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ABSTRACT: 
 
The prototype of a personal navigator to support navigation and tracking of military and rescue ground personnel has been developed 
at The Ohio State University Satellite Positioning and Inertial Navigation (SPIN) Laboratory. This paper provides a review of the 
navigation techniques suitable for personal navigation and follows with design, implementation and performance assessment of the 
system prototype, with a special emphasis on the dead-reckoning (DR) navigation supported by the human locomotion model. An 
adaptive knowledge system (KBS) based on Artificial Neural Networks (ANN) and Fuzzy Logic (FL) has been implemented to 
support this functionality. The KBS is trained a priori using sensory data collected by various operators in various environments 
during the GPS signal reception, and is used to support navigation under GPS-denied conditions. The primary components of the 
human locomotion model are step frequency (SF) and step length (SL). SL is determined by a predictive model derived by the KBS 
during the system’s calibration/training period. SL is correlated with several sensory and environmental data types, such as 
acceleration, acceleration variation, SF, terrain slope, operator’s height, etc. that constitute the input parameters to the KBS system. 
The KBS-predicted SL, together with the heading information provided by the magnetometer and/or gyroscope, supports the DR 
navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable, 50%).A summary of the performance 
analysis in the mixed indoor-outdoor environments, with the special emphasis on the DR performance is provided. 
 
 

1. INTRODUCTION AND BACKGROUND 
INFORMATION 

The ability to determine one’s position in absolute or map-
referenced terms, relative to objects in the environment, and to 
move to a desired destination point is an everyday necessity. 
Recent years brought up an explosion in the development of 
portable devices that support this functionality. A Personal 
Navigation Assistant (PNA) also known as Personal Navigation 
Device (PND) is a portable electronic tool, which combines the 
positioning and navigation capabilities, usually provided by the 
Global Positioning System (GPS), and possibly by other 
navigation sensors. The most commonly used PNAs are the 
hand-held GPS units, which are capable of displaying the user’s 
location on an electronic map backdrop. This generation of 
PNAs (often referred to as first generation PNAs) are primarily 
used in leisure, marine and hiking applications. PNDs first 
entered the market in the early 1980’s, but they were big and 
rather clunky systems that only contained maps of a small area. 
The newest generation of PNDs offers many more features, 
such as real-time traffic information, location of points of 
interest, and utilizes maps of entire continents. They offer 
sophisticated navigation functions and feature a variety of user 
interfaces including maps, turn-by-turn guidance and voice 
instructions that have been developed primarily for car 
navigation. Dead reckoning navigation using data collected by 
sensors attached to the drive train, such as gyroscopes and 
accelerometers, can be used for greater reliability, as GPS signal 
loss and/or multipath can occur due to urban canyons, foliage or 
tunnels. Currently, numerous cellular phone and PDA (Personal 
Digital Assistant) models have GPS-based navigation 
capabilities, aside from their original design as personal 
organizers.  
 

It should be pointed out here that although the same navigation 
component is used in car and pedestrian navigation, PNDs differ 
from guidance systems for car navigation in many ways 
following from the condition that pedestrians are not tied to a 
road network. Thus, pedestrians are free to use either network-
like systems (walkways or streets) or region-based systems with 
no obvious network structure (parks, train stations, stadiums, 
etc.). Consequently, PNDs providing route commands must go 
beyond network-based navigation and adapt to the variability of 
the surrounding environments. Hence, the underlying 
framework for the generation of route instructions for pedestrian 
navigation systems is fundamentally different than that of a car 
navigator. An example approach that describes the relation 
between the navigator and path in terms of “topological stages 
of closeness (SOCs), which enable a finer granularity of route 
instructions, and hence, the generation of more accurate route 
instructions” is described in (http://www.i-
spatialtech.com/white_papers/region-
based_pedestrian_navigation.htm). In general, this task is more 
complicated than its counterpart for the network-dependent 
navigators.  However, regardless of network-dependency or 
independency, to guide mobile users along a route, all 
navigators must be able to determine their location in relation to 
the route. Consequently, GPS or any other navigation 
technology must provide a position fix and guiding algorithms, 
needed to determine the current location within the background 
map along the route taken. Any, even the most sophisticated and 
reliable algorithm that matches the position fix with a map will 
not work if there is no position fix.  
 
1.1 Technologies, Systems and Trends 
In 1999, the Federal Communication Commission (FCC) 
mandated that wireless carriers needed to support delivery of 
location information to 911 operators in the US and that service 
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providers were permitted to use the location capabilities in the 
handset and the network for commercial purposes. This directly 
initiated the development of the wireless location-based services 
(LBS) market. The key players that emerged in the wireless 
device manufacturing industry are SnapTrack (acquired by 
Qualcomm in 2000; 
http://www.qualcomm.com/about/qct_redirect.html) and SiRF 
(http://www.sirf.com/). The important development for the new 
markets for LBS solutions was the emergence of GPS-based 
PND business by companies such as Garmin, Navman, Trimble, 
Magellan, and TomTom. The current trend is that increasingly 
more devices, such as, for example, the Blackberries, become 
connected wirelessly and provide some navigation information. 
Also, the iPhone launched by Apple supports Google maps on 
the device, and it is expected that the next generation iPhone 
will offer a significant improvement in geographic navigation 
(GPS) and management tools 
(http://lbs.gpsworld.com/gpslbs/article/articleDetail.jsp?id=466
339&sk=&date=&pageID=2). It is also important to mention 
here that high quality and up-to-date digital maps are crucial to 
reliable personal navigation. This part of the consumer market is 
well covered by Navteq (http://www.navteq.com/) and Tele 
Atlas (http://www.teleatlas.com/index.htm) who deliver digital 
maps and dynamic content that power the world’s demand for 
navigation and location-based applications. 
 
