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ABSTRACT: 
 
Terrain rendering is an important factor in representation of virtual scene. If terrains are large and detailed, there will be huge amount 
of data, so it is necessary to reduce the complexity of the rendered scene in real-time on mobile device. This paper proposes a 
multi-resolution technique to simplify the scenes and improve the speed of terrains rendering. Firstly, the full terrain height-field is 
divided into regular tiles, and then the appropriate level of detail is computed and generated dynamically, allowing for smooth 
changes of resolution across area of the surface. Each visible tile is then rendered using a computed triangle strip in an adaptive way 
according to viewpoint. The method is different from the triangle-based LOD algorithms and is optimized for modern to minimize 
CPU usage during rendering. The key of the technique is to develop an adaptive LOD framework that can optimally feed the graphic 
pipeline. At last, this paper also proposes a method of removing cracks on the meshes boundary. 
 
 

1. INTRODUCTION 

Terrain rendering on mobile devices plays an essential role in 
wide range of applications such as video games, virtual reality, 
3D environmental analysis, personal navigation and many 
geographic information system (GIS) applications. Despite 
mobile devices have seen dramatic improvements in last few 
years, the mobile devices are still clearly less capable than 
desktop computers in many ways. They run at a lower speed, 
display in smaller size and have lower resolution, there is less 
memory for running the programs and for storing them, and the 
battery of device can not last for long. 
 
On the other hand, terrain data obtained from the natural 
environment is usually very huge, and rendering accurate terrain 
implies the manipulation of very massive data sets which may 
contain billions of samples (e.g. triangles, points .etc.) and all 
those samples must be computed one by one instantly. In 
general, real-time rendering of three dimensional computer 
graphics requires faster than 15 frames pre second (FPS). Such 
a complexity introduces two main limitations: it might not be 
possible to store the entire data sets in random-access memory 
(RAM) and/or to perform its rendering in real-time on mobile 
device.  
 
In fact, rendering 3D terrains on mobile devices is still a very 
complex task because of the vast computational power required 
to achieve a usable performance. There are many visualization 
techniques that have been developed for PCs and workstations. 
However, using these same approaches for mobile devices 
introduces some unresolved problems. Most of the existing 
approaches are simplification of a triangulated model that 
represents terrain surface. Some solutions entirely rely on CPU 
whereas others use both CPU and GPU (sometimes using 
programs). GPU are able to render millions of triangles per 
second and even more when using triangles strips. However the 
GPU accelerated method still requires the full CPU power to 
compute vertex indices at every frame, even if the method is 
very efficient, it is not practicable when targeting mobile 

devices. Indeed, although some recent mobile devices dispose 
of GPU, they are not yet programmable.  
 
Aim at the target of real-time large terrain rendering on mobile 
platform; this paper propose a dynamic adaptive 
multi-resolution modelling to represent terrain based on 
quad-tree. The solution can be decomposed in two main parts. 
The first one is pre-processing. The main purpose is to construct 
multi-resolution digital elevation models (DEM) to represent 
terrains. The quad-tree structure is the key point in this part. The 
second one is dedicate to render a maximum number of 
triangles in view region. The purpose of this part is reducing the 
triangles to be drawn and maintaining the largest polygon area 
around the viewpoint. By loading tiles which are in view-field 
into client memory dynamically, it can free some memory and 
reduce the burden of CPU.  
 
 

2. PREVIOUS WORKS 

There are two familiar methods in the terrain rendering domain. 
The first one brings together methods that have been designed 
for terrain models which fit in memory (level of details 
technique). The second one gathers the algorithms designed for 
the rendering of large terrain data which can not be loaded into 
memory completely (out-of-core techniques). 
 
