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ABSTRACT: 
 
Terrestrial laser scanning is becoming a standard technology for 3D modeling of complex scenes. Laser scans contain detailed 
geometric information, but still require interpretation of the data for making it useable for mapping purposes. A fundamental step in 
the transformation of the data into objects involves their segmentation into consistent units. These units should follow some 
predefined rules, and result in salient regions guided by the desire that the individual segments represent object or object-parts within 
the scene. Nonetheless, due to the scene complexity and the variety of objects in it, it is clear that a segmentation using only a single 
cue will not suffice. Considering the availability of additional data sources like the color channels, more information can be 
integrated in the data partitioning process and ultimately into the reconstruction scheme. We propose in this paper the segmentation 
of terrestrial laser scanning data by the integration of range and color content and by using multiple cues. This concept raises 
questions regarding the mode of their integration, and definition of the expected outcome. We show, that while individual 
segmentation based on given cues have their own limitations; their integration provide a more coherent partitioning that has better 
potential for further processing. 
 
 

1.  INTRODUCTION 

Terrestrial laser scanners emerged in recent years as standard 
measuring technology for detailed 3D modeling of scenes. From 
a geometrical perspective, scanners provide rich and accurate 
information of the acquired scene. Additionally, with cameras 
becoming an integral part of modern scanners, the resulting 
radiometric information provides supplementary color content. 
The combination of direct geometric details and radiometric 
content offers excellent foundations for the extraction of objects 
in an autonomous manner. 
 
Raw data (3D points and 2D RGB pixels) resulting from a 
single scan can reach tens of millions of elemental units. 
However, for common laser scanning applications, e.g., 
mapping, modeling, and object extraction that require high level 
of abstraction, this huge amount of data is hard to use. A 
fundamental step in the extraction of objects is the application a 
mid-level processing phase involving the grouping of pixels 
containing redundant information into segments. Essentially, 
each segment should form a collection of 3D points in which 
two conditions must be met, one is that the segment will 
maintain geometrical connectivity among all points constituting 
it; the second is that the feature value for the connected points 
will share similarity of some measure. Similarity can be 
geometrically based, radiometric based, or both. In addition, the 
basic units of each segment have to create a spatial continuation 
in the 3D sense. While segmentation of image content, and to 
some degree, of terrestrial point clouds, has been studied in the 
past, segmentation of the combined set has not been addressed 
by many so far. The motivation for pursuing this avenue is 
however clear and relates to the desire to benefit from the 
descriptive power of the rich radiometric content while being 
subjected to objects geometry and spatial connectivity in 3D 
space. 
 

In general, segmentation concerns partitioning the data into 
disjoint salient regions usually under the assumption that 
individual segments tend to represent individual objects within 
the scene. Due to its important role, segmentation has been 
studied for years beginning from thresholding techniques (Otsu, 
1979; Huang et al., 2005) and classic "region growing" based 
methods (e.g., Pal and Pal, 1993). Other methods propose 
converting the image into a feature space, and by doing so 
transforming the segmentation problem into a classification task. 
Carson et al. (2002) propose modeling the distribution of feature 
vectors as a mixture of Gaussians, with the model parameters 
being estimated using the expectation-maximization algorithm. 
Graph based approaches have been receiving growing attention. 
Using this scheme images are viewed as a graph in which each 
vertex represent a pixel (Shi and Malik, 2000; Felzenszwalb and 
Huttenlocher, 2004). The graph-view enables an intuitive 
representation of the segmentation problem as similarity 
between pixels can be assigned to the edges linking them. The 
challenge is then to find sets of vertices such that each has high 
connectivity value between its vertices and low connectivity to 
the rest of the graph. For a computational model for such 
segmentation, normalized cuts algorithm has been proposed 
(Shi and Malik, 2000). Sharon et al. (2000) make use of the 
multi-grid theory (Brandt, 1986) to solve efficiently the 
normalized-cut problem. A comprehensive review and test of 
some of the leading segmentation algorithms is provided in 
Estrada and Jepson (2005). Recent works, e.g., Russell et al. 
(2006), Roth and Ommer, (2006), Mian et al. (2006), and Alpert 
et al., (2007) demonstrated the application of segmentation 
processes for recognition tasks, showing promising results both 
in relation to object class recognition and to correct 
segmentation of the searched objects. Applications making use 
of segmentation as part of other tasks, have been reported for 
stereovision and image registration purposes (Bleyer and 
Gelautz, 2004; Klaus et al., 2006; Coiras et al., 2000).  
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Segmentation of laser scans offers a slightly different problem, 
as the data usually defines the geometric characterization of the 
scanned objects. Therefore, the interest is usually in the 
primitive extraction, and mostly in planar elements, e.g., Dold 
and Brenner (2006) for terrestrial scans and Vossleman and 
Dijkman, (2001) for aerial scans. For terrestrial scans Gorte 
(2007) presented a method for extracting planar faces using 
panoramic representation of the range data. Segmentation into a 
more general class of well-defined primitives, e.g., planes, 
cylinders, or spheres, is presented in Rabanni (2006). While 
being useful for reverse engineering practices it cannot be easily 
extended into general scenes.  
 
