 
geometrically strong image networks. In industrial metrology 
applications cameras are routinely calibrated based on 
established bundle adjustment strategies with self - calibration 
(Brown 1974; Granshaw, 1980). Cameras are calibrated prior or 
together with the 3D measurement of the objects to be modelled 
based on signalized or natural features of interest and requiring 
manual or semi-automated point measurement. Purpose 
designed volumetric or planar testfields are imaged to satisfy 
algorithmic assumptions within both photogrammetric and 
computer vision communities (Triggs et. al., 2000; Clarke and 
Fryer 1998; Fraser, 2001; Gruen and Beyer, 2001). When the 
imaging conditions are limited to a few focal lengths from the 
object of interest the central perspective model introduces 
significant geometric and radiometric distortions; extended 
camera models account for variations in distortions with object 
distance (Shortis et. al., 1996). 
 
Computer vision recovers the image to object space 
correspondence linearly. Variant cameras geometries are treated 

with the homogeneous determination of the involved matrices; 
linear algorithms impose algorithmic assumptions into the 
projective model which can deteriorate the stability of the 
solutions. Parallel projection establishes the image to object 
space correspondence under invariant scaling; hence it 
eliminates perspective distortions but it is limited by its field of 
view. Such systems fall into the generalized category of affine 
cameras which are closer to the Euclidean reconstruction and 
are mathematically simple to implement due to their linearity. 
Geometric approaches are typically based on local coordinate 
frame methods (Koenderink and Van Doorn, 1991). Tomasi and 
Kanade, 1992 propose a non-local coordinate frame method that 
utilizes all the available scene points but rank considerations 
have to be considered. Coordinate datums are defined as the 
centroid of the cluster of targets. Shapiro, 1995 follows the 
extended m-view approach based on the singular value 
decomposition of the involved matrices. A detailed review on 
the affine analysis from image sequences can be found in the 
literature (Shapiro, 1995). Alternative approaches initialize 
orientation procedures (Kyle, 2004) and introduce an 
orthogonality constraint into the affine model independently on 
approximate values (Ono et. al., 2004) or propose a unified 
approach for both perspective and orthographic cameras based 
on collinearity condition to map textures onto planar polygons 
(Weinhaus and Devich, 1999). 
 
This paper focuses on the calibration of sequentially acquired 
images under parallel projection within a bundle adjustment 
procedure. The mathematical model has been formed for the 
multiphoto case and was treated as the non-linear equivalent of 
the standard perspective - based bundle method. In the absence 
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of the projection centre the pseudo exterior orientation 
parameters link the image to the object space measurements 
through the 2D projective translations, the global image scale 
and the 3D orientation angles. A simplified interior orientation 
model takes into account the first term of the radial lens 
distortion. The model is initialized indirectly through 
perspective based resection procedures and direct parallel 
projection solutions by back-substitution. The datum ambiguity 
problem is accommodated by either the inner or external 
constraints methods (Cooper, 1987). 
 
In photogrammetric terms, prior concern is to assess the 
behaviour of a unified parallel - based multistation bundle 
adjustment in terms of checking the stability of the orientation 
parameters (interior and exterior); mainly to assess the metric 
recovery when measuring small 3D structures. The algorithm 
was validated with real convergent image sequences acquired 
with a true physical parallel geometry imaging system. The 
experimental set up and measurements were conducted at the 
UCL calibration laboratory.   
 
 

2. MATHEMATICAL MODEL 

Parallel projection falls into the generalized category of the 
affine camera. It corresponds to a projective camera with its 
projection centre at infinity (Hartley and Zisserman, 2004). 
Weak perspective projection can be derived from perspective 
when the object size is small compared to the imaging range. 
The standard perspective equations become linear; parallel 
projection can then be conceived as a double projection. All the 
object points are projected orthographically onto a plane which 
goes through the depth of the object’s centroid followed by a 
perspective projection onto the image plane under uniform 
scaling (Xu and Zhang, 1996). 
 