2.1 Previous terrain LOD techniques 

Terrain LOD algorithms use a hierarchy of mesh refinement 
operations to adapt the surface, and the methods are widely used 
in large terrain rendering now. LOD can decimate polygons thus 
reducing complexity of computation without affecting the 
quality of scenes. There are two schemes to choose proper LOD. 
One is based on the flatness of terrain surface. Large and coarse 
meshes are used at even regions, while tiny and refined meshes 
are represented at fluctuant regions. The other is based on the 
distance away from the eyes’ position. Regions which are nearer 
to the eyes’ position are rendered in refined meshes and the 
further regions are rendered in coarse meshes. 
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During pre-processing, terrains are represented as 
multi-resolution meshes, which can be generated from bottom 
to top (or refined-to-coarse, in which a full resolution model is 
created at first. Then triangles are merged recursively until a 
screen space error tolerance is exceeded), or from top to bottom, 
(or coarse-to-refined, which generates a coarsest-grained model 
at first, then refines it). The computation complexity depends on 
the vertex number in the original mesh model. So the latter is 
much simpler.  
 
The multi-resolution representation are arranged in one or more 
quad-trees (or its equivalent, triangle bin-trees), or represented 
as wavelets. At run time, proper levels are selected. 
 
Most of the following approaches are based on the management 
of triangulated irregular networks (TINs) which provide the best 
approximation for a given number of faces, but require the 
tracking of mesh adjacencies and refinement dependencies. The 
mesh is refined in real-time according different strategies. 
[Lindstrom et al. 1996] introduce a real-time smooth and 
continuous LOD reduction using a mesh defined by right 
triangles recursively subdivided according a user-specified 
image quality metric. Some hierarchies use Delaunay 
triangulations [e.g. Cohen-Or and Levanoni 1996; Cignoni et al 
1997; Rabinovich and Gotsman 1997] while others allow 
arbitrary connectivities [e.g. De Floriani et al 1997; Hugues 
Hoppe 1998; El-Sana and Varshney 1999]. In [Duchaineau et al. 
1997], the authors introduced ROMAing method as a very 
efficient algorithm based on triangle diamonds managed with 
split and merge operations performed using priority queues. The 
algorithm now is widely used in games industry, but its 
implementation is tedious according to [Blow 2000]. In 2002, 
[Levenberg] propose to reduce the CPU overhead of the 
previous binary-triangle-tree-based LOD algorithms by 
manipulating aggregate triangles instead of simple triangles. 
 
In a recent paper, Losasso and Hoppe [2004] apply the clipmap 
[Tanner et al. 1998] concept to geometry for large terrains 
rendering. Their GPU accelerated method is based on a set of 
nested regular grids centered about the viewer. Geometry 
continuity is guaranteed by using transition regions between 
two grid levels using the GPU vertex shader. They use a 
compression algorithm to load the full terrain model in memory. 
However, this still requires the full CPU power to compute 
vertex indices at every frame. In a more recent paper, 
Asirvatham and Hoppe [2005] enhanced the approach by 
performing nearly all computations on the GPU. Furthermore, 
even if the method is very efficient, it relies on shaders, which is 
not practicable to handheld devices and/or mobile devices.  
 
Ideally, view-dependent LOD algorithms adaptively refine and 
coarsen the mesh based on screen-space geometric error, the 
deviation in pixels between the mesh and the original terrain. 
Screen-space error combines the effects of (1) viewer distance, 
(2) surface orientation, and (3) surface geometry. Since surface 
orientation seldom provides significant LOD gain, many 
schemes choose to ignore it. One common refinement criterion 
[Blow 2000] stores at each vertex a radius defining an enclosing 
sphere. The pre-computed radius encodes the local surface 
approximation error, such that the neighborhood of the vertex is 
refined if and only if the viewpoint enters the sphere. In 
view-dependent algorithms, a terrain can be thought of as a 
displacement map over trivial planner geometry. Some recent 
papers have proposed hardware schemes for adaptive 
tessellation of displacement maps [Gumhold and Hüttner 1999; 
Doggett and Hirche 2000; Moule and McCool 2002]. So far 

these schemes have only been simulated on relatively simple 
grids, and they assume that the entire grid is memory-resident.  

 
2.2 Out-of-core technique 

With this aim in view, some other approaches propose to 
perform either out-of-core rendering (local solution) or 
streaming (networked solution) of the models. 
 
