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ABSTRACT:

In this article, a range image sequence tracking approach is proposed, which combines 3-D camera intensity and range observations

in an integrated geometric transformation model. Based on 2-D least squares matching, a closed solution for intensity and range

observations has been developed. By combining complementary information, an increase in accuracy and reliability can be achieved.

The weighting of the two different types of observations with a-priori unknown quality is performed by variance component estimation.

To fulfill the requirements of robust variance covariance matrix estimation in statistical context, alternative approaches for variance

covariance matrix calculation are proposed and evaluated. To verify its applicability, reliability and accuracy potential, the introduced

2.5-D least squares tracking technique has been evaluated by several series of experiments in the field of human motion and interaction

measurement.

1 INTRODUCTION AND MOTIVATION

Conventional stereo-photogrammetric procedures generate, de-

pending on the sensors used, object space maps with high spatio-

temporal resolution. The main drawbacks are the recording con-

figuration of at least two cameras, synchronized and oriented to

each other, and the data processing, which is highly complex due

to spatial and temporal feature matching.

Range imaging (RIM) cameras (3-D cameras) based on photonic

mixer devices (PMD; Schwarte, 1997) or comparable principles

offer an interesting monocular alternative for photogrammetric

3-D data acquisition. The use of modulation techniques and com-

bined CCD/CMOS technology provides simultaneous gray value

and distance measurements of the scene in each pixel of the sen-

sor. With frame rates up to 50 Hz, 3-D cameras are well suited

for motion capture in fields such as human or robot (inter-)action

analysis.

Several approaches to (semi-)automatic RIM sequence analysis

have been shown: Göktürk and Tomasi (2004) introduced a RIM

head-tracking algorithm. In a training stage, a depth signature

(representative signature for head location) is calculated by iden-

tifying the probands’ heads on each frame interactively. In a

tracking stage, the depth-signature of each frame is compared

against the training signatures. The best match can be identified

by a correlation metric and represents the location of the object of

interest. Kahlmann and Ingensand (2006) described the usability

of the RIM camera SwissRanger SR-3000 for surveillance sys-

tems. Moving persons within an indoor scene could be detected

by RIM thresholding and pixel clustering. Gesture recognition

based on motion detection by double difference range images and

3-D shape matching with 3-D shape contexts has been presented

by Holte and Moeslund (2007). Breuer et al. (2007) recognized

hand movements (location and orientation) by principle compo-

nent analysis (PCA) applied on RIM data. In the further course of

analysis, they fitted an articulated model to reconstruct the hands.

The centroid of a cluster represents the persons position for the

corresponding frame. The implementation of the CONDENSA-

TION algorithm (conditional density propagation) – first intro-
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duced by Isard and Blake (1998) and extended for tracking mul-

tiple objects in RIM sequences by Koller-Meier (2000) – into a

RIM tracking process is described in Kahlmann et al. (2007).

The above reviewed RIM tracking approaches are based on ba-

sic image analysis functions (e.g. thresholding, segmentation,

computation of point cloud centroid) or extended matching pro-

cedures using motion and measurement models (e.g. CONDEN-

SATION algorithm, Kalman filtering) applied to the range data.

In this article, a RIM sequence tracking approach (2.5-D least

squares tracking; LST) is proposed, which combines RIM inten-

sity and range observations in an integrated geometric transfor-

mation model. Based on 2-D least squares matching (LSM), a

closed solution for intensity and range observations has been de-

veloped. In contrast to motion model techniques, intensity obser-

vations are also included into the least squares (LS) adjustment.

By adding complementary information, an increase in accuracy

and reliability can be expected.