Since most scenes are cluttered and contain entities of various 
shapes and forms, among which some are structured but others 
are not, approaching the segmentation problem by seeking 
consistency along a single cue is likely to provide partial results. 
Additionally, while some entities may be characterized by 
geometric properties, others are more distinguishable by their 
color content. Those realizations suggest that segmenting the 
data using multiple cues and integrating data source have the 
potential of providing richer descriptive information, and have 
better prospects for subsequent interpretation of the data. We 
present in this paper a segmentation model for terrestrial laser 
scanning data including range and image data while using 
multiple cues. We study how segments are defined when those 
sources should be merged together, how those sources should be 
integrated in a meaningful way, and ultimately how the added 
value of combining the individual sources can be brought into 
an integrated segmentation. Results of the proposed model show 
that better results than what is obtained by the individual 
segmentations can be achieved. 
 
 

2.  METHODOLOGY 

The integration of different information sources requires 
securing their co-alignment, and association. The first aspect 
refers to establishing the relative transformation between the 
two sensors. The second suggests that in order to incorporate 
the interpretation of the two data sources, both have to refer to 
the same information unit. Considering the fact that images are 
a 2D projection of 3D space, whereas laser data is three 
dimensional, their mode of integration is not immediate. 
 
2.1 Camera Scanner Co-alignment 

The camera mounted on top of the scanner can be linked to the 
scanner body by finding the transformation between the two 
frames shown in Figure 1. Such relation involves three offset 
parameters and three angular parameters. This relation can also 
be formulated via the projection matrix P. With P a 3x4 matrix 
that represents the relation between world 3D point (X) and 
image 2D point (x) in homogeneous coordinates. Compared to 
the six standard boresighting pose parameters, the added 
parameters (five in all) will account to intrinsic camera 
parameters. The projection matrix can be formulated as follows:  
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fx and fy are the focal lengths in the x and y directions 
respectively, s is the skew value, x0 and y0 are the offsets with 
respect to the two image axes. R is the rotation matrix between 

the scanner and the camera frames (the red and the blue 
coordinate systems in the figure respectively) and t the 
translation vector (Hartley and Zisserman, 2003).  

 
 

Figure 1. Reference frames of the scanning system with a 
mounted camera. 

 
The projection matrix defines the image-to-scanner 
transformation and so allows linking the color content to the 3D 
laser points. While this transformation results in a loss of image 
content due to changes in resolution, it allows processing both 
information sources in a single reference frame and is therefore 
advantageous. 
 
2.2 Data Representation 

3D point clouds are difficult to process due to varying scale 
within the data, which leads to an uneven distribution of points 
in 3D space. To alleviate this problem we transform the data 
into a panoramic data representation. As the angular spacing in 
the ranging is fixed (defined by system specifications), 
regularity can be established when the data is transformed into a 
polar representation (Eq.  (2))  
 
 

( ) ( )TTzyx θρϕθρϕθρ sin,sincos,coscos,, =       (2)      
 
 
with x, y and z the Euclidian coordinates of a point, θ and φ are 
the latitudinal and longitudinal coordinates of the firing 
direction respectively, and ρ is the measured range. When 
transformed, the scan will form a panoramic range image in 
which ranges are "intensity" measures. Figure 2a shows range 
data in the form of an image where the x axis represents the φ 
value, φ∈(0,2π], and the y axis represents the θ value, θ∈(-
π/4,π/4]. The range image offers a compact, lossless, 
representation, but more importantly, makes data manipulations 
(e.g., derivative computation and convolution-like operations) 
simpler and easier to perform. Due to the convenience in data 
processing that this representation offers, all input channels are 
transformed into it. 
 
2.3 Channel selection  

As noted, different cues can be used to segment the data. These 
should feature attributes that can characterize the different 
elements of interest or supplement the information derived by 
other cues. For the segmentation, three cues are introduced. The 
first is the range content, namely the "intensity" value in the 
range panorama, the second is the surface normals, and the third 
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is the true color channel arriving from images acquired by the 
mounted camera. Notably additional (or different) cues can be 

rmed and added.  

urface normals are computed by 
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ution Δ. The window size, d, in image space is given by Eq 
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are computed between neighboring pixels in the range 
panorama. The amplification of noise in the normal 
computation and the variations in scale across the scan affect 
the quality of the normal values in different levels, where 
noisier normals are expected close to the scanner. We reduce 
the noise effect by applying an adaptive Gaussian smoothing of 
the data as a function of the range. The physical window size, D, 
is set to a fixed value, which is then translated into an adaptive 
kernel size as a function of the range and scanner angular 
resol
(4
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ssembly (and handling sky 
egments) will require treatment. 

