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ABSTRACT: 
 
To overcome the main drawbacks of global minimal for active contour models (L. D. Cohen and Ron Kimmel) that the contour is 
only extracted partially for low SNR images, Method of boundary extraction based on Schrödinger Equation is proposed. Our 
Method is based on computing the numerical solutions of initial value problem for second order nonlinear Schrödinger equation by 
using discrete Fourier Transformation. Schrödinger transformation of image is first given. We compute the probability P(b,a) that a 
particle moves from a point a to another point b according to I-Type Schrödinger transformation of image and obtain boundary of 
object by using quantum contour model.. 
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1. 0B0B0B0BINTRODUCTION 

Deformable models based on particle motion in classical 
mechanics, also called snakes, or active contour models, were 
first proposed by Kass and Terzopoulos in 1987. Since then, a 
variety of improvements have been made such as balloon 
models (L.D.Cohen,1991), geometric model (V.Caseles, 
F.Catte,T.Coll, and F.Dibos, 1993), as well as the topology 
adaptive deformable model (T.McInerney and D.Terzopoulos, 
1999). In 1997,Cohen and Kimmel described a method for 
integrating object boundaries by searching the path of a 
minimal active deformable model’s energy between two points. 

Lou and Ding used point tracking by estimating the probability 
of a particle moving from one point to another in quantum 
mechanics, and did not impose any smoothness constraints to 
ensure the extraction of the details of a concave contour 
(Liantang Lou and Mingyue Ding, 2007). Feynman and Hibbs 
had used path integration method to count the kernel of the 
particle In this article, the probability of a particle moving from 
one point to another is directly computed according to the 
relation between the kernel ( , )K b a  and image gradient ( )G x  
(see Figure 1) by using discrete Fourier Transformation.  

 

 
 

Figure 1. The relation between the probability ( , )P b a and image gradient ( )G x  
.
 

2. 1B1B1B1BRELATION BETWEEN THE PROBABILITY AND 
IMAGE GRADIENT 

The active contour model or Snake model had their profound 
physical background. If the parameter s  in the deformable 
contour curve ( ) ( ( ), ( ))s x s y s=x could be understood as time t , 
object contour curve ( )tx could be considered as the path of the 
particle in plane motion. 

Suppose a particle moves from the position a at the time at  to 
the position at the time bt ,e.g., ( )aa x t= , ( )bb x t= . According 
to the theory of quantum mechanics, the probability of a 
particle moving from the position a  to b at bt , denoted by 

( , )P b a , is dependent on the kernel ( , )K b a , which is the sum of 

all paths contribution between ax  and bx , i.e., 
 
 

( , )
( , ) ( ( ))

R a b
K b a x tφ= ∑ ,                      (1) 
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where ( , )R a b  is the set of all paths between ax  and bx . ( ( ))tφ x  
is the contribution of a path ( )tx  with a phase proportional to its 
energy ( ( ))E tx , i.e., 
 
 

(2 / ) ( ( ))( ( )) i h E tt Ce πφ = xx ，                   (2) 
 
 
where h is the Planck’s Constant, C is a constant, and 

2( ) ( , )
2

b

a

t

t

mE t V t dt⎛ ⎞′= −⎜ ⎟
⎝ ⎠∫ x x  is the energy functional of path. The 

probability from point ax  at time at to point bx  at time bt is the 
square of absolute value of kernel ( , )K b a  from ax  to bx , that 
is, 
 
 

2( , ) | ( , ) |P b a K b a=  .                   (3) 
 
 

3.  2B2B2B2BSCHRÖDINGER TRANSFORMATION OF IMAGE  

We must face problem counting the kernel ( , )K b a  to introduce 
law of particle motion in quantum mechanics into image 
processing and analysis. For a system with a simple Lagrangian 
function, ( , )K b a  can be calculated directly from the path 
integral (see XXXX0XXXX) while for a system with a complex Lagrangian 
function, it is difficult and time-consuming to estimate the value 
of ( , )P b a from ( , )K b a . In order to avoid such difficulty, Lou 
and Ding estimate the probability of a particle moving from 
point a to point b directly from specific particle models. In the 
paper, We’ll compute the probability P(b,a) that a particle 
moves from a point a to another point b using Schrödinger 
transformation of image. 
Replacing the kernel ( , )K b a  with the wave function ( , )u tx in 
the position x  at the time t , then ( , )u tx satisfied the following 
Schrödinger equation: 
 
 

2 2 2

2 2 ( , ) ( , )
2

u h u uhi V t u t
t m x y

⎛ ⎞∂ ∂ ∂
⋅ = − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

x x ,          (4) 

 
 
where 27/ 2 1.054 10h h crg sπ −= = × ⋅ .                                                                                                  
We could rewrite Eq.(4) as the initial-value problem: 
 
 

0

( )
( )

t

t

i u a u v u
u ϕ=

⋅ + Δ =⎧⎪
⎨ =⎪⎩

x
x                                    

 (5) 

 
 
By applying Fourier transform to equation (5) and making use 
of the properties of Fourier transform, we have 
 
 

2

0

ˆ ˆ ˆ ˆ( )
ˆˆ ( )

t

t

i u a u v u
u ϕ=

⎧ ⋅ − = ∗⎪
⎨

=⎪⎩

y y
y ,                     

 (6) 

 
 

where the mark ' ∗ ’ denotes convolution of two functions, ‘ ^ ’ 
denotes Fourier transformation of function. When ( ) 0v =x , both 

( , )u tx and ˆ( , )u ty  have the following analytic solutions (L. C. 
Evans, 1998):

   
 