The 2D image vector x (observations) is linked with its 3D 
equivalent vector X (object space) through a (2x3) 
magnification matrix M (=sR) and a 2D translation vector t. 
The mathematical model in its simple form is given by 
Equations 1 and 2 in vector and matrix terms respectively. 
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x,y : image coordinates 
s : image scale 
rij : rotation matrix elements 
X, Y, Z : object space 3D coordinates 
tx, ty : 2D projective translations 
The projection centre is located at infinity. The translation 
vector t expresses the projective equivalents of the principal 
point components but it is locally variant through the image 
sequence. Whilst, full self calibration would require the 

inclusion of the lens distortions polynomials (radial and 
tangential) together with affinity and orthogonality parameters; 
it is the physical algorithmic stability which judges the full 
model formulation. Figure 1 illustrates a convergent image 
network that intersects the parallel lines of sight under invariant 
scale. 
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Figure 1  Multiphoto intersection - parallel case. 
 
 

3. BUNDLE ADJUSTMENT 

The developed approach treats the basic parallel projection 
mathematical model within a rigorous multiphoto bundle 
adjustment with the aim of allowing both parallel and 
perspective imaging systems to exist within the same 
photogrammetric network. 
 
The key issue is the choice of the physical parameters to be 
estimated. The model includes the basic camera model 
parameters taking into account the first term of the radial lens 
distortion considering minimum distortion based on 
manufacturers data for the telecentric optics deployed. Next, the 
parameters are grouped according to their type to assist the 
population of the required arrays. Parameters are grouped 
together as pseudo exterior orientation parameters (projective 
equivalents of the principal point components- tx, ty, global 
scale s, 3D rotation angles- omega, phi, kappa) which are image 
variant, the 3D targets coordinates (X, Y, Z) and additional 
parameters terms (k1) (Equation 3). Hence, the system is 
populated with the five exterior parameters per image, one for 
the global scale (one camera) in the designed arrangement, 
three per target and one for the first radial polynomial term 
(again per camera). The radial lens distortion is modelled 
centrally from the computed tx,ty image centre. 
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(3) 

Considering j photos and i targets in a network configuration 
the over determined linear system of equations is processed in a 
least squares approach that minimizes the reprojection error 
according to the standard Gauss Markov model. The problem is 
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weighted considering that the quality of the image observations 
is defined with a standard deviation of 0.5μm which is typical 
for close range perspective imaging with the Kodak Megaplus 
sensor used for subsequent tests. The system is solved 
iteratively until the correction vector satisfies the convergence 
criteria. The orientation tolerance was set to 0.1 x σ and the 
targets and additional parameters to 0.04 x σ as appropriately.  
 
For the purposes of these tests effective starting values required 
to intiate the bundle adjustment process were computed within a 
photogrammetric measurement system (Vision Measurement 
System, VMS, Robson S. and Shortis M.). To avoid geometric 
degeneracies introduced by planar configurations control targets 
in a 3D volume arrangement have been used. Initialization is 
implemented by a modified Zeng and Wang closed form 
resection procedure assuming that perspective projection with a 
very long focal length is a good initial approximation to a 
parallel projection (Zeng and Wang, 1992). An initial space 
resection, again using a long focal length, is computed to refine 
the starting values. Indirect 3D orientation angles recovery is 
sensitive to the 3D targets geometry. Next, given the knowledge 
of the partial exterior orientation together with the coordinates 
of the 3D control targets, the 2D projective translations are 
recovered from the initialized parallel projection model by 
back-substitution. 
 
To avoid the datum ambiguity problem the network can be 
externally constrained based on the 3D coordinates of all 
control targets given the knowledge of their stochastic model. 
Alternatively the datum is defined by the centroid of the control 
targets by setting the minimum required constraints of a 3D 
similarity transformation (3 translations, 3 rotations and 1 scale) 
by the inner constraints method assuming a normalized 
precision for the 7 additional equations. Inner constraints are a 
convenient method for removing any deficiencies coming from 
the control data to provide a minimum constraints datum that 
minimizes the trace of the dispersion matrix. An indicator of the 
quality of the adjustment is obtained by the computation of the 
a-posteriori standard deviation and through analysis of the 
scaled covariance matrix to check the precision of the estimated 
parameters and any potential correlations in the model. Figure 2 
illustrates the structure of the design and normals matrices for a 
subset of photos and targets (external constraints method). 
 
 

     
  

Figure 2  Parallel camera arrangement for 10 photos & 10 
control targets (txj, tyj, s, ωj, φj, κj, Xi, Yi, Zi, k1) design & 

normals matrices (external constraints). 
 