The improvements in GPS receiver size, performance, and cost 
over the past few years have stimulated an upsurge of consumer 
GPS products, which followed an increased public awareness of 
the potential utility of GPS. The GPS-based consumer products, 
such as car navigation systems, GPS-enabled PDAs and 
locatable mobile phones, have flooded the marketplace. Yet, 
general misunderstanding of the GPS limitations often leads to 
consumer dissatisfaction due to the low position accuracy their 
devices may furnish, or a lack of any positioning information 
under some circumstances. Consumers expect a navigation 
product simply to work, regardless of the conditions and the 
surrounding environment.  
 
Although high-sensitivity receivers, or assisted-GPS (A-GPS), 
enable operation with much weaker signals (even indoors), 
there are still situations where even A-GPS does not provide 
sufficiently accurate position fix within an acceptable time 
interval. Consequently, users in high multipath or extremely 
weak signal environments may experience low positioning 
accuracy and/or long delays in achieving a position fix. Even if 
some contingency § strategies, taking effect when A-GPS fails, 
are implemented to provide the user with a gracefully degrading 
position fix service, the position fix will eventually become 
unavailable. As much as the consumer market would like to 
avoid such situations, they are inevitable, unless some 
augmentation is used with GPS or even A-GPS. This 
increasingly leads to multisensor solutions that are not yet very 

                                                 
§According to 
http://lbs.gpsworld.com/gpslbs/content/printContentPopup.jsp?i
d=262078 “The simplest fall-back method is Cell ID, by which 
a user’s position is assumed to coincide with the location of the 
cell tower handling the user’s call, or the centroid of the 
coverage area of that particular cell. In either case, the assumed 
user’s position could be wildly inaccurate, depending on the 
network’s tower spacing. Researchers in the United Kingdom 
have invented a fall-back technique that uses network signal 
timings to provide a user’s phone (terminal) with a synthetic 
clock, synchronized to GPS Time. With such an accurate clock, 
the terminal can be positioned using a similar technique to that 
used by GPS but by using the network signals themselves.” 

common within the consumer market, but substantial research 
and conceptual work has been conducted in recent years to 
develop reliable and ubiquitous personal navigation device for 
pedestrians (e.g., Retscher 2004a and b; Retscher and Thienelt, 
2004; Kourogi et al., 2006; Lachapelle et al., 2006) as well as 
military and emergency personnel (Grejner-Brzezinska et al., 
2006a and b, and 2007a and b; Moafipoor et al., 2007), who 
operate in environments where GPS may not be always 
available, while their navigation fix is crucial for the combat or 
emergency mission.  
 
Pedestrian and personal navigation** systems require continuous 
positioning and tracking of a mobile user with a certain 
positioning accuracy and reliability. However, navigating in 
urban and other GPS-impeded environments, such as mixed 
indoor and outdoor areas, is a very challenging task. These 
systems require multiple navigation technologies to be 
integrated together to form a multisensor system, as mentioned 
above, in order to serve as many different environments as 
possible for seamless and reliable navigation. Example 
technologies suitable for multisensor solutions supporting 
personal navigation include GNSS (Global Navigation Satellite 
System), ground-based RF systems, such as pseudolites (e.g., 
Barnes et al., 2003a and b) suitable for confined and indoor 
environs, as well as cellular phone positioning for absolute 
position determination, dead reckoning sensors (e.g., magnetic 
compass, gyroscopes, accelerometers and barometers) to 
determine orientation, distance traveled and height. For location 
determination of a pedestrian in multi-storey buildings the 
Wireless Local Area Networks (WLAN) (e.g., Wang et al., 
2003; Li et al., 2006), or transponders or beacons installed in 
the buildings (e.g., Pahlavan et al., 2002) are increasingly used. 
Other indoor positioning systems include so-called Active 
Badge Systems (e.g., Hightower and Boriello, 2001). These 
methods can provide few-meter accuracy for indoor tracking 
and positioning. Robustness of the ultra wideband (UWB) 
signal to multipath fading and its high penetration capability 
makes it another technique suitable for indoor positioning. The 
indoor UWB-based navigation systems (fundamentally 
designed for wireless communication, navigation being usually 
a tag-along application), which work in the bandwidths in 
excess of 1 GHz, measure accurate time of arrival (ToA), the 
difference of ToA of the received signals for the estimation of 
distance to mobile user (e.g., Pahlavan et al., 2002; Win and 
Scholtz, 2002; Ni et al., 2007). The UWB ranging and 
communication scheme may employ one or more of the 
following techniques: time division multiple access (TDMA), 
frequency division multiple access (FDMA) or code division 
multiple access (CDMA). A direct sequence (DS)-CDMA 
scheme is a preferred UWB scheme for providing ranging 
resolution and identification of base stations (see, e.g., 
http://www.wipo.int/pctdb/en/wo.jsp?IA=US2005004936&DIS
PLAY=DESC for more details). Another method considered in 
indoor navigation is based on optical tracking systems also 
referred to as image-based systems. This method has been 
researched by, for example, Veth and Raquet (2006a and b) in 
connection with inertial technology. In general, the image-based 
tracking systems could provide high positioning accuracy and 
resolution, but these are a function of the type of sensors used 
(primarily its angular resolution), distance between the target 
and the sensor, specific application and the environment 
(outdoor vs. indoor). 
 