2.4 Segmentation  

e neighborhood. These two parameters are 
hysical in a sense. 

process is based, is an iterative procedure, where each data point 

    
The three individual channels can be seen in Figure 2. Figure 2a 
shows the range channel with the blue color indicating no-return 
regions that relate both to the sky and to specular points from 
which no return arrived. Figure 2b shows the normal directions 
(color coded) that are showing monotonicity on the ground and 
along the walls while exhibiting variations around trees and 
other non-flat or faceted objects. The consistency in the normal 
values is a result of the adaptive smoothing process. Figure 2c 
shows the projected color points on the range panorama as 
achieved via ray tracing. We note that due to some inaccuracies 
in the registration and the resolution of the laser data (compared 
to the image based one) some tree canopy points receive sky 
colors. To eliminate these artifacts from the segmentation, sky 
tones are masked and replaced by the closest darker tone. An 
alternative approach will segment the individual images in 
image space and then assemble them through the forward 
projection. In this setup, the a
s
 

The transformation of the data into a panorama allows the use 
of common image segmentation procedures for segmenting the 
point-cloud. As a segmentation scheme, we use the Mean-Shift 
segmentation (Comaniciu and Meer, 2002), a scheme that was 
chosen due to its successful results with complex and cluttered 
images. Being a non-parametric model, it requires neither model 
parameters nor domain knowledge as inputs. The algorithm is 
controlled by only two dominant parameters: the sizes of spatial 
and the range dimensions of the kernel. The first affects the 
spatial neighborhood while the latter affects the permissible 
variability within th
p
 
Generally, the mean-shift clustering, on which the segmentation 

is "shifted" towards the centroids of it neighboring data points. 
The new value of the point is set as the mean, c j+1, by  
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with w( ) the weight attached to the vector s of the point, and j 
the iteration index number. Convergence is reached when the 
centroids is no longer updated. The segmentation algorithm 
itself is based on a derived filtering scheme beginning with 
feature vectors considered a cluster center. Using the update 
equation, an iterative convergence process into cluster centers is 
initialized. The pixel labels are set to the value of convergence. 
Then, neighboring regions sharing common values, up to the 
parameter defined for the range, are grouped together into a 
segment.  
 
The application of the mean shift segmentation on the 
individual channels is shown in Figure 3. Figure 3a shows the 
segmentation based on the range, it shows that the patchy 
results appear in continuous regions where no meaningful 
separation can be identified. Nonetheless, elements like the tree 
stems or poles clearly stand out as individual segments. Figure 
3b shows the results of the normal based segmentation. 
Contrary to the range based segmentation, the ground and the 
façades appear here as complete segments. Notice however the 
patchiness around unstructured elements as the trees, poles or 
the fountain in the front of the scene. Finally, Figure 3c shows 
that the color channel managed capturing some of the façades as 
complete objects, and vehicles (which are dominant in their 
color feature) were extracted. Generally, color exhibits 
sensitivity to illumination conditions and shadows, which can 
be noticed in the segmentation of the floor, in some of the walls 
and the fountain. Notice that poles and traffic signs, which are 
expected to be distinct with respect to their surroundings, were 
isolated in the color segmentation. 
 
2.5 Integration scheme 

When dealing with multi-cue based segmentation as in the 
present case, the main challenge is handling the different space 
partitioning of the different channels. As an example, the 
ground, which ideally would be extracted as a single segment, 
will have uniform values in the normals channel while having 
large variations in the distance channel (and also uneven 
intensity values in the true color channel). Therefore, our aim is 
not perform a segmentation that concatenates all channels into a 
single cube and performs the segmentation on the augmented 
feature vector. Such segmentation will be highly dimensional, 
computationally inefficient, and ultimately may lead to over-
segmentation of the data. 
 
Instead, the integration scheme we follow originates from the 
realization that the different channels exhibit different 
properties of the data. Consequently, they will provide "good" 
segments in some parts of the data and "noisy" ones in other 
parts. We segment therefore each channel independently (as the 
results in Figure 3 show) and then construct a segmentation that 
integrates them, by selecting the better segments from each 
channel. We note that in this scheme the addition of other 
channels can be accommodated without many modifications.  
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The approach we take for the integration assumes that quality 
segments exist in each channel, and so extracting the highest 
quality segments from the individual channels has the potential 
of providing a segmentation that feature the dominant 
phenomena in the scene, and thereby a meaningful partitioning. 

The 3D coverage of the segment does not guarantee it 
correctness. As an example, it may happen that meaningless 
strips will be extracted in the range channel (see Figure 3a). In 
order to reduce the appearance and the influence wrong 
segments, we enforce uniformity standards that relate to the 
measured property. In the present case this variability is 
modeled using a preset threshold values on the within-segment 
dispersion.  