 

4. ALGORITHM ASSESSMENT 

The algorithm was tested with real parallel projection 
convergent image sequences acquired with a telecentric camera 
system under controlled conditions. The system consists of a 
MVO double sided telecentric lens (nominal scale 0.16) fitted 
onto a “C” mount Kodak Megaplus ES 1.0 monochrome camera 

1008 x 1018 pixels (pixel size 9 μm). The camera’s field of 
view is 40 mm and its imaging range 175 mm. Additional sets 
were captured with a more conventional wide angle retrofocus 
Fujinon lens (focal length = 12.5mm) fitted onto a similar 
camera body. 
 
Three purpose - built calibration structures were constructed, of 
a few centimetres magnitude, with signalized circular artificial 
retrotargets and white dots of 2 mm diameter and 0.9 mm 
respectively. The targets were designed in order to achieve 
distinctive point measurements at the very close range; their 
diameter (0.9 mm in object space) is equivalent to 16 pixels 
under parallel projection and 7 pixels under perspective (image 
space) (Figure 3).  
 
 

             
 

Figure 3  Sample - Perspective & parallel image targets – Range 
175mm - 0.9 mm diameters (magnification 40x). 

 
These were imaged simultaneously with both the perspective 
and parallel camera systems by introducing controlled rotations 
at regular intervals based on an optical turntable. Figure 4 
illustrates the combined imaging system with the perspective 
and parallel camera models. 
 
 

 
 

Figure 4  Camera system. 
 

To test the algorithm a homogeneous processing framework 
was selected for the three datasets. First the perspective camera 
was pre-calibrated within a self calibrating bundle adjustment 
procedure (based on a ten-parameter extended model) with the 
inner constraints method and the introduction of linear scalar 
constraints (VMS). Having pre-measured the calibration objects 
the local datum was defined implicitly through perspective. 
This resulted in a measurement precision of 8 μm (object space) 
with a relative precision for the network of 1:27,000. The 
generated point data were used to run the algorithmic 
verification of the parallel based bundle adjustment; noting that 
the figures above define the quality of the input data to the 
parallel network (Figure 5). The accuracy assessment was 
provided by comparing output distances between targets with 
independent digital calliper measurements. 
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Figure 5  Calibration structure I - features (red = initial control, 
green = tie, blue = scale). 

 
4.1 Calibration Structure I 

The first dataset was composed of 17 images in a convergent 
wide separated arrangement and viewing 15 control targets 
(Figure 6). The imaged targets were measured with a weighted 
centroid method but their 2 mm diameter targets (36 pixels in 
image space) in this case degrade the overall network precision. 
 
 

 
 

Figure 6  Calibration structure I –Parallel image network 
geometry. 

 
The algorithm converged at the third iteration with a σo of 6.0 
indicating a clear misjudgement on the input target precision 
(50 μm). The bundle adjustment misclosure was 2/10 of a pixel 
(6 μm on image space) and the targets were coordinated with an 
rms of 24 μm for both external and inner methods. The camera 
was calibrated with a scale of 0.1657 and the first term of the 
radial lens distortion polynomial (Table 7). 
 
 

 External Inner 
scale 
k1 x e-004 

0.1657 
2.0241 

0.1657 
2.0242 

observations 555 517 
unknowns 132 132 
dof 423 385 
iterations 3 3 
σo 6.3 6.5 
residualsxy 2 μm 2 μm 
stdev 121.3 μm 439.1 μm  

 
Table 7  Calibration Structure I 

Bundle Adjustment 17 photos, 15 control targets 
 

4.2 Calibration Structure II 

The second dataset is the most optimum in terms of network 
geometry. In this case 30 parallel geometry images were taken 
in a wide two ring arrangement viewing 18 control targets 
(Figures 8 and 9).  
 
 

        
 

Figure 8  Calibration structure II – 
Perspective & parallel views - range 175mm. 

 
 

 
 

Figure 9  Calibration structure II –Parallel image network 
geometry. 

 
The camera was calibrated with a scale of 0.1614; the 
triangulation misclosure was 1/10 of a pixel (0.6 μm). The 
targets were coordinated with an rms of 5 μm for both external 
and inner constraints and a precision of 32 μm and 102 μm per 
method. The aposteriori σo was nearly one; which satisfies the 
designed stochastic model (Table 10). The accuracy was 
approximately 0.4 mm given the measurement of five true slope 
distances. 
 
