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ABSTRACT: 
 
This paper proposes a new, integrated method for the self-calibration of 3D laser range cameras (LRCs) and corresponding 
systematic error models. Unlike other recently-proposed methods that consider independent sub-system calibration, this method 
allows simultaneous calibration of the camera-lens and rangefinder systems. The basis of the modelling is the collinearity and range 
observation equations augmented with systematic error correction terms that are estimated in a free-network, self-calibrating bundle 
adjustment. Several experiments designed to test the effectiveness of different combinations of systematic error model parameters on 
a SwissRanger SR-3000 LRC are described: a highly-redundant self-calibration network; an accuracy assessment test in which 
independently-surveyed target co-ordinates are compared with those from the LRC; and measurement of a planar surface. The 
former two tests reveal that an 11-parameter physical model is needed to correct all significant systematic errors. The latter 
experiment demonstrates the need for two additional empirical error terms for correcting residual rangefinder errors. Colour-
dependent biases in the rangefinder measurements were found to cause the range observation residuals to be undesirably inflated. 
 
 

1. INTRODUCTION 

Laser range cameras (LRCs) or range imaging cameras can 
simultaneously capture a full 3D point cloud with an array 
sensor at video rates by time-of-flight rangefinding within a 
narrow field of view. They offer great potential for real-time 
measurement of static and, perhaps more importantly, dynamic 
scenes. Their principal advantage over laser scanners is the lack 
of a scanning mechanism and over digital cameras is that only 
one sensor is needed for 3D data capture. There are already 
numerous applications of this technology that include face 
detection (Hansen et al., 2007), mobile robot search and rescue 
(Ellekilde et al., 2007), gesture recognition for human-computer 
interaction (Holte et al., 2007; Breuer et al., 2007), 
manufacturing, automated vehicle guidance, guidance for the 
blind and wheelchair assistance (Bostelman et al., 2006). Others 
include video gaming, real-time foot mapping for podiatry, 
pedestrian sensing for automobile collision avoidance and 
person tracking for airport security. 
 
The full metric potential of LRCs can not be realised, though, 
without a complete systematic error model and an associated 
calibration procedure to estimate all model coefficients. The 
recent research efforts of some have focused on the application 
of standard camera calibration procedures for the camera-lens 
system (Reulke, 2006; Santrac et al., 2006). Others have 
considered independent calibration of the camera-lens and 
rangefinder systems (Kahlmann et al., 2007; Lindner and Kolb, 
2006) where the latter is calibrated using a combination of 
baseline and surface fitting methods. The challenge of a 
complete system calibration has been stated by Breuer et al., 
(2007): “Comprehensive calibration turned out to be very 
difficult”. A new, integrated calibration approach that addresses 
this challenge is presented herein. Unlike the methods of others, 
the approach taken here is simultaneous calibration of both the 
rangefinder and the camera-lens systems. 
 

This paper is structured as follows. First, the mathematical 
models are presented. This includes the observation equations, 
the systematic error models and the calibration solution method. 
Following a description of the LRC used, three experiments are 
described: one in which the LRC is calibrated and two in which 
the efficacy of the calibration is independently assessed. Results 
from these experiments are analysed in detail with particular 
attention paid to model efficacy, solution strength as measured 
by parameter correlation and the accuracy improvement 
resulting from the calibration. 
 
 

2. MATHEMATICAL MODELS 

2.1 Observation Equations 

The basic observation equations logically stem from the fact 
that a LRC delivers radiometric intensity and 3D co-ordinates at 
each pixel location. Thus for any point i appearing in the focal 
plane of image j two collinearity equations 
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can be written, where  
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and (x, y, ρ)ij are the observables; (X, Y, Z)i are the object-
space co-ordinates of point i; the parameters (Xc, Yc, Zc, ω, φ, 
κ)j comprise the exterior orientation (EO) elements of image j; 
R1, R2, R3 are the fundamental rotation matrices; (xp, yp, c)j are 
the interior orientation elements (IO) of image j; and (Δx, Δy, 
Δρ) represent the correction models for systematic errors in 
each observable. 
 
2.2 Systematic Error Models 

The camera-lens system error model used for LRC calibration is 
the standard model for digital cameras (e.g., Fraser, 1997), 
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where (k1, k2, k3) are the radial lens distortion coefficients; (p1, 
p2), are the decentring distortion terms; (a1, a2) are the 
electronic biases and 
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The rangefinder model comprises terms that have physical 
explanation (the d-terms and the first two e-terms) as well as 
empirical terms 
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where d0 is the rangefinder offset; d1 is the scale error; d2 to d7 
are the cyclic error terms; U is the unit wavelength; e1 and e2 
are the clock skew errors (Du et al., 2005); and e3 to e11 
represent empirical terms. In contrast to Lindner and Kolb 
(2006), who use B-splines to model the cyclic errors, the 
modelling approach chosen here is primarily driven by the 
known physical causes of these periodic effects (e.g., Rüeger, 
1990).  
 