 
Generally, our objective is to obtain segments that are uniform 
in their measured property, where optimally, all data units 
belonging to the segment will have similar attributes. 
Additionally, we aim for segments that are spatially significant 
and meaningful. As such, we wish to assemble large group of 
data units, preferably of significant size in object space. These 
segments should not lead however to under-segmentation.  

 
The proposed model is applied as follows. First, the largest 
segment is selected from all channels, if the segment quality is 
satisfactory it is inserted into the integrated segmentation. All 
pixels relating to this segment are then subtracted from all 
channels and the isolated regions in the other channels are then 
regrouped and their attribute value is computed. Following, is 
the extraction of the next largest segment and the repetition of 
the process until reaching a segment whose size is smaller than 
a prescribed value and/or preset number of iterations. We note 
that due to the non-parametric nature of the mean-shift 
segmentation, re-segmenting the data between iterations has 
little effect. 

 
In order to meat the need for significant grouping in object 
space, we set the score of a segment with respect to its 3D 
coverage. Due to varying scale within the scan the segment size 
in image-space cannot be represented by the number of pixels. 
3D coverage, R, is therefore calculated via 
 
 

 ( ) ( )
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R s dsρ
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Figure 2. Polar representation of the individual cues used for the segmentation. The horizontal and vertical axes of the images 
represent the values of φ, θ respectively. (top) intensity values as distances ρ (bright=far), "no-return" and "no-reflectance" pixels are 

marked in blue, (middle) surface normals represented in different colored by their value, (bottom) color content as projected to the 
scanner system (see text). 
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Figure 3. Results of the data segmentation using the mean-shift algorithm. (top) segmentation of the distance channel, (middle) 
segmentation of the surface normals channel, (bottom) segmentation of the true-color channel. 

 

 
Figure 4. Results of the augmented segmentation based on the integration of the three channels. 

 
 

3. RESULTS AND DISCUSSION 

The integration of the segments into an augmented 
segmentation is presented in Figure 4. As the Figure shows the 
more dominant segments form the segmentation. The largest 
segment that was selected is the ground segment as derived 
from the normals channel. The second segment is blue façade 
(center building) which was extracted from color channel. Its 
extraction from that channel has to do with the strong and 
almost uniform intensity along it. The third segment is the green 
façade which was derived, again, from the normals 
segmentation. It is of interest to note that the third largest 
segment arrived from the range channel (relating also to that 
façade), but was discarded due to the variability. The fourth 
largest segment is the water fountain in the front of the scan. 
Notice how it did not exhibit any clear structure in neither the 
normals nor the color channels, and was extracted as an 
individual segment from the range channel. In relation to the 
fountain we also note that its border which was not segmented 

as a unique entity in any of the segmentations was extracted as a 
single entity due to the subtraction applied on the extracted 
segments from the individual channels. Additional noteworthy 
elements that were extracted by the augmented segmentation are 
vehicles which mostly were extracted as complete entities, and 
pole elements like the traffic sign at the left of the scan, or the 
streetlamp close to the building façade on the left.  
 
The halos surrounding the poles at the center of the scan are 
ground points that were not segmented as such, as they were 
lying next to edge points (transition between objects). They 
were correctly separated from the pole in the range channel. 
Similar edge effects can be noticed in other parts like the 
cornice surrounding the blue façade building. Another feature of 
the segmentation is the partitioning of entities due to occlusion. 
This can be noticed in the wall on the leftmost building that was 
partitioned into three large segments. This partitioning is due to 
objects in front of it which hide parts of it.  
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While the overall segmentation features improvement to the 
basic ones, both features suggest that the segmentation along the 
proposed scheme can be further pursued in several directions. 
These include inclusion of additional cues that may feature 
other elements characterizing natural scenes, introducing 
merging schemes for segments based on connectivity and forms 
of similarity, and the analysis of occlusions as a means merge 
disconnected segments that belong in fact to the same object. 
 
 

4. CONCLUDING REMARKS 

The paper proposed an approach for the segmentation of 
terrestrial laser point clouds while assembling and integrating 
different data sources. The proposed model offers a general 
framework in the sense that it can utilize different features and 
can be customized according to application requirements. 
Overall, the results show that integration of different cues and 
information sources into a laser scanning segmentation has 
managed providing improved results in relation to each of the 
individual channels.  
 
The model demonstrated that using an intuitive scheme for 
selecting the best segments from different segmentation maps 
provides satisfactory results. The solution for weighting the 
importance of different cues to the overall segmentation is 
modeled as a crisp decision favoring dominant segments in 
object space as long as they do not violate preset rules. Future 
work in this regards will pursue alternative weighting schemes 
for the data arriving from the individual channels. 
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