2 SENSOR AND DATA

RIM sensors (Figure 1) allow the simultaneous acquisition of in-

tensity and range images of – in principal – any scene (Figure

2). In the field of RIM sensor technology, 3-D cameras are cur-

rently available with a sensor size of up to 25,000 pixels and a

frame rate of up to 50 Hz. Based on a phase-measuring time-of-

flight (TOF) principle, the camera is able to measure distances

for each pixel in addition to the gray value information (Oggier

et al., 2004). As a result, a spatiotemporal resolved represen-

tation of the object space is given in the form of intensity im-

ages and range maps. The calculation of 3-D coordinates is per-

formed on-chip. Image coordinates as well as range information

are transformed into Cartesian coordinates using the relationship

between image and object space as described in Kahlmann and

Ingensand (2006). Several assumptions are implied, which have

to be proven by suitable photogrammetric calibration techniques

(Kahlmann et al., 2006; Westfeld, 2007a).

Advantages of this new 3-D mapping technology are the genera-

tion of 3-D data on a discreet raster without stereo compilation,

the recording of motion sequences and the marginal dimension.
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Drawbacks are the limited range, the small spatial resolution and

the absolute accuracy in the range of a few centimeters. Possi-

ble applications for RIM sensors could be in the field of human-

computer-interaction (HCI; Du et al., 2005), robot vision (Gud-

mundsson, 2006), automotive engineering (Zywitza et al., 2005)

or human motion analysis (Westfeld, 2007b; Hempel and West-

feld, 2008).

(a) (b)

Figure 1: Range imaging cameras. (a): SwissRanger SR-3000

(url: http://www.swissragner.ch/, 2007). (b): PMD [vi-

sion] 19k (url: http://www.pmdtec.com/, 2007).

(a) (b)

Figure 2: Near-infrared intensity image (a) and colour coded

range image (b).

The data used in this article were captured by the SwissRanger

SR-3000 (Mesa Imaging AG, Zurich, Switzerland; Figure 1a). It

should be pointed out that alternative manufactures, like PMD-

Technologies GmbH (Siegen, Germany; Figure 1b) or Canesta,

Inc. (Sunnyvale, CA, USA), offer commercially available prod-

ucts, too. The modes of operations are nearly the same, except for

the chip design: Mesa Imaging AG uses combined CCD/CMOS

technology, PMDTechnologies and Canesta, Inc. just use CMOS.

A detailed survey of optical range measurement and solid-state

imaging sensing is given in Lange (2000).

3 RANGE IMAGE SEQUENCE ANALYSIS

Photogrammetric motion analysis is a well-established part of

close-range photogrammetry and allows the extraction of geo-

metric information from images with high precision and relia-

bility. In this context, least squares matching is a common tool

for the computation of motion vectors from image sequences.

3.1 State of the Art

2-D LSM: 2-D least squares matching formulates the gray value

relations between two or more corresponding image patches as

non-linear observation equations (Ackermann, 1984; Förstner,

1984; Grün, 1985). The goal is to determine six parameters of

a 2-D affine transformation and – if necessary – a 2-parameters

radiometric correction. Commonly used in spatial and/or tem-

poral matching tasks (e.g. conventional aero triangulation, DSM

generation or motion analysis applications), 2-D LSM represents

a multifunctional instrument for 2-D image analysis.

3-D LSM: The basic 2-D LSM approach was extended to a 3-D

algorithm working on voxel data and applied on flow tomogra-

phy sequences by Maas et al. (1994). Accordingly, 3-D LSM

works with 3-D volume data and voxels rather than 2-D images

and pixels. The 3-D affine transformation has 12 parameters, and

the observation equations have to be formulated using gray value

gradients in three directions.

Least Squares Surface Matching: Based on a basic 2-D LSM

approach, Maas (2000) computed correspondences between neigh-

boring or crossing airborne laser scanning strips by formulating

LSM on a TIN structure. Grün and Akca (2004) proposed a

3-D least squares surface matching algorithm (LS3D), which es-

timates the seven parameters of a 3-D similarity transformation

between two or more 3-D surface patches by minimizing the Eu-

clidean distances.

3.2 2.5-D Least Squares Tracking

2-D LSM can basically be applied for tracking surface patches

in RIM data sequences by using the Cartesian coordinates only.