Hereafter the IO shall be understood to comprise the principal 
point, principal distance plus this set of additional parameters 
(APs; Equations 5, 6 and 10).  The IO shall be considered 
network-invariant for a given sensor. 
 
2.3 Self-Calibration Solution and Spatial Distances 

For the integrated self-calibration all model terms (EO, IO, and 
object points) are simultaneously estimated in a free-network 
adjustment with inner constraints imposed on the object points. 

In addition, spatial distance observations between object points 
m and n 
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are included to allow estimation of the scale error. 
 
 

3. EXPERIMENT DESCRIPTION 

3.1 Hardware 

The subject of this study was the SwissRanger SR-3000 LRC 
system pictured in Figure 1. The principles of 3D range camera 
technology can be found in Lange and Seitz (2001), for 
example. The SR-3000 features a 176 pixel x 144 pixel array 
for which the pixel size and spacing are both 40 μm. The 
nominal principal distance of the lens is 8 mm. Several 
rangefinder system parameters such as the integration time and 
modulation frequency can be set by the user. For the 
experiments described herein, the former was set to the highest 
possible value of 51.2 ms so as to maximise the signal-to-noise 
ratio and the latter was 20 MHz, for which the corresponding 
maximum unambiguous range and, therefore, the unit length, is 
7.5 m. 
 

 
 

Figure 1.  The SR-3000. 
 
3.2 Target Field 

The integrated calibration approach required special 
considerations in terms of both geometric network design and 
target design. A purpose-built, multi-resolution field of high-
contrast (black on white) targets measuring 3.6 m x 2.0 m was 
constructed. An SR-3000 intensity image of the target field is 
shown in Figure 3. The targets were mounted on two planar 
surfaces separated by 0.8 m to provide depth relief. Several 
sizes of rectangular targets were used since the network 
comprised images captured at multiple ranges, a requirement 
for estimation of the rangefinder APs. 
 
Several factors motivated this design. First, as the corners of the 
black rectangles constitute the targets, it was easy to measure 
spatial distances between targets. Second, no eccentricity 
correction was needed as is the case when circular targets are 
used (e.g., Ahn et al., 1999). Third, the materials were readily 
available. The disadvantage of this design stems from range 
biases that exist as a function of surface reflectivity (i.e. colour). 
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Since the target points lie at the boundary of two differently-
coloured materials, the biases cause inflation of the range 
residuals, as will be demonstrated. Other researchers have, 
however, used similar black-and-white checkerboard patterns 
for their LRC calibration (Lindner and Kolb, 2006; Santrac et 
al., 2006). 
 
3.3 Data Capture 

For the calibration a network of 30 convergent images, 15 with 
κ=0° and 15 with κ=90°, was captured, as pictured in Figure 2. 
The images were captured about 1.0 m above the ground along 
two lines such that the convergence angle between them was 
approximately 80°. The minimum and maximum observed 
ranges were 1.1 m and 6.6 m, respectively. This range of 
distances is slightly smaller than that of Lindner and Kolb 
(2006) who performed their calibration between ranges of 0.75 
m to 7.5 m. 
 
Thirty-three spatial distances between various object points 
measured with a 1 m long, 0.5 mm graduated steel ruler were 
included in the network. The same target field was used for the 
accuracy assessment, but a set of 6 independent images were 
captured at different locations. Forty-nine object points 
distributed throughout the target field were surveyed with a 
total station to provide the basis for the accuracy assessment. 
 

 
 

Figure 2.  Calibration network. 
 
3.4 Target Measurement 

Measurement of the target corners, which constitute the object 
points, was performed as follows. First, edge detection was 
performed throughout the entire image using orthogonal first-
derivative-of-Gaussian filters. For a given corner, the best-fit 
lines of the two intersecting edges were determined. This was 
done by fitting the following model to the edge magnitude 
image data  
 
( ) HyGxCAey,xf

2Bu +++= −    (12) 
 

where A is the amplitude of the Gaussian edge profile, C is the 
radiometric offset, G and H are the radiometric gradients, B is 
the damping coefficient and the line parameters D and θ are 
embedded in the function u: 
 

Dsinycosxu −θ+θ=     (13) 

Once the parameters were estimated for each edge, the two lines 
were intersected to obtain the x, y co-ordinates of the target 
corner, as shown in Figure 3. The range at that location was 
then bi-linearly interpolated from those of the four 
neighbouring pixels. 
 

 
 

Figure 3.  Target measurement by best fit line intersection. 
 
