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ABSTRACT 
 
One of the critical aspects of the curvature based classification of spatial objects from laser point clouds is the correct interpretation 
of the results. This is due to the fact that measurements are characterized by errors and that simplified analytical models are applied 
to estimate the differential terms used to compute the object surface curvature values. In particular, the differential terms are the first 
and second order partial derivatives of a Taylor’s expansion used to determine, by the so-called “Weingarten map” matrix, the 
Gaussian and the mean curvatures. Due to the measurement errors and to the simplified model adopted, a statistical procedure is 
proposed in this paper. It is based at first on the analysis of variance (ANOVA) carried out to verify the fulfilment of the second 
order Taylor’s expansion applied to locally compute the curvature differential terms. Successively, the variance covariance 
propagation law is applied to the estimated differential terms in order to calculate the variance covariance matrix of a two rows 
vector containing the Gaussian and the mean curvature estimates. An F ratio test is then applied to verify the significance of the 
Gaussian and of the mean curvature values. By analysing the test acceptance or rejection for K and H, and their sign, a reliable 
classification of the whole point cloud into its geometrical basic types is carried out. Some numerical experiments on synthetic and 
real laser data finally emphasize the capabilities of the method proposed. 
 
 

1. INTRODUCTION 

Dealing with the laserscanning surveying technique, once the 
automatic points acquisition is carried out, the main 
methodological challenge is their automatic processing. Within 
the various computational procedures, a reliable geometrical 
classification of each laser point is investigated throughout this 
paper. The work fits in the recent researches conducted by the 
authors, whose analytical aspects have been mainly presented to 
the statisticians community (Crosilla et al., 2007) and whose 
laser scanning applications have been shown instead at various 
ISPRS events (Crosilla et al., 2004, 2005; Visintini et al., 2006; 
Beinat et al., 2007). 
 
The procedure of automatic classification proposed by the 
authors is fundamentally based on the local analysis of the 
Gaussian K and mean H curvatures, obtained by applying a non 
parametric analytical model. In detail (chapter 2), the Z 
measured coordinates of each point is modelled as a Taylor’s 
expansion of second order terms of X,Y local coordinates. The 
weighted l. s. estimate of the unknown vector, collecting the 
differential terms, is obtained by considering a selected number 
of neighbour points within a bandwidth radius and by applying 
a function taking into account their distance from the centre. 
 
From the so locally estimated surface differential terms, the 
corresponding local Gaussian K and mean H curvature values 
are obtained, as well as the principal curvatures (chapter 3). As 
known, such curvatures are invariant to the reference frame. 
 
Since the instrumental noise worsens the data quality and the 
analytical modeling simplifies the surface true form, the 
curvature values have to be statistically verified, namely also 
the variances of the estimated values have to be taken into 
account, as recommended by Flynn and Jain since 1988 and 

recently by Hesse and Kutterer (2005), these last specifically 
for the form recognition of laser scanned objects. 
 
An analysis of variance (ANOVA) is first of all carried out in 
order to verify the fulfilment of the second order Taylor’s 
expansion model (chapter 4). A Chi-Square ratio test is 
computed between the l.s. estimated variance factor and the a 
priori measurement variance. If the null hypothesis is rejected, 
the second order Taylor’s series is not enough extended and a 
third order series is required. As known from literature (e.g. 
Cazals and Pouget, 2007), third order series can be applied to 
detect ridges and crest lines. If the null hypothesis is accepted, 
the statistical analysis is continued by applying the variance 
propagation law to compute the variance covariance matrix of 
the two terms vector containing the Gaussian and the mean 
curvature values. A Fisher ratio test is then applied to verify the 
significance of the obtained curvature values vector. If the null 
hypothesis is accepted, the surface can be locally accepted as 
planar. If the null hypothesis is rejected a ratio test for each K 
and H curvatures is carried out. 
 
By simultaneously analyzing the sign and the values of K and H 
(chapter 5), a classification of the whole point cloud is indeed 
achievable, being possible the following surfaces basic types: 
hyperbolic (if K < 0), parabolic (K = 0 but H ≠ 0), planar (K = 
H = 0), and elliptic (K > 0). 
 