The proposed 2.5-D LST (least squares tracking) algorithm uses

the original intensity and range information simultaneously. Due

to the 2.5-D nature of the surface patches, this is referred to as

2.5-D here.

Functional Model: Intensity observations are used in the same

manner as in conventional LSM: Template patch gv1 and search

patch gv2, taken from consecutive gray value images I1 and I2,

provide gray value observations for the adjustment at each posi-

tion (x, y) resp. (x′, y′). The geometric and radiometric relations

between those patches can be formulated as

gv1(x, y) − v1(x, y) = r0 + r1 · gv2(x′

, y
′) (1)

Based on the same considerations, the relation between two patches

rv1 and rv2 taken from range value images R1 and R2 become

rv1(x, y) − v2(x, y) = d0 + d1 · rv2(x′

, y
′) (2)

The geometric affine transformation model for both types of ob-

servations, intensity and range, is given by

x
′ = a0 + a1x + a2y and y

′ = b0 + b1x + b2y (3)

In Equation 1, r0 and r1 model brightness and contrast variations.

In analogy to a radiometric gray value correction, range variations

between template and search window can be formulated as a lin-

ear function, too. Thus, it is also possible to compute a 1-D depth

shift d0 and a depth scale factor d1. Within a Gauss-Markov-

Model (GMM), the parameters can be estimated by minimizing

the sum of the squares of the error vectors v1 and v2.

Stochastic Model: The stochastic model describes the variances

and covariances of the observations. In many cases, the setup of

the stochastic structure of the observations (variance-covariance

matrix; VC-matrix) is given by the a-priori definition of fixed

weights. Information from the instrument manufacturer or from

previous accuracy analyses provide the basis for the specification

of the quality of the observations. Besides the parameters of the

functional model, the standard error of unit weight can be esti-

mated for the stochastic model only. Thus, the evaluation of the

quality of the observations using the variance of the unit weight

is limited to homogeneous observations.

2.5-D LST uses heterogeneous observations (intensity and range)

and requires adjusted weights for each group of observations. In

our work, the weights are computed by iterative variance com-

ponent estimation (VCE; e.g. Schneider and Maas, 2007). This

approach provides the following advantages:

• An automatic estimation of the variance components.
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• An improvement of the adjustment results due to the utiliza-

tion of the complete information content of the observations.

• An accuracy specification for each variance component and

therewith for each group of measurement.

The weights of the observations are given by the quotient of the

variance of the unit weight σ2

0 and the variances of the observa-

tions σ2

i . At this, σ0 is a constant (in general σ0 = 1) and σi are

the variance components, which can be estimated. In the course

of the VCE, the VC-matrix of the unknown parameters V (x̂) can

be divided into additive components Vi(x̂) = σ2

i (A′Ω−1A)−1;

each component i represents a group of observations. See Koch

(2004) for further information for the computation.

Parametrization: Like in Baltsavias (1991), the radiometric gray

value correction terms were determined prior to the actual LS ad-

justment. This approach yields a more robust solution for the

remaining geometric parameters.

The geometric transformation between both pairs of patches gvi

and rvi with i = [1; 2] can be modeled by an affine transforma-

tion with two shifts a0, b0, two scales a1, b2 in row and column

direction and two parameters a2, b1 for rotation and shear. The

gray values as well as the range values remain unaffected by the

shift and rotation parameters and are resampled only, according

to their new (non-integer) image positions. The remaining scale

parameters cause geometric variations in both search patches, but

effect a change in range values, too. Consequently, the range off-

set d0 depends on a1,b2 and can be integrated into the basic 2-D

LSM approach, which allows a closed LST solution. Furthermore

it was assumed that there is no depth scale variation in the range

patches. Therefore, the depth scale parameter d1 is set to 1 in the

following considerations.