                                                 
** Personal navigation is understood here as navigation of 
military and emergency personnel, while pedestrian navigation 
refers to all other uses for location/navigation of a mobile user. 
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According to Li et al. (2006) WLAN based positioning is easily 
implemented in indoor environments, as its associated consumer 
hardware is the most readily available of all signal strength-
based methods. It is also the most accurate method, as the signal 
strength (SS) displays high spatial variance, and WLAN 
chipsets are relatively easily programmed for this purpose. 
WLAN operates in the 2.4 GHz band, which is the only 
accepted ISM (Industrial, Scientific and Medical) band 
available worldwide license free. There are essentially two 
approaches to using WLAN for positioning: one uses a signal 
propagation model and information about the geometry of the 
building to convert SS to a distance measurement from the 
access point, followed by trilateration from multiple access 
points to provide the final position fixes. The second method of 
WLAN positioning is known as location fingerprinting. The key 

idea behind this approach is mapping of the location-dependent 
parameters of measured radio signals within the area of interest 
that is the received signal strength indicator (RSSI) at the access 
points. According to ibid. location fingerprinting consists of two 
phases, (1) training and (2) positioning. The objective of the 
training phase is to build a fingerprint database. The generation 
of the database starts with a selection of reference points (RPs) 
followed by measuring SS at these locations, and recording it in 
the database. With a sufficient number of reference points 
stored together with their SS characteristics, a mobile user can 
position himself/herself by comparing the measured SS with the 
reference data in the database using some search/matching 
algorithm. Naturally, the accuracy of the fingerprinting method 
increases with the increasing number of RPs. 

 
 

Technique/sensor Navigation 
information 

Typical accuracy Selected characteristics 

GPS/GNSS 
• Position coordinates 
• Velocity  

 
X,Y,Z 

 
Vx, Vy 

Vz 

 
~10 m              
 (1-3 m DGPS) 
~0.05 m/s 
~0.2 m/s 

• Line-of-sight system 
• Results in a global reference system 

Pseudolites  X,Y,Z 
Vx, Vy, Vz 

Comparable to 
GPS 

• Line-of-sight system 
• Operate at GPS and non-GPS frequencies  

WLAN 
• Signal strength-based 

method 
• Fingerprinting method 
 

 
X,Y,Z 

 
X,Y,Z 

 
2-6 m 
 
1-3 m  

• Indoor positioning in a local system 
• Signal attenuation due to distance, penetration through 

walls and floors, and multipath 
• Interference from other users of 2.4GHz frequency band 

UWB X,Y,Z dm-level accuracy 
theoretically 
achievable at  10-
20 m range†† 

• Resistant to multipath fading 
• Strong signal penetration  
• Possible interference with GPS 
• Positioning approach similar to WLAN 

Mobile phone positioning  X, Y 50-300 m • Cell-ID positioning approach (lower accuracy range) 
• Time of arrival or difference in time of arrival used to 

derive range or range difference 
Dead reckoning system X, Y 

Z 
Heading ϕ 

20-50 m/1 km 
3 m 
1° 

• Relative positioning 
• Sensors require calibration  

Direction of motion 
• Digital          

compass/magnetometer  

• Long term accuracy stability 
• Subject to magnetic disturbances 
• Sensitive to tilt 

• Gyroscope 

 
 
 

Heading ϕ 

 
 
 
0.5° - 3° • Short term accuracy stability 

• Not subject to external disturbances 
• Subject to drifts  
• Should be calibrated when GPS is available 

Accelerometer atan, arad, az <0.03 m/s2 • Subject to drifts  
• Should be calibrated when GPS is available 

Digital barometer  Z 1-3 m • Requires calibration by a given initial height to provide 
heights with respect to, for example, WGS84 ellipsoid 

Optical systems 
• Image based 
• Optical sensor network 
• Laser 

 
X, Y, Z  

X, Y (Z optional) 
X,Y, Z 

 
few meters 
few meters 
cm to dm 

• Line-of-sight system 
• Network approach is geometry-depended 
• Image overlap required for 3D 
• Local or global reference system 

 
Table 1. Typical sensors used in personal navigation: observables and their characteristics (Retscher and Thienelt, 2004; modified 
and extended); where X,Y,Z are the 3D coordinates, vx, vy, vz are the 3D velocities, φ is the direction of motion (heading) in the 

horizontal plane XY, atan is the tangential acceleration and arad is the radial acceleration in the horizontal plane XY, az is the vertical 
acceleration. 