The subsequent automatic segmentation of each recognized 
surface in its geometrical elements is carried out by two 
complementary procedures (chapter 6): the first one by finding 
the surface analytical functions of each geometrical element and 
the second one by searching primarily the object edges. 
 
The numerical testing of the proposed procedure has been 
carried out with satisfactory results for various simulated laser 
data belonging to the OSU Range Image database (Ohio State 
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University) and also for real data acquired with a Riegl Z360i 
laserscanning system on architectural surfaces (chapter 7). 
 
 
2. ESTIMATION OF LOCAL SURFACE PARAMETERS 

BY A NON PARAMETRIC REGRESSION MODEL 

Dealing with parameters estimation by regression models, the 
main advantage of a non parametric approach consists in its full 
generality: in our case, i.e. the local estimation of the bypassing 
surface through the laser points, it means that neither a priori 
knowledge of the point geometry nor the fitting analytical 
function is required. Let us consider the following polynomial 
model of second order terms (Cazals and Pouget, 2003): 
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with  and  plane coordinates of points i and j. ii Y,X jj Y,X

The parameters  (s ≠ 0) are the first and second order partial 
derivatives along X,Y directions at the i-th point of the best 
approximating local surface, collected in the [6 x 1] vector : 
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where  is the estimated function value at point i. 0a
The weighted least squares estimate of the unknown vector β  
from a selected number of p neighbour points results as: 
 
  (2) WzXWXXβ T1T )(ˆ −=
 
where (for j = 1, …, p): 
X is the coefficient matrix, with p rows as: 
 
 [ ]22
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W is a diagonal weight matrix defined by a symmetric kernel 
function centred at the i-th point, with elements as: 
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where  is the distance between the points i,j and b is the half 
radius (bandwidth) of the window encompassing the p closest 
points to i. The value of b, rather than the kernel function, is 
critical for the quality in estimating β . In fact, the greater is the 
value of b, the smoother the regression function results, while 
the smaller is the value of b, the larger is the variance of the 
estimated value. 

ijd

Rewriting model (1) in algebraic form as: 
 
 vXβz +=  (3) 
 
and considering the vector β  estimated by (2), the residual 
vector  for the p points within the bandwidth is given as 

. This last allows computing the least squares 

variance factor  at point i as: 
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For each point i, this local value has to be suitably evaluated, as 
will be better explained in chapter 4, in order to verify by a  
test if it is comparable to the measurement laser noise or if it is 
sensible also to a systematic effect, due to limitations in the 
Taylor’s expansion order. 

2χ

 

  
 

Figure 1: Simulated laser points of the agpart-2 model (OSU 
database) coloured by  values (at left) and by  (at right). iZ 2

0σ̂

 
Figure 1 reports the simulated scan agpart-2 as example 
throughout the paper chapters: it belongs to the OSU Range 
Image database (Ohio State University). This synthetic object is 
composed by a cylinder, having a circular cavity in the axis, 
with a larger coaxial disk: the surfaces are thus cylindrical and 
planar. The simulated scan is oblique with respect to the object 
axis, as can be seen in Figure 1 at left, where the points are 
coloured by the original iZ  values from blue (minimum) to red 
(maximum). At right, the same points are coloured by the 
estimated values of  from blue (zero) to red (maximum). 2

0σ̂
 
 

3. COMPUTATION OF LOCAL CURVATURES 
VALUES 

For the local analysis of a surface obtained from a laser point 
cloud, some fundamental quantities defined in differential 
geometry are considered. In particular, local Gaussian, mean 
and principal curvatures values are taken into account. All these 
can be obtained from the so-called “Weingarten map” matrix A 
of the surface (e.g. Do Carmo, 1976), that is given by: 
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where E, F, and G are the coefficients of the so-called “first 
fundamental form”, computable from  (s ≠ 0) parameters as: sa
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and e, f, and g are the “second fundamental form” coefficients: 
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The Gaussian curvature K corresponds to the determinant of A: 
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The mean curvature H can be instead obtained from: 
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The principal curvatures kmax and kmin, corresponding to the 

eigenvalues of A, are given instead from the solution of the 

system 0KHk2k 2 =+− , i.e. from KHHk 2
maxmin, −±= . 