The relation between depth variations and – in a first instance – a

consistent scale in row and column direction λ := 1

2
(a1 + b2) is

given by

λ =
rv1(x, y)

rv2(x′, y′)
(4)

Due to scale-invariant range value differences, Equation 4 is ex-

pressed for the two center pixels (xc, yc) and (x′c, y′c). The

range value adjustment of the center pixel becomes

rv1(xc
, y

c) = λ · rv2(x′c
, y

′c) (5)

Therewith, the range values of the remaining pixels in the neigh-

borhood (xn, yn) and (x′n, y′n) can be formulated:

rv1(xn
, y

n) = rv1(xc
, y

c)

+
[

rv2(x′n
, y

′n) − rv2(x′c
, y

′c)
] (6)

Substituting rv1(xc, yc) in Equation 6 by Equation 5 yields a

range value correction term according to scale variations for all

pixels:

d0 = rv1(x, y) − rv2(x′

, y
′) = rv2(x′c

, y
′c) · (λ − 1) (7)

Finally, the observation equation 2 can be expressed as

rv1(x, y) − v2(x, y) = rv2(x′c
, y

′c) ·
(

a1 + b2

2
− 1

)

+ 1 · rv2(x′

, y
′)

(8)

Using this integrated model, all transformation parameters can

be determined based on intensity and range observations. The

GMM minimizes the sum of squares of the intensity and range

value differences. The range offset d0 in dependency of a1, b2 is

considered in the GMM of observation vector.

4 MISSPECIFIED VC-MATRICES IN GENERALIZED

MULTIPLE LINEAR REGRESSION MODELS AND

THEIR CONSEQUENCES

In statistics, a random variable is called heteroscedastic (HS), if

at least two different observations do not have the same variance

(Greene, 2007). Estimating the variances of each observation is

impossible due to the lack of redundancy and is not desirable

from a geodetic point of view. As a result, a HS pattern has to

be introduced in the form of an assumed VC-matrix of a vector

valued random variable (in general by giving equal weights to

each vector component). This assumption may cause inaccurate

parameter estimations and invalid statistical hypotheses tests. A

(partial) correction for heteroscedasticity can be achieved by the

application of a weighted LS estimation method.

In this article, the weighting of the two different types of ob-

servations with a-priori unknown quality is firstly performed by

VCE (Section 3). However, the variances of the two types of

observations estimated by VCE may not correspond to the true

variances of each individual observation. To fulfill the require-

ments of a robust VC-matrix estimation in statistical context, al-

ternative approaches for VC-matrix calculation are proposed and

evaluated, which yield estimators that are consistent for the true

VC-matrix. These include the heteroscedasticity consistent esti-

mator (HC; White, 1980) disclaiming any autocorrelation within

the disturbances as well as the heteroscedasticity and autocorrela-

tion consistent estimator (HAC; Newey and West, 1986), assum-

ing a general dispersion pattern.

The multiple linear regression model is a well documented tool in

statistics (e.g. Seber, 2003). If the usual LS assumptions are true,

the generalized least squares estimator (GLSE; Greene, 2007) is

the best linear unbiased estimator of the GMM with known VC-

matrix within the class of linear estimators:

x̂ = (A′
Ω

−1
A)−1

A
′
Ω

−1
l (9)

The GLSE will still be unbiased assuming that (i) the known VC-

matrix Ω1 is the first approximation of the non-spherical behavior

with respect to error term and (ii) the true dispersion pattern of l is

given by Ω0, which should only belong to the set of all symmetric

and positive definite matrices. This could be seen by using the

expectation operator on x̂:

E(x̂) = E
(

(A′

Ω
−1

1 A)−1
A

′

Ω
−1

1 l
)

= (A′

Ω
−1

1 A)−1
A

′

Ω
−1

1 Ax

= x

(10)