                                                 
†† See, Ni et al. (2007) 
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Other optical tracking systems that can be potentially used for 
personal tracking make use of light to measure angles (ray 
direction) that are used to find the position location (however, to 
the best of the authors’ understanding, no system has been 
reported so far to use this techniques for personal navigation). 
The essential parts of an optical system are the target (mobile 
user) and the detector (sensor). These systems rely on a clear 
line-of-sight (LOS) between the detector and the target. 
Detectors can be in the form of Charged Coupled Device 
(CCD)-based cameras, video cameras, infrared cameras, etc. 
Targets can be active, such as light-emitting diode or infrared-
emitting diode, or passive, such as mirrors or other reflective 
materials, or simply natural objects (Allen et al., 2001). 
Detectors are used to observe targets and to derive position and 
orientation of a target from multiple angular observations 
(multiple detectors). It is necessary to mention here another type 
of optical tracking systems, based on laser ranging, which 
provides range measurements to active or passive targets. This 
method is well suited for measuring distances from several 
meters to a few hundreds of meters, and even considerably 
longer distances, and thus, it is suitable for both outdoor and 
indoor applications. The accuracy of the distance measured 
ranges from micrometers for short-range devices, to a 
decimeter-level for very long-range systems (see, e.g., Soloviev 
et al., 2007, for urban navigation application of this technique). 
 
1.2 Navigation of Pedestrians vs. Military and Emergency 
Personnel Navigation 

Over the past decade, due to the widespread use of GPS, the US 
military has become increasingly dependent on precision 
navigation and timing (PNT). Military strategy and tactics have 
evolved to assume the availability and integrity of accurate 
position, navigation and timing information based on GPS. In 
fact, one of the key enablers of precision and net-centric warfare 
is high-accuracy PNT, currently predominantly provided by 
GPS. One of the crucial applications of PNT is accurate and 
reliable navigation and tracking of ground personnel in combat 
and emergency situations. Protecting ground troops or 
emergency/disaster management crews, while maintaining the 
effectiveness of the combat or rescue operation, requires precise 
individual geolocation of all military and emergency personnel 
in real-time.  
 
However, GPS is not effective in electromagnetically and 
physically impeded environments. There are also environments 
where GPS is significantly degraded or not available. 
Unfortunately, with the global war on terror, the military 
operations have become more focused on these types of 
environments.  Thus, there is an urgent need to develop 
autonomous robust navigation theories and algorithms that 
provide assured GPS-level performance in all environments, 
thereby extending the reach of precision combat into these hard-
to-navigate, high-importance areas. While the integration of 
Inertial Navigation System (INS) data with GPS data is a 
common navigation solution in use today, the PNT performance 
of GPS/INS systems can degrade rapidly when GPS is not 
available. The development of lower-cost, high-accuracy 
imaging and ranging devices, e.g., digital cameras, scanning 
Light Detection And Ranging (LiDAR), flash-LADAR (LAser 
Detection And Ranging), mm-wave RADAR, and more, have 
shown promise in providing information which can be used to 
aid a GPS/INS system in urban environments where GPS 
signals may be blocked by topography or denied by interference. 
Currently, a significant body of research is underway to address 
the problem of assured navigation in all environments. However, 
it is a difficult and complex problem, which requires a 

multidisciplinary approach to address the fundamental 
challenges that must be overcome to realize a truly autonomous 
assured navigation and timing capability. This paper only 
touches one aspect of this complex problem – personal 
multisensor navigation, where in addition to a number sensors 
listed in Table 1, human body is also considered as a sensor, and 
its dynamic modeling is used to support dead reckoning 
navigation mode in situations where all other sensors may fail. 
 
 

2.  PERSONAL NAVIGATOR BASED ON HUMAN 
LOCOMOTION MODEL 

2.1 Human Body as Navigation Sensor 

Recent years brought many new developments in computational 
intelligence (CI) techniques leading to an exponential increase 
in the number of applications in numerous areas, such as 
engineering, social and biomedical. In particular, CI techniques 
are very suitable in applications related to human motion 
modeling, and are being increasingly used for this purpose, due 
mainly to the complexity of the biological systems as well as 
the limitations of the existing quantitative techniques in 
modeling. Examples of algorithms and methods used in CI are 
Artificial Neural Networks (ANNs) and Fuzzy Logic (FL). 
Using CI methods allows for better process control and more 
reliable prediction/modeling of the processes under 
consideration. In our case, the ANN (e.g., Kaygisiz  et al., 2003; 
Chiang et al., 2003; Wang et al., 2006; Grejner-Brzezinska et 
al., 2006c and 2007a and b; Moafipor et al., 2007) and FL (e.g., 
Sasiadek and Khe, 2001; Kosko, 1991) are used to model a 
simplified human dynamics model that consists of step length 
(SL) and step frequency (SF), which together with the direction 
of motion (step direction, SD) are used to navigate the mobile 
operator in the dead reckoning mode. The human dynamics 
model is calibrated while other sensors, primarily GPS, provide 
continuous navigation solution, and the human-based sensors 
are used in situation where other sensors cease to operate 
(Grejner-Brzezinska et al., 2006a-c; 2007a and b; Moafipoor 
2007a and b; Toth et al., 2007).  
 