2

ˆˆ ( )aitu e ϕ−= y y
                                    

(7)
 
             

 
2

241 ˆ( , ) ( ) ,   , 0
4

i
atu t e d R t

ait
ϕ

π
−

= ∈ >∫∫
x y

x y y x
,        

 (8) 

 
 
When ( ) 0v ≠x ， ( , )u tx and ˆ( , )u ty also have analytic solutions 
(L. C. Evans, 1998), but they are quiet complex so that they 
could not be used to compute their numerical solutions. We 
give the following definition of Schrödinger transformation of 
image because of Eq. (5): 
Schrödinger transformation of image ( )ϕ x  based on ( )v x  was 
defined as the solution of Eq. (5). And the transformation is 
called I-Type Schrödinger  transformation when ( ) 0v =x , 
otherwise the transformation is called II-Type Schrödinger 
transformation. Supposed both ( )ϕ x  and ( )v x  are m n×  images, 
then two-dimensional discrete Schrödinger transformation of 
image ( )ϕ x  based on ( )v x is expressed with the following 
HHHHdifferential equationHHHH which its Fourier transformation satisfies: 
 
 

2

0

ˆ ˆ( )

ˆˆ
t

t

i u V a u

u ϕ=

⎧ ⋅ = +⎪
⎨

=⎪⎩

y
,                       

  (9) 

 
 
where ˆtu  is mn -dimensional HHHHcolumn vector HHHH formed by 
concatenating all the rows of m n× matrix ˆtu . mn mn×  matrix 
y  was HHHHdiagonal matrixHHHH whose HHHHdiagonal HHHHelements express 

distance. mn mn×  matrix V  is a block cyclic matrix, i.e., 
 
 

0 1 1

1 0 2

1 2 0

m

m m

V V V
V V V

V

V V V

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,                     
(10)

 

 
 
where iV  is a cyclic matrix, 
 
 

( ,0) ( , 1) ( ,1)
( ,1) ( ,0) ( , 2)

( , 1) ( , 2) ( ,0)

i

v i v i n v i
v i v i v i

V

v i n v i n v i

−⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

,             
 (11)

 

 
 
Obviously, the solution of Eq.(9) is  
 
 

2( ) ˆˆ( ) ( )it V au e ϕ− += yy y
.                  

  (12) 
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If the matrix 2| |V a+ y can be HHHHdiagonalize HHHHd, that is, 

2 1V a P DP−+ =y , then 
1 21 ˆˆ( ) ( , , , ) ( )mnitditd itdu P Diag e e e Pϕ−− −−=y y

,            
 (13)

 
 
 
where 1 2( , , , )mnD Diag d d d=  was HHHHdiagonal matrixHHHH. Eq.(13) 
HHHHdegenerate HHHHs into Eq.(7) when ( ) 0v =x . The discrete Schrödinger 
transformation of image ( )ϕ x  based on ( )v x  can be obtained 
using Eq.(3). 
 
 

4. 3B3B3B3BBOUNDARY EXTRACTION BASED ON 
SCHRÖDINGER TRANSFORMATION OF IMAGE 

Schrödinger transformation of image can be applied to image 
processing and analysis, such as, boundary extraction, edge 
enhancement, image inpainting, image restoration,etc. We 
extract boundary of object according to the approach given in
（Liantang Lou and Mingyue Ding, 2007） . The steps are 
listed as follows: 
 
(1) Compute discrete Schrödinger transformation of gradient 
image ( )G x , denoted by 0( , )u tx , where 0t  is a small positive 
constant. 
 
(2) Compute the probability 0( ) ( , )P u t=x x . 
 
(3) Estimate the expectation position of the particle at the next 
time at t+ Δ  by:  
 

( )

( )

b b
b

e
b

b

P

P
∈

∈

=
∑
∑
S

S

x x
x

x
                                (14) 

 
where the set S  are possible positions after the interval time tΔ  
when a particle moves from a starting position a  at the time at . 
From Eq. (14), the next boundary point position is estimated. 
The whole boundary is tracked by repeating the expectation 
position calculation procedure iteratively.  
 
 

5. 4B4B4B4BEXPERIMENTAL RESULT 

The following experiments (see Figure 2) show the meaning 
and function of Schrödinger transformation of image, that is, 
Schrödinger transformation of image can be seen as the result 
of original image shrinking inside and spreading outward, like 
as interference wave. The bigger at in Eq.(7) is, the more 
obvious the interference is. If we estimate the probability of a 
particle appearing in some point using Schrödinger 
transformation of gradient image, we can obtain the same 
conclusion given in the article (Liantang Lou and Mingyue 
Ding, 2007, Figure 1). The quantum contour model produces a 
contour around the true object boundary with the jagged 
particle trajectory while the deformable model produces a 
smooth but biased contour. Though quantum contour is zigzag 
and the contour extracted using deformable model was quite 
smooth, quantum contour has smaller system deviation. 
 
The quantum contours of object are given in Figure 2. Figure 2 
show that the contour with Schrödinger transformations is 
smoother than the contour without using Schrödinger 
transformations. 
 
 

   
(a)                                         (b)                                 (c) 

Figure 2. Schrödinger transformation of image 
(a) The original image, (b), (c) are Schrödinger transformations of image. The constant at is 0.0005, 0.001, respectively. 

 

     
(a)                                         (b)                                 (c) 

Figure 3. contours extracted by using the quantum contour based approach. 
(a) The original image, (b) quantum contour without using Schrödinger transformations(Liantang Lou and Mingyue Ding, 2007), (c) 

quantum contour based on Schrödinger transformations with the constant at is 0.000001. 
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