It is feasible to use the GLSE as long as the true parameter vector

x has been estimated on the average, independent of any arbitrary

approximation of the true VC-matrix of the population. Regard-

ing to the alternative GLSE expression

x̂ = x + (A′

Ω
−1

1 A)−1
A

′

Ω
−1

1 v (11)

the VC-matrix of x̂ can be calculated as follows

V (x̂) = E
[

(x̂ − x)(x̂− x)′
]

= E
[

(A′

Ω
−1

1 A)−1
A

′

Ω
−1

1 vv
′

Ω
−1

1 A(A′

Ω
−1

1 A)−1
]

= (A′

Ω
−1

1 A)−1
A

′

Ω
−1

1 Ω0Ω
−1

1 A(A′

Ω
−1

1 A)−1

6= (A′

Ω
−1

1 A)−1

(12)

As shown it Equation 12, the use of Ω1 as the true VC-matrix of

the population results in a wrong computation of the estimated

parameters. The consequences of this failure within the esti-
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mation process will lead to invalidated statistical joint or single

hypotheses tests. The degree of complexity is further enhanced

when both Ω1 and Ω0 are unknown (this is the common situa-

tion in statistics) and have to be estimated from the data. The

estimated GLSE (or two stage Aitken estimator) is given by:

x̃ = (A′

Ω̂
−1

1 A)−1
A

′

Ω̂
−1

1 l (13)

This estimator is neither linear due the fact that Ω̂1 and v are cor-

related, nor does it have known finite sample properties in gen-

eral. At least it can be said that x̃ is a consistent estimator of

x whenever the matrix series (Ω̂1)
∞

i converges in probability to

Ω̂0 due Slutsky’s theorem (Greene, 2007). For sure it is impos-

sible to estimate Ω0 directly because of the 0.5N(N + 1) free

parameters within that VC-matrix (N : Number of observations).

The authors adopt two well known robust covariance estimation

procedures from econometrics to circumvent the direct estima-

tion problem. The idea is quite simple: Seeking a consistent es-

timator for A′Ω−1

1
Ω0Ω

−1

1
A, instead of estimating a restricted

version of the true VC-matrix of the population. This matrix con-

tains only 0.5n(n + 1) free parameters whereas n is referred the

number of components in x (n: Number of unknown parame-

ters). Assuming that Ω0 is a positive definite diagonal matrix

(without an autocorrelation pattern) and Ω1 = I is the best ini-

tial approximation over the underlying HS pattern, the approach

will coincide with White’s heteroscedasticity consistent estimator

(White, 1980). Furthermore, the only restrictions on Ω0 are given

by symmetry and positive definiteness, which lead to the het-

eroscedasticity and autocorrelation consistent estimator of Newey

and West (1986). The estimation process is carried out in the fol-

lowing way:

1. Using Equation 13 whereas Ω1 represents the stochastic model

and the best approximation of Ω0 (Ω1: VC-matrix estimated

by VCE).

2. Estimating the true VC-matrix of x by

V (x̂)HC = (A′

Ω̂
−1

1 A)−1Σ̃0(A
′

Ω̂
−1

1 A)−1
(14)

with Σ̃0 = A
′
Ω̂

−1
1 Ψ̃0Ω̂

−1
1 A

Ψ̃0= Diag(v̂2
i )

and assuming a HC pattern as well as abstaining from any

autocorrelation within the disturbances only.

3. Estimating the true VC-matrix of x by

V (x̂)HAC = (A′

Ω
−1

1 A)−1Σ̃1(A
′

Ω
−1

1 A)−1
(15)

with Σ̃1 =
[

Σ̃0 + Γ̃1

]

Γ̃1 =
∑p

j=1

(

1 −
j

p+1

)

·

∑N
i=j+1(aivivi−ja

′

i−j + ai−jvi−jvia
′

i)

p = floor
(

4(N/100)2/9
)

and assuming a general dispersion pattern. The row vector ãi

is the ith row of Ã := WA where W contains the recipro-

cals of
√

λi whereas
√

λi is the ith eigenvalue of Ω̂1. This is

due to a spectral decomposition of Ω̂1 (extension of the HAC

estimator on heterogeneous observations).