 

4. SELF-CALIBRATION RESULTS AND ANALYSES 

4.1 Self-Calibration Adjustment Cases 

Four self-calibration adjustment cases were performed. These 
are summarised in Table 1. Case 1, for which no IO parameters 
were estimated, served as the basis for quantifying the 
improvements gained in the other three cases. Nominal values 
were used for the principal point, principal distance (8 mm) and 
rangefinder offset (300 mm). (The adjustment would not 
converge without the large nominal rangefinder offset.) In case 
2 only these four “basic” IO parameters were estimated. In case 
3 a complete physical model comprising only significant APs 
was estimated. Case 4 comprised the APs in case 3 plus two 
empirical terms identified through analyses of systematic 
patterns the estimated residuals. The degrees-of-freedom for 
free-network adjustment of case 4 was 6407. 
 

Case IO parameters estimated 
1 None 
2 “Basic” IO parameters: xp, yp, c, d0 
3 “Physical” IO parameters: xp, yp, c, k1, d0, d4, d5, d6, 

d7, e1, e2 
4 Physical and empirical parameters: xp, yp, c, k1, d0, 

d4, d5, d6, d7, e1, e2, e4, e11 
 

Table 1.  Summary of the self-calibration cases 
 

4.2 Model Efficacy 

The improvements gained in each case can be assessed in terms 
of the RMS of residuals from all 7161 observations remaining 
after outlier removal by Baarda’s data snooping. These figures 
are presented in Table 2 and show only minor improvement 
when the nominal IO parameters are estimated (case 2). Case 3 
shows considerable improvement due to the large magnitude of 
the cyclic error components (maximum magnitude: 43 mm) and 
the clock-skew errors (maximum magnitude: 95 mm 
(range)/mm (image distance)). The latter correction equates to 
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334 mm at the edge of the image format. Another large 
correction of note is the 400 mm rangefinder offset. Little or no 
improvement is gained by adding the two empirical parameters 
in case 4 except in range, for which there is slight improvement. 
 

RMS % improvement  
 

Case 
x 

(μm) 
y 

(μm) 
ρ 

(mm)
x y ρ 

1 11 8 171 - - - 
2 10 7 160 9 12 6 
3 6 5 50 45 38 71 
4 7 5 46 36 38 73 

 
Table 2.  RMS of self-calibration residuals and % 

improvements 
 
Focusing on case 3, the overall precision as measured by the 
RMS of residuals is quite good in both x and y at 6 μm and 5 
μm, respectively, which represent 0.15 and 0.125 of the pixel 
size. This indicates that 1) the lens-system correction model 
was effective and 2) the image point measurement method of 
intersecting best-fit edge lines was very precise. At 50 mm, the 
range results are somewhat less impressive, though. This is 
most likely the due to the target design in which the observed 
distance was interpolated at the boundary between the white 
and black target components. Range biases were found between 
these two differently-coloured materials, which cased severe 
inflation of the range residuals. They can be seen in Figure 4 as 
the recessed rectangles in the range image. The magnitude of 
the bias can also be seen to vary with distance to the target. 
Note, however, that the gradual curving of the planar surfaces is 
expected in a range image. 
 

 
 

Figure 4.  Range image showing biases due to the different 
target components as recessed rectangles. 

 
This effect has also likely caused the estimated parameters, in 
particular the rangefinder offset, to be biased and, due to the 
high dispersion of observational errors, to be estimated with 
low precision (±2 mm for d0 in case 3). The resulting high 
dispersion of the range residuals for case 3 can be seen in 
Figure 5 as a function of range. It is planned to use a circular 
target design for future calibrations. 
 
4.3 Rangefinder Error Examples 

Figure 6 shows the range residuals from case 3 excluding the 
cyclic error terms d6 and d7 to show the effect of this systematic 
error. Clearly a large-magnitude, periodic error exists. The 

nominal wavelength is 1.875 m, one-quarter of the unit 
wavelength. Lindner and Kolb (2006) report a systematic 
deviation from the sinusoidal pattern of the cyclic errors at 
close range. No such effect was found in these data, though this 
may be due to the slightly-larger minimum range mentioned 
earlier. 
 
Figure 7 shows the effect of excluding the e2 clock-skew error 
term from the case 3 self-calibration solution. The result is a 
very strong linear trend in the range residuals as a function of 
the y image co-ordinate. 
 

 
 

Figure 5.  Range residuals vs. range for case 3. 
 

 

 
 

Figure 6.  Range residuals vs. range for case 3 excluding the 
cyclic error parameters d6 and d7. 