 
Substituting the  terms into the formulas (5) and (6) (see e.g. 
Quek et al., 2003), the following expressions for the Gaussian 
K and the mean H curvatures can be obtained: 
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Summarizing, for each i-th point, four local curvature values K, 
H, kmax and kmin can be automatically obtained as functions of 
the vector β  terms. Furthermore, such curvatures are invariant 
to the adopted reference frame, providing a very much 
important property in analyzing the surface shape. Figure 2 
shows the estimated K and H curvature values for the agpart-2 
scan: while constant values occur in central part of the various 
unit surfaces, very high curvature variations occur in buffer 
areas along the edges of the same surfaces. 

ˆ

 
 

  
 

Figure 2: Points of the previous agpart-2 scan coloured, from 
blue to red, for K (at left) and for H (at right) values. 

 
 

4. STATISTICAL ANALYSIS OF THE ESTIMATED 
CURVATURE VALUES 

As mentioned before, for each laser point i, the estimated local 
value of the variance factor, given by formula (4) as: 
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is a quality index of the vector β estimation process. It is 
crucial to verify whether, within the bandwidth, the behaviour 
of the corresponding residuals v  are due to the noise 
of the laser measures or rather to limitations in the non 
parametric Taylor’s terms order. For such aim, the application 
of the following Chi-Square test is proposed, under the null 
hypothesis H0: 
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where: 
 

2
tlsσ  is the variance of the terrestrial laser scanning (tls) 

instrument employed for the data acquisition; 
 

2
α-1)1p( −χ  is the value of the Chi-Square distribution for (p-1) 

degrees of freedom when α probability for a first kind error is 
assumed. 
 
The following analysis of the test results can be done, 
considering that, for most part of the points, the H0 hypothesis 
is accepted, as can be seen in Figure 3 at left: 
 
H0 is accepted: a good local congruence between laser 
measures and second order Taylor’s model is statistically 
proved. The values derived from vector β , as the K and H 
curvatures, are statistically meaningful and thus a curvature 
based classification can be carried out in such zones. 

ˆ

 
H0 is rejected: the local congruence between laser measures and 
the Taylor’s model is not statistically fulfilled, i.e. a significant 
difference between the acquired laser data and the second order 
polynomial modeling is present. A part the reasons for this 
discrepancy, the derived curvature values in such zones have to 
be interpret with particular care. 
 
Usually the values of 2

0σ̂  significantly differ from 2
tlsσ  along 

the edges of the laser scanned objects or along crests. This is 
explainable as a not sufficient modeling of the Taylor’s order 
terms or as an improper choice of the bandwidth radius. 
 
If the H0 hypothesis is accepted, the next problem is the 
statistical analysis of the local Gaussian and mean curvatures. 
To this purpose, once the least squares solution of the 
differential terms is obtained by means of (2), the variance 
covariance matrix of the estimated parameters is also available. 
The variance-covariance propagation law can be applied to the 
estimated β  terms to determine the [2 x 2] variance-covariance 
matrix of the Gaussian and mean curvature values. For such 

ˆ
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end, let rewrite [ ]T543210 âââââẑˆ =β  as a partitioned 

estimated vector  containing the function value 
 and the sub vector a of the Taylor’s expansion differential 

terms at point i. Let  is the estimated variance-covariance 

matrix of vector β  terms; it can be yet partitioned as: 
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where  is the variance-covariance matrix of the sub vector 
a containing the differential terms at point i. As known, the 
variance-covariance matrix  can be expressed as: 
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where  is the covariance matrix of vector β , while  is 
given from relationship (4). 
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Of course, the estimated K and H curvature values are not 
independent, as can be seen observing equations (5) and (6) or 
(7) and (8). In order to apply a significant test, considering also 
the correlation between the curvature values K and H, the 
following [2 x 1] vector is introduced: 
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Applying the variance-covariance law propagation, the 
covariance matrix of vector ω can be obtained as: 
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For the points where the null hypothesis of the Chi-Square test 
(9) is fulfilled, in order to verify whether the Gaussian and 
mean curvature vector ω is significantly different from zero, i.e. 