[Pajarola 1998] extends the restricted quad-tree triangulation of 
Lindstrom [1996] with another vertex selection algorithm and 
amore intuitive triangle strip construction method. This is 
combined with dynamic scene management and progressive 
meshing to perform out-of-core rendering. More recently 
[Cignoni et al. 2003b; Cignoni et al. 2003a] described a 
technique for out-of-core management and rendering of large 
textured terrains named batched dynamic adaptive meshes 
(BDAM). BDAM is based on a pair of bin-trees of small TINs 
that are computed and optimized off-line. The batched 
host-to-graphics communication model guarantees overall 
geometric continuity, exploits programmable GPU’s, a 
compressed out of core representation and a speculative 
pre-fetching for hiding disk latency. These solutions are still 
impracticable for our objectives since they rely on low latencies 
between mass storage and main memory. Furthermore, these 
solutions also present high CPU costs. 
 
Other methods rely on the web. [Reddy et al. 1999] described 
TerraVision Ⅱ  that is a geo-referenced VRML97 terrains 
viewer. A quad-tree hierarchy of the VRML97 LOD mode 
which induces a lot of data redundancy and no care is taken to 
ensure continuity between different grid levels. A more 
advanced solution proposed by [Aubault 2003] relies on a 
wavelet encoding to perform terrain streaming and 
multi-resolution rendering. Still, this very efficient solution 
requires to fetch the entire model into server’s memory and to 
perform costly computations on it. 
 
 

3. TERRAIN REPRESENTATION 

A terrain (elevations) can be defined in several ways. First of all 
it can be defined as an arbitrary mesh also known as 
Triangulated Irregular Networks (TINs). This method does not 
put any restriction on the terrain, and has been used in terrain 
rendering. TINs provide the best approximation for a given 
number of terrain faces. However the algorithms are very 
complex, consume more memory, and are not very efficient for 
view-dependent simplification. So another method is proposed 
to define the terrain as a height map, which is a grid structure 
that is equally spaced in the x and y directions. The z value is 
used as the height information. The grids data are simple and 
disciplinary, and consume less memory. But grids DEM are not 
very flexible to describe terrains with uniform criterion. If the 
grid space of height field is too wide, it tends to lost detail of 
terrains especially at fluctuant region. If the grid space is too 
narrow, there will be a lot of redundancy. In order to solve the 
problem, this paper proposes a dynamic adaptive 
multi-resolution modelling to represent terrain based on 
quad-tree. It has chosen terrain representation as height map as 
it allows fast collision detection between moving objects 
(including camera) and the terrain. It also supports use of 
hierarchical data structures for fast and easy view frustum 
culling. 
 
Considering visualization of very large real world digital terrain 
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model data, which will not fit into main memory entirely, 
especially for terrain walking through application, it must to 
organize the digital height map data in tiles. The tiles 
management algorithm aims at maintaining the largest square 
area around the view point; those squares of tiles assure the user 
can always look around at any point of view. The size of the tile 
is set according to the available main memory which makes it 
adaptive to the mobile device that is used for visualization. On 
the other hand, in order to subdivide those tiles based on 
quad-tree properly, this paper uses a simple strategy. For each 

level l, with grid spacing in world space, it is let the 

desired active region be the square of size . Each tile 
is represented by hierarchical quad-tree data structure. The 
top-level node in this tree structure represents the area of the 
entire tile, its children each represent one fourth of the terrain 
area, their children in turn each cover one sixteenth of the area, 
etc,  and then each tile will be encode and store into a array 
(see figure 1). 

l
lS −= 2

ll nSnS ×

 

 
One advantage of having this particular terrain block layout is 
that one such block can be optimized for rendering, using one 
draw-primitive call for the entire block and, even better, using 
grid indexing to get rid of multiple transformations of vertices. 
Pyramid representation is used to define each block of size. A 
pyramid is a multi-resolution hierarchy for a data set. Same 
approach when dealing with image textures is known as 
mipmapping. It helps in dynamic multi-resolution level of detail 
mesh simplification of height map data. 
 