 
Figure 7.  Range residuals vs. y for case 3 excluding the clock-

skew parameter e2. 
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4.4 Parameter Correlation 

Considering again case 3, the largest correlation coefficients 
existed between the perspective centre co-ordinates (PCCs) and 
the principal distance (maximum magnitude: 0.83) and between 
the PCCs and the rangefinder offset (0.67). The maximum 
correlation magnitude between the rotation angles ω and φ and 
the principal point was quite favourable at 0.63, though it 
should be recalled that the IO model did not include decentring 
distortion terms, which were found to be insignificant. The only 
noteworthy correlation between the IO parameters was 0.71 
between c and d0. For the rest of the range APs the maximum 
correlation with any other parameter (EO or IO) was 0.20. 
Addition of the empirical terms in case 4 changed the situation, 
with maximum coefficients of 0.90 between e2 and e11, and 0.64 
between d0 and e4. In both cases 3 and 4, though, all APs were 
statistically significant in terms of the ratio of the estimate to 
the standard deviation. 
 
4.5 Scale Error Estimation 

Addition of the scale error, d1, to the case 3 adjustment did not 
significantly change the residual RMS measures. A high 
correlation of 0.86 existed with d0 but, interestingly and 
encouragingly, the correlation with c was only 0.44. These 
could be reduced by increasing the depth variation in the target 
field. Though statistically significant, d1 was excluded from the 
final AP models due to its lack of impact on the other 
performance measures. What this demonstrates is that the scale 
error parameter can be successfully estimated by including 
easily-measured spatial distance observations in the self-
calibration adjustment, though it is conceded that a large 
number (33) were used in this experiment. 
 
4.6 Lens Distortion Modelling Results 

The estimated radial lens distortion profile, δr, of the SR-3000 
is plotted in Figure 8. Though the amount of distortion is quite 
high, -205 μm at the maximum observed radial distance of 4.55 
mm, this represents only about 5 pixels due to the 40 μm pixel 
size. The corresponding 1σ error envelope is not perceivable 
since the estimated standard deviation of k1 was almost two 
orders of magnitude (76 times) smaller than k1 itself. The higher 
order terms of the radial lens distortion model were found to be 
insignificant. 
 
 

 
 

Figure 8.  Estimated radial lens distortion profile. 
 

5. INDEPENDENT ASSESSMENT 

5.1 Accuracy Assessment 

To assess the accuracy improvement gained by the different IO 
model cases, the object space co-ordinates of the surveyed 
points were compared with those determined from the LRC. A 
rigid body transformation of the LRC-determined co-ordinates 
onto the surveyed co-ordinates was required for each of the 6 
independent images. The overall RMSs of co-ordinate 
differences calculated from the total available set of 188 points 
are given in Table 3. The case 2 IO set yields improvement in 
only one dimension (X) and the accuracy actually degrades 
slightly in Y and Z. Clearly there is considerable improvement 
realised by using the physical AP model (case 3). In case 4 
there is more overall improvement in Z relative to case 3, but 
there also was a slight degradation in X, which may be due to 
over-parameterisation with the empirical terms. 
 

RMS % improvement  
 

Case
X 

(mm)
Y 

(mm)
Z 

(mm) 
X Y Z 

1 47 57 70 - - - 
2 42 63 74 11 -11 -7 
3 31 14 43 34 75 37 
4 35 15 36 27 74 48 

 
Table 3.  RMS of check point differences and % improvements. 
 
 

 
a) 

 
b) 

 
Figure 9.  Uncorrected and corrected planar target data. a) 

Isometric view, b) side view. 
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5.2 Planar Surface Correction 

As a final indicator of the efficacy of the proposed models, a 
planar, matte white target was imaged with the same SR-3000 
at normal incidence from a nominal distance of 1.5 m. The 
target filled the entire LRC field of view, so material 
reflectivity was constant throughout the image. Figure 9 shows 
two views of the raw, uncorrected point cloud and the data 
corrected with the case 3 and 4 models. Note the highly 
distorted shape of the raw data, the large (i.e. up to 800 mm) 
corrections in the Z co-ordinates (closely aligned to the range 
direction) and the residual un-flatness in the case 3 results. The 
latter is corrected by the two empirical terms included in the 
case 4 IO model. 
 
 

6. CONCLUSIONS AND FURTHER WORK 

An integrated method for LRC self-calibration and 
corresponding systematic error models have been proposed. 
Three particular IO models having 4, 11 and 13 parameters 
were examined in detail. In terms of model efficacy as 
measured by the RMS of self-calibration residuals, the 4-
parameter, basic IO case was found to provide little 
improvement over the case of adjustment without any IO 
parameters. The other two models resulted in considerable 
improvement due to the large-magnitude range error correction 
terms that were estimated, but there was little difference 
between the two sets of results. The accuracy assessment test 
resulted in very similar outcomes. The example of planar 
surface correction demonstrated the benefit of the empirical 
terms that modelled residual un-flatness. The chosen target 
design provided good results in terms of the image co-ordinate 
measurement residuals, but less favourable results in terms of 
the range residuals due to surface reflectance dependent biases. 
A circular target design is currently being pursued to overcome 
this problem in order to improve the self-calibration results. 
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