Since both VC-estimators are consistent for the true Ω of the pop-

ulation (Newey and West, 1986; White, 1980) all single and joint

hypotheses tests are valid for the asymptotic case.

5 RESULTS

The following section presents results of several experiments and

shows the effects of different functional and stochastic LST mod-

els.

5.1 Experiment 1: Functional Model

To show the improved parameter accuracies and reliability of the

estimation, simulated and real data (Figure 3) with (i) high inten-

sity contrast, (ii) high range contrast and (iii) balanced contrast

between both channels have been used. Furthermore, trials with

and without a range offset were performed. This configuration

should show the influence of different functional models on the

shift and scale parameters.

(a) (b) (c) (d)

Figure 3: Some 3-D camera intensity (top) and range (down) im-

ages. (a): Synthetic data. (b): Real data with measuring

marks. (c): Human hand. (d): Human head.

A synthetic data set has been created in order to determine the in-

fluences of different functional models accurately. These data are

simply noisy (σgv = 1000 bit; σrv = 100 bit), but no system-

atic errors occur (e.g. measurement uncertainties due to surface

conditions, background illumination or multipath effects). Real

data have been captured by the SwissRanger SR-3000 with con-

stant integration time (it = 20.2 ms) and modulation frequency

(mf = 20.0 MHz). After exploring the potential of 2.5-D LST

with synthetic data, those experiments reflect the results, which

can be expected in practical use.

For single channel estimation it is obvious that insufficient con-

trast in intensity or range observations will result in non-

convergence of the solution vector. This is a general problem

of LSM: As the covariance matrix is generated from observations

with stochastic properties, the estimated standard deviations (SD)

of the transformation shift components will generally be too op-

timistic, and correlations between parameters, indicating singu-

larities caused by insufficient patch-gradients will often not be

detected (Maas, 2002).

Consequently the adjustment is stabilized, if one of the channels

provides sufficient contrast in both coordinate directions. Even

though it contains low information, the corresponding intensity

or range signal is not discarded but has some influence on the

adjustment in the form of a slight improvement of shift and scale

parameters against single channel estimation with high contrast

(approx. 5.0 % for σa0,b0 and 20.0 % for σa1,b2). Therewith, the

entire available information is used.

An improvement in scale adjustment can be achieved for signif-

icant depth variations between template and search patch, inde-

pendent of even or uneven range patches (approx. 50.0 % for

σa1,b2).

An optimal 2.5-D LST solution can be achieved, if intensity and

range channel provide sufficient contrast. The SD for shift param-

eters σa0,b0 are within a range of 1/50 to 1/25 pixel for real data. A

range offset can be determined with a relative accuracy of 0.25 %

of the whole distance d0.

A measure of the quality of the introduced functional model pro-

vide the SD of the adjusted observations σ̂gv,rv . Those values

range around 100 bit for the intensity channel and 10 bit for the

range one. Specific details on the order of magnitude (16 bit-

range) will be given in Section 5.2.
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σa0 σb0 σa1 σb2 σd0 σ0
gv σ0

rv σgv σrv σ̂gv σ̂rv Comments

[pixel] [mm] [16bit] [16bit] [16bit]

0.037 0.026 0.008 0.007 4.160 1.0 1.0 × × 65.112 37.669 Equal weights

0.036 0.026 0.010 0.007 5.742 1.0 1·E+7 × × 69.930 51.810 Overemphasis intensity measurement

0.069 0.054 0.007 0.007 0.475 1·E+7 1.0 × × 103.232 7.616 Overemphasis range measurement

0.041 0.034 0.006 0.006 0.641 1.0 1.0 1616.916 120.719 69.108 7.499 VCE (two groups of observation)

Table 1: RIM sequence analysis using different stochastic models. Experimental trials performed with 2.5-D LST using intensity and

range channel.