In the current concept design, the prototype of a personal 
navigator is based on multi-sensor integration in a backpack 
configuration, augmented by the human locomotion model that 
supports navigation during GPS gaps. The navigation accuracy 
requirement is at 3-5 m CEP (circular error probable) 50% level. 
At the current stage of the research, the algorithmic concept of 
the GPS-based, IMU-augmented personal navigator system with 
an open-ended architecture has been implemented (see Figure 1).  
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X

Y

Z

HG1700 
IMU

X Y

HMR3000 
Magnetometer

GPS antenna

PTB220 
Barometer

Step sensor (heel)

Step sensor (toe)

 
 

Figure 1. Personal navigator: sensor configuration. 
 
At present, the following sensors are used: dual frequency 
Novatel OEM4 GPS receiver with, Honeywell tactical grade 
HG1700 IMU (gyro rate bias ~3-5 º/hr, and accelerometer bias 
of 2.0 mg) impact foot switches used for timing the user’s step 
events, PTB220A barometer (500–1100hPa pressure range, -
40–140F temperature range, 0.5–10Hz update rate, 0.1–3s 
output averaging time, and 1.5 m height accuracy (1 sigma)) 
and a three-axis Honeywell HMR3000 magnetometer with an 
integrated pitch-roll sensor; up to 20 Hz read-out rate, 1º (level), 
and 2º (tilt) heading accuracy (1 sigma). The GPS carrier phase 
and/or pseudorange measurements in the double difference 
(DD) mode ‡‡ , undifferenced pseudorange or ionosphere-free 
linear combination of P1P2 pseudoranges, barometric height, 
compass (magnetometer) heading, inclinometer (magnetometer) 
pitch/roll, and the INS-derived position and attitude information 
are integrated together in the tightly coupled Extended Kalman 
Filter with 29 states listed in Tables 2-3.  
 

Sensor Error 
Sources 

Stochastic Error 
Model 

Bias Random walk Accelerometer 
Scale factor Random constant 
Bias Random walk Gyroscope 
Scale factor Random constant 
Bias Random walk Barometer 
Scale factor Random constant 
Bias Random walk Magnetometer 

(compass) Scale factor Random constant 
 

Table 2. Stochastic error models for multi-sensor error sources 
(Grejner-Brzezinska et al., 2007b). 

 

                                                 
‡‡ This measurement type is of the highest accuracy and 
provides the best calibration results, but requires data 
transfer from a reference base in real time. Pseudorange-
based stand alone solution is the simplest, but the least 
accurate approach.  

The barometer and compass are introduced to aid height and 
heading estimation, respectively, when GPS signals are blocked. 
These sensors (as well as the IMU and human dynamics model) 
are continuously calibrated when GPS signals are available. 
While forming the theoretical foundations of this multi-sensor 
system and developing the algorithmic concept, an open-ended 
design architecture was considered, which should allow the next 
level of implementation, such as the inclusion of miniaturized 
imaging sensors, e. g., digital and infrared cameras or laser 
range finders. It should also be mentioned that precise timing of 
all sensory data to GPS time is crucial to sensor/data integration. 
Essentially, the GPS time must be externally recovered from 
1PPS (pulse per second) signal, available through a standard 
interface from a GPS receiver. 
 
2.2 System Design Architecture 

The system’s design architecture is shown in Figure 2, where 
the three primary modes of operation are indicated (1) 
calibration mode, available during the GPS signal reception; it 
represents the initial sensor calibration and KBS 
calibration/training; (2) hybrid navigation mode, when multi-
sensor assembly is used to navigate; since GPS is available, 
continuous sensor and KBS calibration is also performed; and 
(3) DR navigation mode, which kicks in when GPS is blocked. 
A ZUPT static calibration mode is also included that may be 
applied for partial calibration of the IMU sensors if the operator 
may remain stationary for some time period (several seconds to 
a few tens of seconds usually suffice). 
 

 
 

Figure 2. Personal navigator: modes of operation. 
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State vector components  
(number of states) 

Initial Covariance Matrix 
Components 

Stochastic Model, White Noise 

Position (3) 100 m RC, 0 
Velocity (3) 1 m/s RW, 5 μg  

Pitch, Roll 1° Attitude (3) Heading 2°  
RW, 0.001 º/√hr 

Accelerometer Bias (3) 1 mg RW, 20 μg/ √hr  
Accelerometer Scale Factor (3) 120 ppm RC, 0 
Gyro Bias (3) 1°/hr RW, 0.125 º/√hr 
Gyro Scale Factor (3) 10 ppm RC, 0 
Barometer Bias (1) 1 m RW, 0.1 m 
Barometer Scale Factor (1) 1 RC, 0 
Magnetometer Compass Bias (3) 1° RW, 1° 
Magnetometer Compass Scale Factor (3) 1 RC, 0 

 
Table 3. State vector components and their stochastic characteristics; (RC): Random constant, (RW): Random walk, (mg) stands for 

g⋅−310 , (μg) stands for g⋅−610 , and g  is the gravity constant (Grejner-Brzezinska et al., 2007b). 
 