Then the tiles will be subdivided according to terrains. 
Intuitively, those fluctuant areas hold more details and need 
refine mesh to represent and even areas only need coarse mesh 
to represent (see Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To subdivide the tiles, a criterion or a set of criteria is needed. 
According to the criterion, terrains are represented in various 
resolution meshes. In this paper, the criterion is difference 
height difference of terrains, and the algorithm sets a threshold 
of height to compare with the maximum height difference of 
subdividing grids.  
 

Algorithm 1 Adaptive tiling based on quad-tree 
if not subdividing tile then 

MAX = maximum height difference of tile 
if MAX ﹥ THRESHOLD then 
 subdivide the tile into square grids 
max = maximum height difference of grid 
if  max ﹥ THRESHOLD then 

continue to subdivide the grid 
else  
    stop subdividing, encode the grids which been 

subdivided and record them into database 
end if  

 
 

4. ADAPTIVE LOADING TILES AND RENDERING 

For mobile devices have less memory to run programs, it is 
impossible to load triangles entirely of terrains into memory 
(the client’s memory). With our solution the database is made of 
a set of tiles, each one containing the regular terrain elevations 
of a tile. A metadata file which records a description of the tiles 
grid (tiles size, number of tiles, positioning etc.) is first fetched 
(or loaded) and its information are then used to manage the 
adaptive tiling. 
 
4.1 Tile data structure 

In theory, tiles can be divided in any size and any forms, but for 
the sake of simplicity this paper only consider the specific case 
of tile of square form, and the specific case of tile of size 

( )12 +== nhw
hw

and its data store in an array whose 

resolution ( × ) stores elevation value of the sampled 
terrain area. The memory representation of a tile is a vertex 
buffer that embeds the 3D coordinates together with their 
properties just as texture coordinates normal. 

Figure1. Hierarchy of tile based on quad-tree 

… Array： 

Figure 2.  Adaptive subdivision of tiles based on quad-tree 

Even areas need 
not to be 

subdivided any 
more 

 
Structure of  triangle 
typedef struct 
{ 

m_TriangleVex[3]     ;  //  vertex 3D coordinates 
m_TriTextCoord[3]    ;  //  texture coordinates 
m_TriangleNormal[3]  ;  //  vertex normals 

} STRUCT_TRIANGLE 
Tile data structure 
typedef  vector<STRUCT_TRIANGLE> VEC_TRIANGLE ;
typedef map<GRID_CODE, VEC_TRIANGLE ,lpGridCode> 
MAP_DEMTRIS_MESH ; 
 
The multi-resolution is generated by creating a set of coarse to 
fine tiles. A tile is defined by connecting only the vertices with 
( ji× ) coordinates (within the  array). By the grid 
index, we can find the tiles which want to be load in client 
memory soon. 

hw×

 
4.2 Adaptive rendering tiles 

View-frustum culling techniques are used to control substantial 
amount of polygons in the rendering pipeline. Only those tiles 
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which lie in frustum view region will be loaded, and search 
those tiles is by grid index (see figure 3a). If viewpoint moves 
over an adjacent tile the algorithm will tend to maintain a square 
of tiles centered on this new tile (which will be load in client 
memory new and becomes the current tiles). At the same time, 
the algorithm will remove some far tiles which are not within 
the field-of-view in order to free memory for the fetching of 
new tiles (see figure 3b). As figure 3a indicated, most of the 
memory of mobile device was consumed at the step. Note that 
the algorithm implicitly handles the case where viewpoint 
jumps to a new tile that is not adjacent to the current one. The 
quad-tree representation of tile data enables very fast view 
frustum culling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Farther in more, considering the tiles are made of a set of 
triangles, the triangles of the tiles will be judged one by one, 
and those trigngles which lie in the field-of-view are fetched. At 
last those triangles that lie out of view frustum will be removed. 
 