, the following F ratio test must be satisfied (Pelzer, 
1971) (see Figure 3 at right): 
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∞α ,r,−1F  Fisher distribution value for r and ∞  degrees of 

freedom and α probability for a first kind error. 

  
 

 the results of the  test (at left) 

 

Figure 3: Points coloured by 2χ
and the Pelzer test (at right): green where H0, red where H1. 
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 it is worthwhile to independently test the values of 
K and  order to check if both, or just only one of them, are 
significantly different from zero. The null hypothesis is 
independently rejected for K and H, i.e. 0)K(E ≠ , 0)H(E ≠ , if: 
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here  and  are the diagonal terms of matrix 
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w kkq hhq ωωQ . 
Further formulas are also useful to deter  the 
minimal values of K and H that can be detected by the test, 
once a significance level α is fixed: 
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Of course, K and H tend to diminish, i.e. the test becomes more 
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sensitive, as 0σ̂ , kkq  and hhq  become smaller; that is if the 
precision of th  la measurements rises, the curvature values 
augments and the number of selected points, within a prefixed 
bandwidth, becomes greater. 
 
T
research, the fascinating concept of the optimal design of the 
laser survey, in order to reliably detect real curvature values. 
For instance, if the geometric characteristics of the surveyed 
object are approximately known and very rough curvature 
values 0K  and 0H  can be a priori defined, once the class of 
the inst ents t are going to be used is fixed and the 
corresponding measurement precision tlsσ  is known, a 
simulation procedure can be applied in er to find t e 
minimal number of the bandwidth points that satisfy the 
following inequalities: 
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 order to reliably detect particular K and H curvature values, 

 CURVATURE BASED SURFACE CLASSIFICATION 

By simultaneously analyzing the sign and the values of K and H, 

In
the class of bandwidth points satisfying inequalities (14) will be 
chosen. The test put in evidence the fact that it is necessary to 
strongly emphasize the design aspects of the laser survey. 
 
 
5.

the classification of the whole point cloud is finally made 
possible. As known, each surface can be classified as one of the 
following types (see Table 4): hyperbolic (if K < 0), parabolic 
(K = 0 but H ≠ 0), planar (K = H = 0), and elliptic (K > 0). 
 
 

 
 

Table 4. Classification of surfaces according to the values of 

 
hen the null hypothesis H0: K = 0 is only satisfied, if H > 0 

ummarizing, this step allows not only to classify the various 

6. AUTOMATIC SEGMENTATION OF EACH 

The segmentation of each recognized surface in its geometrical 

.1 Analytical modeling of the surface units 

Within any kind of surface unit, classified as shown before, a 

Gaussian K and mean H curvatures (from Haala et al., 2004). 

W
the single curvature surface can be classified as a concave 
parabolic valley, while if H < 0 as a convex parabolic ridge. 
Finally whether both null hypotheses are rejected, the surface is 
classifiable as a concave pit (if K > 0 and H > 0), as a convex 
peak (K > 0, H < 0), as a saddle valley (K < 0, H > 0), or as a 
saddle ridge (K < 0, H < 0). 
 
S
volumetric primitives but also to a priori define the polynomial 
degree of an interpolating parametric model applied for a 
refined segmentation of the points, as will be explained in 6.1. 
 
 

CLASSIFIED SURFACE 

units can be carried out by two complementary procedures: by 
finding the analytical functions of each surface unit of the 
object or by directly searching the edges of such units. 
 