 

Without PCA With PCA 
 ANN input parameters Training 

Mean ± Std [cm]
Testing 

Mean ± Std [cm]
Training 

Mean ± Std [cm] 
Testing 

Mean ± Std [cm] 

SF, |a|, Var(|a|), Slope 2.3 ± 4.9 7.1 ± 5.0 0 ± 0.3 1.5 ± 1.7 

 
Table 4. The effect of PCA transformation on SL determination using ANN in training and testing modes; mean and std of the 

differences between the reference (known) SL and ANN-predicted SL; no reduction of the parameter space applied. 
 
 

Solution type 
Mean 
[m] 

Std   
[m] 

Max 
Difference  [m] 

End 
Misclosure [m] 

CEP 50% 
[m] 

CEP 95% 
[m] 

DR without PCA 1.7 1.4 4.7 2.3 1.3 4.4 
DR with PCA 0.33 0.32 1.07 1.16 0.3 1.0 

 
Table 5. Statistical fit to reference trajectory of DR trajectory generated with SL predicted by ANN with and without PCA 

transformation (no parameter space reduction); circular trajectory of ~45 m. 
 
 
The ANN and FL modules designed for handling the human 
locomotion model, form a Knowledge-Based System (KBS). 
The ANN component consists of a single-layer network with 
Radial Basis Function (RBF) and up to six input parameters that 
contain the information about the step length (SL), such as step 
frequency (SF), peak-to-peak mean acceleration (|a|), peak-to-
peak variation in acceleration (Var|a|), terrain slope, change in 
barometric height during a single gait cycle (ΔhBaro), and 
operator’s height; currently, a Gaussian function (G) is used as 
RBF. Since the input parameters are correlated, Principal 
Component Analysis (PCA) is applied to decorrelate the input 
parameters and to determine the minimum sufficient set of 
parameters that should be used as input to the ANN. The 
accuracy of SL prediction based on this module is at the cm-
level (refer to Tables 4 and 5 for examples of the PCA-
transformation impact on LS modeling results; for more details, 
see, Grejner-Brzezinska et al., 2006b, c, and 2007b). This 
accuracy of SL prediction allows trajectory recovery well within 
the 3-5 m CEP if accurate heading is provided (HG1700 
heading is sufficient within a few minute GPS gap). The 
trajectory can be recovered in 2D, based on the SL only 

( sin
1

n
x SL Azk k

k
∑Δ =
=

 and cos
1

n
y SL Azk k

k
∑Δ =
=

, where 

Az is the heading provided by either gyro or magnetometer or 
both and n is the number of steps along the trajectory); if 

calibrated barometer measurements are used, the solution is 
provided in 3D. 
 
Table 6 lists all of the measurements delivered by the sensors 
used in the current prototype, which can constitute input 
parameters to the KBS to parameterize the body locomotion and 
SL approximation functions. 
 

Sensor Sensor Measurements 
Accelerometer - Step events 

- |a|xyz ,  |a|xy, |a|z  
-Var(|a|xyz), Var( |a|xy), Var(|a|z )  
- Max(|a|) , Min(|a|) 
- Tilt (roll and pitch angles at rest) 

Gyroscope - Angular rate 
- Roll, pitch, heading 

Compass - Angular rate 
- Heading 

Barometer - Var(∆h) 
- ∑(|∆h|) 
- Altitude 

Step sensors - Step events  
External data - Person’s height, age, weight 

 
Table 6. Sensors and body locomotion parameterization 

(Moafipoor et al., 2007a). 
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In Table 6, |a|xyz  , |a|xy, and |a|z are magnitudes of the 
acceleration vector during a single step in 3D, horizontal, and 
down directions, respectively; Var(|a|xyz), Var( |a|xy), and 
Var(|a|z ) are the corresponding variance of the acceleration 
vector; Max(|a|) and Min(|a|) are the maximum and minimum 
values of the acceleration for each pace. 
 
An alternative implementation of the SL/SD 
calibration/prediction module is based on FL (see, Moafipoor et 
al., 2007a for details of this algorithm). By incorporating Fuzzy 
Logic to our KBS, better process control is facilitated, as this 
approach allows an easy addition of constraints, such as, for 
example hallway layout for indoor navigation, or digital map 
information, which are difficult to handle in “regular” EKF 
environment. Fuzzy Logic can be described simply as 
“computing with words rather than numbers,” and Fuzzy Logic 
control can be described as “control with sentences rather than 
equations” (Sasiadek and Khe, 2001). Rule-based Fuzzy Logic 
provides a formal methodology for linguistic rules resulting 
from reasoning and decision making with uncertain and 
imprecise information. In fuzzy behavior-based navigation the 
problem is decomposed into simpler tasks (independent 
behaviors), and each behavior is composed of a set of Fuzzy 
Logic rule statements aimed at achieving a well defined set of 
objectives; example rules are: 
 