tr(V (x̂)V CE) tr(V (x̂)HC) tr(V (x̂)HAC) tr(...)∗

tr(...)∗∗
tr(...)∗

tr(...)∗∗∗
R Homogeneity Comments

*,** *,***

Static scene

Measuring mark

Images taken form different point of views

0.00349∗ 0.00492∗∗ 0.00550∗∗∗ 0.709 0.634 [0.10 ; 9.60] 2� 2�

0.00688∗ 0.01696∗∗∗ 0.01234∗∗ 0.557 0.405 [0.10 ; 9.60] 2� 2�

Kinematic scene

Natural gray value gradient

Images taken form one point of view over time

0.00260∗∗∗ 0.00257∗∗ 0.00256∗ 0.986 0.999 [0.14 ; 7.15] 2� 2�

0.05099∗∗ 0.04448∗ 0.12381∗∗∗ 0.872 0.359 [0.14 ; 7.15] 2� 2�

Table 2: Homogeneity of variance covariance matrices.

The experiment shows that the use of complementary information

improve accuracy and reliability for RIM matching tasks. 2.5-D

LST is most impressive when dealing with significant range off-

sets between template and search patches. In particular the range

channel supports gray value observations in scale adjustment and

provides additional information in the case of low contrast within

intensity patches.

5.2 Experiment 2: Stochastic Model

When processing heterogeneous data, an adaption of the stochas-

tic model is necessary. A splitting of a single heterogeneous ob-

servation group in several ones allows the consideration of mul-

tiple variance factors (Section 3.2). Thus, it is possible to tap

the full information potential of the available observations. The

results of some experiments on a RIM data set with high inten-

sity and range contrast as well as a range offset of about 30 cm

between template and search patch accentuate the need for an

adapted stochastic model (Table 1). The following experimental

setup was used: 2.5-D LST with (i) equal weights for intensity

and range observations (σ0

gv,rv = 1bit), an overemphasis of (ii)

the intensity (σ0

rv = 1 · E + 7bit) or (iii) the distance measure-

ment (σ0

gv = 1 ·E+7bit) and (iv) a stochastic model, which was

estimated by VCE with σ0

rg = 1bit and σ0

rg = 1bit as initial

a-priori SD for a VCE.

In Table 1 (Row 1-3) a negative influence on parameter accura-

cies is obvious for a deficient weighting of the measurements.

The specified a-posteriori SD of the adjusted observations have

higher variances, compared to a well-balanced weighting (Row

4). Those balanced weighting could be achieved by VCE with

two groups of observations. The precision of the shift parame-

ters is within the order of 1/30 pixel. The scales can be determined

with a precision σa1,b2 of 0.006, and the corresponding range

offset SD σd0 (derived from Equation 7 by the law of the prop-

agation of errors) becomes 0.6 mm (based on d0 = 294.1 mm,

corr. 0.2 %).

Applying a VCE, precision information of the original observa-

tions becomes available: In this case, the a-priori SD of the inten-

sity measurement σgv is 1600 gray value, which corresponds to

16 bit resp. 6 gray values referring to 8 bit. This magnitude is re-

alistic and comprehensible due to a poorer signal-to-noise ratio of

CMOS sensors (Lange, 2000), background illumination and vari-

ations within charge-to-voltage relation. Furthermore, σgv aligns

with previous results empirically determined by Hempel (2006).

The range values have been measured with an SD of 121 counts

resp. 1.4 cm (it = 20.2 ms; mf = 20.0 MHz), which corre-

sponds to Hempel’s results as well. Free of systematic errors, the

averaged a-posteriori SD of the adjusted observations σ̂gv,rv can

be specified with 69 counts (16 bit-range) resp. 0.3 gray values

(8 bit-range) for the intensity channel and 8 counts resp. 1 mm for

the range channel. Those values reflect that the raw data match

well with the established model.

The experiment shows that 2.5-D LST in combination with a

VCE improves the parameter accuracies. Especially if no ade-

quate a-priori precision information is available, an optimal uti-

lization of the whole content of information becomes possible.