4.3 Tile rendering and cracks eliminated 

When the resolution levels are different between two adjacent 
tiles, there will be gaps on tiles boundaries which create a very 
unpleasant visual effect (showing in figure 4a) Classical 
approaches [Larsen and Christensen 2003; Lossa and hoppe 
2004] consist in modifying the geometry of the tile’s border by 
introducing new vertices and edges. Another classical method 
called filleting, introduced by Sun and also implemented in the 
NASA’s World Wind remarkable earth viewer is to add a band 
of vertical triangles around the edges of each tile. This band is 
stretched down to the lowest terrain elevation. Each side of the 
band is textured by stretching the corresponding line/column of 
texels. This scheme is fast but quite disgraceful to see for the 
user, especially if a neighbour tile has not been load yet. 
 
In this paper, another method which divides the triangles which 
are in coarse tile compulsively (see figure 4b) is proposed. If 
there appear cracks for the different resolution levels between 
adjacent tiles, the triangles which lie on the boundary in coarse 
resolution tiles will be divided compulsively to suit the fine 
resolution tiles. Even if this solution is not perfect, it is fast, 
simple to implement and gives satisfying results most of time. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. RESULTS AND CONCLUSION 

This paper proposes an adaptive approach to render large 
terrains. By this means, it simplify the scenes’ complexity 
efficiently and reduce the amount of data and therefore of 
graphical primitives to render in real-time. 
 
5.1 Experiment and results 

Our experiment selected Hp2110 as the experiment platform, 
and its primary configurations are shown in table 1. 
 

 
Table 1.  Configurations of Hp2110 

 
The experiment first measured the difference between the 
simplify scene and primal scene. The amount of primary 
triangles in client memory is about 70,000 (see figure 5a), and 
after being simplified, the amount of triangles reduced to 16064, 
almost 77.1 percent triangles are removed or cached (seeing 
figure 5b). 

CPU Intel PXA270 
Memory 64 Mb (32Mb RAM + 32Mb ROM) 
Screen resolution 320×240 
Storage 1GB SD card 
Operating System Pocket PC 2003 

Remove or 
cached 

Fetched 

Remained 

a. b. 

Figure3. Tiles management and adaptive loading  
a). A square area centered on the viewpoint.  
b). Square area preservation on viewpoint move 

a. 

b. 

Figure 4: Eliminating cracks. a) Cracks appear on tiles borders 
when adjacent tiles have different levels. b) Using dividing 
compulsively technique, crack effects are eliminated or 
attenuated. 
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a b 

Figue5. Comparison between primary scenes and 
simplified scenes. a) Primary terrain scenes. b) 
Simplified terrain scenes 

 5.2 Conclusion and future work 
 

Rendering 3D large terrains on mobile devices is still 
considered a formidable task. This paper proposed a solution for 
3D visualization of data on mobile devices and we showed that 
interactive frame rates could be achieved with relatively large 
amount of displayed data. Around a tiling algorithm and a per 
tile multi-resolution data structure, this paper designed an 
adaptive technique to improve rendering efficiency. On the 
other hand, the approach of simplify rendering scene rely on the 
surface of terrains, so it won’t be very effective in mountain 
area. 

 
 
 
 
 
 
 
 
 
 

  
In the future, we will focus on the extension of our scheme and 
use a multi-resolution data structure for the progressive and 
adaptive transmission of each tile as well. In this way, the tiles 
will be loaded only when needed. Moreover, this will allow a 
faster loading of visible tiles and offer the possibility to load 
farther tiles at lowest resolution. We can see how 3D graphics 
as well as 3D visualization of data is becoming more and more 
as common on mobile devices as on desktop computers. 

 
 
 
 
 
The second experiment is performed on a data set that model an 
area sampled ZhengZhou region in HeNan province, China. The 
whole experiment area is about 400Km2. Each frame contains 
about 2,000～3,000 triangles. Before simplified, the frame rate 
can not beyond 4 Fps. After simplified the scenes, the target 
frame rate equal to 8 per second (see figure 6). 
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