Rule (i): If 1 1x is Ai i  AND 2 2x is Ai i  , …, AND 

x is Aim im  THEN y is Bi                         (1) 
 
 

where i=1,…,n, and n is the number of rules in a given fuzzy 
rule base; j=1,..,m, and m is the number of antecedents; xij are 

the input variables, premise variables, which are the sensor data 
of the mobile user; Aij  are the input fuzzy sets; and Bi  is the 

output fuzzy set, and y is the output variable. Having multiple 
behaviors, which are all running concurrently, leads to 
situations where several command outputs may be produced 
simultaneously. Therefore, the main advantage of using Fuzzy 
Logic for navigation is that it allows for the easy combination of 
various behaviors through a command fusion process instead of 
using fixed parameters in the entire process.  
 
The design of a Fuzzy Logic controller starts with the definition 
of the membership functions for the output variable, here, SL. 
Currently, seven empirically determined membership functions 
are used for SL in our prototype, as shown in Figure 3. The 
fuzzy language for this fuzzy set is divided into a range of 
quantities such as: Zero, Very Short, Short, Normal, Semi-Long, 
Long, and Very Long; vertical axis in Figure 3 indicates the 
degree of membership of SL in the corresponding fuzzy set 
(ηSL).  
 

 
 

Figure 3. SL membership function. 

Defining the shape, the membership functions, and the bounds 
of these quantities is a design problem, but the attributes of the 
system will not be changed significantly if the membership 
functions are modified slightly. The value of the membership 
function indicates the degree of membership of SL to the fuzzy 
set. If the membership value is 1 for one of the fuzzy sets, the 
SL is perfectly representative of the set, and if it is 0, the 
quantity is not at all a member of the set. Any value between 1 
and 0 indicates a partial membership. A better way to make SL 
a fuzzy set is to allow the membership functions to change 
gradually from one quantity to the next one. Then, the real 
power of the Fuzzy logic comes from the ability to integrate 
these partial membership values in a way that permits a good 
balance between membership functions. 
 
For reliable SL/SD results, the KBS system must be sufficiently 
trained, meaning that sufficient amount of calibration data must 
be either stored in the memory or provided during the actual 
navigation task, before the GPS signals are blocked. For the 
ANN module training, different terrains slopes/configuration 
and types of surfaces must be included, for a representative 
number of operators, to derive a reliable predictive model; 
obviously, if the system is calibrated under circumstance totally 
different from the actual navigation task, the results will be 
much worse than the examples provided here. Similarly, the FL 
modules requires a large sample of representative data where 
various human dynamics types are included in various 
environmental conditions and terrain configurations, to derive 
the appropriate fuzzy rules for the membership functions that 
will be used to predict the model parameters once GPS signals 
are blocked. The additional benefit of FL is that the actual 
behavior of the mobile operator can be predicted, that is, if the 
person is running, walking, stumbling, climbing, etc., and that 
might be useful information in particular in combat or 
emergency situation, and can be wirelessly transmitted to an 
operational center (not implemented in our prototype).  
 
An additional use of FL in our implementation is the adaptive 
Extended Kalman Filter where the adaptivity scheme is based 
on Fuzzy Logic rules (see, e.g., Sasiadek et al., 2000; 
Moafipoor, 2008). In this approach, the pseudorange practical 

covariance, 
1

1

m TC e ek k kim
∑=
=

, and the actual covariance 

(covariance of innovation) from the EKF, TS H P H Rk k k k k
−= + , 

are compared, and the level of the difference between them is 
tested using fuzzy rules to decide if the measurement covariance 
matrix Rk should be modified (adapted to the current state of 

system sensors). Hk is the observation design matrix, Pk
−  is the 

predicted covariance, and ek is the innovation vector. The 
system calibration mode with the KBS module is illustrated in 
Figure 4. 
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Figure 4. Personal navigator: 1) calibration mode data flow is 
shown in solid lines; and 2) when GPS signals are not available, 
the dotted lines become solid indicating that now the navigation 
solution is formed based on calibrated data of dead reckoning 

sensors, including the human locomotion model parameter, step 
length (SL) and step direction (SD). 

 
 

3. PERFORMANCE ASSESSMENT 

The personal navigator in the hybrid and DR modes has been 
extensively tested using various operators, different terrain 
configuration and mixed outdoor-indoor environments. The 
details of the performance test to date were provided in 
(Grejner-Brzezinska et al., 2006a-c; 2007a and b; Moafipoor 
2007a and b; Toth et al., 2007), and only summary statistics are 
presented here, with the emphasis on the newest results of the 
mixed indoor-outdoor setting.  
 
In this experiment, data were collected in the parking lot and 
inside the Center for Mapping building on August 21 and 26, 
2007. The operators, S and E, walked the parking lot and 
hallways of the Center for Mapping, and made several loops 
following the marked control points in the hallways of this 
single-storey building. A floor plan of the building was 
previously acquired by classical surveying methods, and control 
points were established in the hallways with the accuracy better 
than 1-2 cm in E and N, and 5 mm in height. The main objective 
of the control points was to facilitate the prediction of the user’s 
position and provide control for the reference trajectory inside 
the building where no GPS was available. By the time the 
operators started walking inside the building, they had 
completed outside calibration procedures during normal GPS 
signal availability (using DD carrier phase and pseudorange 
measurements), which was required for a better performance of 
the other sensors (see Figure 5). 
 