6

region growing method is applied, starting from a random point 
not yet belonging to any recognized subset. The surrounding 
points having a distance less than the bandwidth b are analysed, 
by evaluating the values of the estimated height i0Z  and the 
values of K and H. If the neighbour points present difference 
values within a threshold, then they are labelled as belonging to 
the same class and putted into a list. The same algorithm is 
repeated for each list element, till this is fully completed. 
Afterwards, the procedure restarts again from a new random 
point, ending when every point has been analysed. A first raw 
segmentation of the whole dataset is so carried out: each cluster 

represents an initial subset to submit to a refining segmentation. 
For this aim, we now suppose that laser measures can be 
rightfully represented by the parametric model: 
 
 εAθWzz +=ρ−  (15) 

here: 
 vector of laser height/depth values, as for the non 

 is a value that measures the mean spatial interaction between 

 is a spatial adjacency (binary) matrix, defined as

 
w
z is the
parametric model (1); 
 
ρ
neighbouring points; 
 
W  1wij =  if 

the points are neighbours, 0wij =  otherwise; 
 
A is a r column matrix with [ ]s

i
s
iiii YX...YX1=A  as 

 a 
rows, where iX  and iY  are X,Y-coordinates of points 
approximated by s degree orthogonal polynomial; 
 

[ ]T1r10 θ...θθ −=θ  is a [r x 1] vector of parameters; 
 
 is the vector of normally distributed noise errors, with mean 0 

iscerning about the differences between the non parametric 

e unknown parameters (mainly) involve local differential 

 both cases, the coefficient matrix involves X and Y 

 both cases, the W weight matrices consider the distance 

o solve equation (15), a Maximum Likelihood (ML) 

ε

and variance 2
εσ . 

 
D
model (3) and the parametric model (15) applied for processing 
the same laser points, we can observe that: 
 
th
terms (β) of a whatever (and not estimated) function in model 
(1), while they correspond to the polynomial parameters (θ) of 
the best interpolating global analytical function in model (15); 
 
in
(planimetric) coordinates, expressed by relative values with 
respect to the local reference point for the non parametric case, 
and by absolute values for the parametric one; 
 
in
among the laser points, although with very different geometric 
and stochastic significance. 
 
T
estimation of the unknown parameters is carried out: in 
particular, the value MLρ  giving the maximum log-likelihood 

value is assumed as th L estimation ρ̂  of ρ. In this way, the 
optimal estimation of the SAR unknowns is given by: 
 

e M

 zWIAAAθ )ˆ()(ˆ T1T ρ−= −  (16.1) 
 
 )ˆˆ()ˆˆ(nˆ T12 θAWzzθAWzz −ρ−−ρ−=σ −  (16.2) 

ithin the z values, the individual departures from the fitted 

 

 
W
polynomial trend surface can be estimated by the vector 

εe 1−σ=  of standardised residuals, computed from (15) as: 

 ]ˆ)ˆ[(σ̂ 1 θAzWIe −ρ−= −  (17) 
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Afterwards, its components are inferentially evaluated to find 

herefore, after the estimation by formulas (16) of the 

.2 Edge detection of the geometrical units 

directly detect the edges of each geometric unit, the 

xtreme absolute values of H correspond to surface slope 

which measures do not fit the estimated trend surface. The so-
called “Forward Search” (FS) (e.g. Cerioli and Riani, 2003) 
algorithm is applied. It makes possible to execute the robust 
estimations ρ̂  and θ̂  at each step of the search, starting from a 
partition of the dataset. The basic idea of the FS approach is to 
repeatedly fit the postulated model to subsets of increasing size, 
selecting for any new iteration the z observations best fitting the 
previous subset, that is having the minimum absolute value of e. 
Thanks to this growing strategy, the outlier data are potentially 
included only at the end of the FS process. To understand at 
which iteration the outlier data enter into the subset, a F-Fisher 
test is continuously applied. If the null hypothesis is rejected, 
any new point included from now on is an outlier: thus, there is 
no reason to continue with the FS iterations. 
 
T
analytical fitting function of each surface unit, the points 
segmentation is fulfilled: the edges among the so detected 
surfaces can be indirectly estimated by means of analytical 3D 
intersections. 
 