Furthermore, the procedure delivers valuable information on the

sensor and data quality.

5.3 Experiment 3: Robust VC-Matrix Estimation

The following experiments have been performed to show, whether

an enhanced stochastic model in the form of a robust VC-matrix

estimation (Section 4) is useful for the presented functional model

(Section 3.2) and to quantify differences in the precision of the

underlying VC-estimators (VCE, HC and HAC). Testing the de-

terminants of the estimated VC-matrices of the GMM parameter

vector x̂ would be of a great benefit since this approach will in-

corporate the covariances between the components of x̂ as well as

their variances. However, this test procedure will only work for

orthogonal regressions or stochastic processes (Rounault, 2007),

which both do not fit into the presented framework. In order to

still derive a valid value for the homogeneity of the several VC-

matrices, the traces tr(V (x̂)V CE), tr(V (x̂)HC) and

tr(V (x̂)HAC) of the estimated matrices are tested against each

other by usual F-test procedures:

• Null hypothesis:

H0 : σ
2

1 = σ
2

2 (16)

• Test Statistics:

T =
tr (V (x̂)∗)

tr (V (x̂)∗∗)
resp.

tr(V (x̂)∗)

tr(V (x̂)∗∗∗)
(17)

with tr (V (x̂)∗) < tr (V (x̂)∗∗) < tr (V (x̂)∗∗∗)

• Acceptance region:

R =
[

Fn−1,n−1, α
2
; Fn−1,n−1,1− α

2

]

(18)

with F: Quantile of F-distribution
n: Number of unknown parameters
α: Significance level
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Table 2 shows the results of variance homogeneity tests for some

representative 2.5-D LST tasks. Obviously, the VC-matrices are

homogeneous; this means that no significant variations occur and

the VC-matrix estimated by VCE can be accepted. In other words,

when using the same sensor, the measurements of one group of

observations (intensity or range) is subject to the same stochastic

errors. Thus, an aggregation of all observations of one group with

one weight is acceptable. An a-posteriori weighting by robust

VC-matrix estimation is not necessary. Due to its low computa-

tional effort, the estimation of robust VC-matrices is still prac-

ticable and maybe useful in the case of VCE modeling failures

within the VC-matrix.

The experiment shows that the consideration of two groups of

observations in a VCE is sufficient and that there is no significant

variation of the precision of observations within the groups of

observations.

6 CONCLUSIONS AND OUTLOOK

In this article, a least squares tracking approach based on 3-D

camera intensity and range data was proposed. The presented

functional model combines the transformation parameters for in-

tensity and range images and has been proven by various ex-

periments with synthetic and real data. It could be shown that

an increase in accuracy, stability and reliability can be reached

for least squares matching and tracking by the integrated treat-

ment of intensity and range information. The stochastic model

has been designed by using a variance component estimation ap-

proach as well as robust variance covariance matrix estimation. It

could be shown that a separation of the heterogeneous data into

two groups of observations is sufficient for the accuracy of the

stochastic model, and that there is no significant variation of pre-

cision within the groups of observations. As an additional prod-

uct, the procedure delivers information on the precision of 3-D

camera range and intensity measurements.

So far, the affine scale parameters are modeled through the ad-
ditional range information. Future work will address other ge-
ometric patch transformation parameters, which are not consid-
ered by the 2-D affine transformation. In particular, the keystone
distortion caused by an inclination between the sensor plane and
the captured object can be expressed through the RIM depth off-
set parameter. Beyond this, the effect and elimination of outliers
should be addressed. Robust estimation procedures with respect
to outlier phenomena will be more appropriate than dealing with
certain HS-patterns. Also, likelihood approaches with a heavy-
tailed distribution could be used for a Gaussian distributed error
term within the GLSE framework.
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T. Luhmann (ed.), Photogrammetrie - Laserscanning - Optische 3D-Messtechnik
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