Inside the building, the heading was estimated from the 
HMR3000 magnetometer compass and HG1700 gyro. The 
altitude was measured by the PTB220 barometer, which was 
calibrated against the known pressure standards (pressure, 
temperature, etc.) for the general area of activity. It was 
observed that after completing the initial calibration, these 
sensors showed performance that ensured redundant and 
complementary measurement inputs, as well as sufficient 
stability along the trajectories studied here. 
 

 
 

Figure 5a. Center for Mapping floor plan and DR trajectory 
reconstruction for operator S using compass heading. 

 
 

 
 

Figure 5b. Center for Mapping floor plan and DR trajectory 
reconstruction for operator E using compass heading. 

 
Tables 7 and 8 show the accuracy assessment of the indoor DR 
trajectory for one full loop along the Center for Mapping 
hallways, and Table 9 provides the statistics of the three 
complete indoor loops. This test represents the combination of 
outdoor and indoor environments; 350 s of outdoor sensor 
calibration was followed by three complete indoor loops in 
three minutes (Aug. 26 dataset), using gyro/compass heading. 
As can be seen in Table 9, three indoor loops are still viable 
within the 3-5 m CEP50 constraint. 
 

Test 
data set

SL 
model

Mean 
[m]

Std 
[m] 

Max 
[m] 

End 
Misclosure

[m] 

CEP
(50%) 

[m] 
Fuzzy 0.78 0.87 1.61 2.18 0.49Operator 

S ANN 1.24 0.75 1.88 2.14 1.17
Fuzzy 0.84 0.81 1.95 2.75 0.73Operator 

E ANN 0.80 0.56 1.45 1.94 0.77
 

Table 7. Statistical fit to reference trajectory of the indoor DR 
trajectories generated using SL predicted with fuzzy logic and 

ANN, and compass heading; one indoor loop. 
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Test 
data set 

SL 
model 

Mean 
[m] 

Std 
[m]

Max 
[m] 

End 
Misclosure

[m] 

CEP
(50%) 

[m] 
Fuzzy  0.43 0.92 1.17 1.42 0.45Operator 

S ANN 0.41 0.54 1.07 1.10 0.43
Fuzzy  0.59 0.43 1.25 1.14 0.59Operator 

E ANN 0.62 0.47 1.11 1.26 0.65
 

Table 8. Statistical fit to reference trajectory of the indoor DR 
trajectories generated using SL predicted with fuzzy logic and 

ANN, and gyro heading; one indoor loop. 
 

Test  
data 
set 

SL 
model 

Mean 
[m] 

Std 
[m] 

Max 
[m] 

End 
Misclosure

[m] 

CEP
(50%) 

[m] 
Fuzzy  1.57 1.78 4.66 3.32 2.94327 

m ANN 1.15 1.57 4.52 2.6 2.53
 

Table 9. Statistical fit to reference trajectory of the indoor DR 
trajectories generated using SL predicted with fuzzy logic and 

ANN, and gyro/compass heading; three full indoor loops. 
 
An example outdoor trajectory, where DR solution was also 
tested after a deliberate removal of the GPS signals, is 
illustrated in Figure 6, and Table 10 presents the resulting 
accuracy statistics. 
 
Test  
data 
set 

SL 
model 

Mean 
[m] 

Std 
[m] 

Max 
[m] 

End 
Misclosure

[m] 

CEP
(50%) 

[m] 
Fuzzy  1.74 0.93 4.14 2.19 1.46187 

m ANN 2.05 1.06 4.53 3.01 1.97
 
Table 10. Statistical fit to reference trajectory of the outdoor DR 
trajectories generated using SL predicted with fuzzy logic and 

ANN, and gyro/compass heading. 

 
Figure 6. Reference using GPS/IMU carrier phase solution and 

DR trajectory reconstructed using SL determined by FL and 
ANN modules with gyro/compass heading. 

 
 

4. SUMMARY AND CONCLUSIONS  

An overview of the navigation techniques suitable for personal 
navigation was presented, followed by a description of an 
example implementation based on the multisensor integration 
approach, using GPS, INS, magnetometer, barometer and 

human dynamics model. All tests to date (outdoor and indoor 
environments) provided performance within the required 
specifications that is below 5 m CEP50; the indoor navigation, 
based on data collected to date, was limited to about 3 minutes. 
More tests are underway that consider longer and more complex 
indoor paths, including stairways, as this scenario has not been 
tested yet. The system’s operational environment has been 
originally designed for outdoor and moderately confined 
environments; however, if this is to be extended to indoor 
environment, additional sensors might be needed, as the human 
dynamics alone may not facilitate reliable navigation for more 
extended periods of time. Since the system is designed for 
emergency and military crews, it cannot be expected the any 
wireless infrastructure will be readily available, so the sensor of 
choice should be based on imaging techniques that do not 
require any additional infrastructure.  
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