6

To 
attention is now focused onto the estimated values of the local 
mean curvature H. The analysis of H values exploits the 
property that such index is closely related to the first variation 
(slope) of a surface area that locally well reveals possible edges. 
Since H is the average of kmax and kmin, it is numerically slightly 
less sensitive to the noise with respect to the K curvature, which 
is instead the product of kmax and kmin. 
 
E
discontinuities and then it is sufficient to locally evaluate for 
each point if the H absolute value is greater than a certain 
threshold, this last fixed taking into account also the local 2

0σ̂  
value. If this happens, the corresponding buffer volume 
points reveals the edges we are looking for. 
 

of 

7. NUMERICAL EXPERIMENTS 

The num ri a testing of the proposed procedures has been 

igure 5 at left shows the estimated local values of 

 

e c l 
carried out with satisfactory results for the agpart-2 model and 
for other synthetic objects of the OSU Range Image database, 
averagely constituted by about 30.000 simulated points. In 
particular, the column1 model is composed by a cylindrical 
column over a parallelepiped base, upper closed by a circular 
plane: the scan column1-5 simulates a pointing-down laser 
acquisition from a scanning position so that the vertex among 
three planes of the base occurs at right (see Figures 5 and 6). 
 
F 2

0σ̂ , 
escoloured again from blue (0 values) to red (maximum valu ): 

as expectable, the most part of the plane and cylindrical 
surfaces have null variance, while along the edges such values 
dramatically increase. In spite of this, 2

0σ̂  is not null also along 
some surface borders, but only becaus there is a lack of data 
for the backside surfaces. The result of the Chi-Square test (9) 
is reported in Figure 5 at right: the red areas, where the test fails, 
should be not submitted to the succeeding Pelzer test (13). 
 

e 

 

 
 

Figure 5: Experiments on the column1-5 model: 
2
0σ̂  values (at 

 
igure 6 shows the estimated local curvature values. Since only 

 last consideration arises from the obtained results: the width 

left) and 
2χ  test results (at right), green where H0 holds. 

F
single curvature surfaces are present, the value of the Gaussian 
K should be always null, i.e. E(K) = 0. This condition is 
represented by green coloured points in Figure 6 at left. The 
mean H curvature values are instead correctly less than zero for 
the points belonging to the cylindrical column, as can be seen in 
Figure 6 at right, where such value is represented by dark 
yellow colour. Analyzing the border buffer areas, it is also 
possible to recognize the convex edges in blue (where H << 0) 
and concave edges in red (where H >> 0). 
 
A
of the edge buffer areas meanly corresponds to the bandwidth 
radius; this might be reduced by choosing a smaller value for it. 
 
 

 
 

Figure 6: Estimated curvature values for column1-5 model: 

 
ast but not least, to test the proposed procedure in noisy 

 this case, it is particularly hard to evaluate the correctness of 

(blue) and the concave (red) edges. 

Gaussian K values (at left) and mean H values (at right). 

L
conditions, some experiments have been performed onto real 
data acquired with a Riegl Z360i laserscanning system in the 
Aquileia Basilica (Italy), whose complete surveying is 
described in Visintini et al. (2006). The obtained results over 
about 26.000 points relating to a real column with a complex 
and irregular basement are here briefly reported. 
 
In
the estimated curvature values, since only the column has a 
regular surface, while in the basement, the surfaces are only 
roughly planar, with unequal bricks and ruined stones, as can be 
well seen in Figure 7 at left. Anyway, the K estimated values 
are mainly equal to zero, i.e. the yellow points in this false color 
representation (Figure 7 at centre), with very instable values in 
correspondence of the edges. In the plotting of the H values 
(Figure 7 at right), it is possible to well recognize the convex 
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of spatially autocorrelated data.  Statistical Methods & 
Applications, 11, 334-358. 

Crosilla, F., Visintini, D., Prearo, G., 2004.  A robust method 
for filtering non-ground measurements from airborne LIDAR 
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Figure 7: A column of the Aquileia Basilica (Italy): estimated 
Gaussian K (at centre) an mean H values (at right). 

 
 

8.  CONCLUSIONS 

paper reports le to automatically 
detect reliable Gaussian and mean curvature values from laser 
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