 

 External Inner 
scale 
k1 x e-004 

0.1614 
1.6762 

0.1614 
1.6761 

observations 980 933 
unknowns 206 206 
dof 774 727 
iterations 3 3 
σo 1.8 1.8 
residualsx,y 0.6 μm 0.6 μm 
stdev 31.6 μm 102.0 μm 

 
Table 10  Calibration Structure IIBundle Adjustment 

30 photos, 18 control targets 
 

4.3 Calibration Structure III 

The third dataset (Table 13) behaves similarly to the previous 
two but the targets coverage within the image format is more 
complete; hence there is a greater confidence on the recovery of 
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interior geometry. Here 24 images and 20 control targets were 
captured with a two ring network configuration (Figures 11 and 
12). The calibrated image scale was 0.1616. The overall quality 
degradation as opposed to the second image - set can be 
attributed to the network geometry. To assess the accuracy nine 
check distances were measured between selected targets on the 
object with a calliper. The mean discrepancy between the 
bundle adjustment output and the truth data was 0.11 mm. 
 
 

        
  

Figure 11: Calibration structure III – 
Perspective & parallel views - range 175mm. 

 

 
 

Figure 12  Calibration structure III – 
Parallel image network geometry. 

 
 

 External Inner 
scale 
k1 x e-005 

0.1616 
3.7280 

0.1616 
3.7095 

observations 604 551 
unknowns 182 182 
dof 422 369 
iterations 3 3 
σo 2.6 2.7 
residualsxy 0.7 μm 0.7 μm 
stdev 43.7μm 134.9μm 

 
Table 13 : Calibration Structure IIIBundle Adjustment 

24 photos, 20 control targets 
 

4.4 Comparative Orientation Evaluation 

Table 14 summarizes the overall precisions for the three sets of 
data for the external and inner constraints. The elements of the 
pseudo exterior orientation are recovered with a precision of 15 
μm for the 2D translations and 0.0006 degrees for the 3D 
rotations in the best case (second dataset) the associated 
precision for the k1 term was 0.01 μm. 
 
 
 

 tx,ty ω, φ, κ k1 
Struct I 50 μm 0.0024 deg 0.05 μm
Struct II 15 μm 0.0006 deg 0.01 μm
Struct III 22 μm 0.0005 deg 0.01 μm
 Inner Constraints: stdev 
Struct I 76 μm 0.0012 deg 0.05 μm
Struct II 18 μm 0.0003 deg 0.01 μm
Struct III 23 μm 0.0002 deg 0.01 μm

 
Table 14  External  Constraints: stdev 

 
The radial lens distortions profiles for the three testfields 
(Figure 15) prove that the parallel camera is calibrated with less 
than 0.1% pincushion distortion which is 9 μm in the worst case 
satisfying the lens specifications provided by the manufacturer. 
The range of curves seen here demonstrate the inconsistency of 
image format coverage of the measured target image locations; 
sets 1 and 2 have less coverage with respect to the third one. 
Correlation checks for both methods for the three data sets 
suggest a stabilized algorithmic behaviour for both external and 
inner constraints methods when used under these relatively 
strong and controlled convergent network geometries. 
 
 

RADIAL LENS DISTORTION PROFILES- k1-
(Kodak Megaplus ES1.0 - MVO Telecentric Lens 0.16x)
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Figure 15  Comparative radial lens distortion profiles (k1). 
 
 

5. CONCLUSIONS 

The approach presented here implements a multiphoto bundle 
adjustment for the parallel imaging case. The camera was 
calibrated with a simplified interior parameters (constant image 
scale and first term of radial lens distortion) to deliver sub-pixel 
image measurement precisions of approximately 1/10th of a 
pixel. The algorithm was validated with three controlled 
datasets and has been proved to converge rapidly with stability 
comparable to a well configured conventional bundle 
adjustment process. There are issues open to be answered 
related to the full interior geometry recovery and choice of 
more optimal starting values estimations (3D rotation angles 
and target coordinates) as well as the imaging geometry 
(inclusion for example of rolled images). The camera, by virtue 
of its geometrically optimal telecentric lens construction, 
presents minimal inner distortion but the constant imaging scale 
combined with the image quality attainable from low cost small 
physical targets affects the measurement accuracy. However, 
calibration and metric recovery of true parallel projection image 
sequences can be advantageous for very close range 
measurements particularly where texture mapping approaches 
benefit from constant image magnification. 
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