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ABSTRACT: 
 
Principal Component Analysis (PCA) is often utilised in point cloud processing as provides an efficient method to approximate local 
point properties through the examination of the local neighbourhoods. This process does sometimes suffer from the assumption that 
the neighbourhood contains only a single surface, when it may contain multiple discrete surface entities, as well as relating the 
properties from PCA to real world attributes. This paper will present two methods. The first is a correction method to filter out the 
presence of multiple surfaces through an iterative process. The second is to combine the PCA preformed on the neighbourhood of 
point coordinates and normal approximations in order to estimate the radius of curvature in the maximum and minimum curvature 
directions. 
 
 

1. INTORDUCTION 

Point cloud processing relies on the analysis and examination of 
different observed attributes such as position, intensity and 
colour. Although these attributes are sampled directly from the 
laser scanner, attributes are more often derived from the 
examination of the local neighbourhood surrounding a point of 
interest. These estimated attributes, which include curvature, 
surface normal and geometric surface properties, are of great 
importance in point cloud-processing procedures such as for 
surface classification and segmentation. 
 
Often these attributes are estimated with the use of Principal 
Component Analysis (PCA) performed on the local 
neighbourhoods of points, as it efficiently retrieves the local 
properties of a neighbourhood (Gumhold et al., 2001). Some 
common uses have included approximating the normal direction 
(Mitra et al., 2004), fitting first order planar surfaces 
(Weingarten et al., 2003), approximating surface curvature 
(Pauly et al., 2002), defining the tensors for tensor voting (Tong 
et al., 2004) and providing a local point coordinate systems 
(Daniels et al., 2007). 
  
There are two problems that can occur when using PCA. The 
first is that a neighbourhood may contain multiple discrete 
surface entities. For most attributes, they are calculated under 
the assumption that there is only one surface structured. The 
affect of multiple surfaces can cause biases in the attributes e.g. 
the surface normal approximation. While deceasing the size of 
the neighbourhood may help in reducing the probability that a 
neighbourhood contains more than one sampled surface, the 
neighbourhood needs to be of sufficient size in order to reduce 
the effect of random errors and noise. 
 

The other problem is how to relate the PCA results to the 
surface attributes. Often information can be lost, such as the 
approximation of curvature through surface variation (Pauly et 
al., 2002) where the comparable level of curvature is indicated, 
but there is no directional component or unit of measurement 
associated with the approximation. 
 
It is the aim of this paper to present an iterative method of 
adjusting the neighbourhood to remove effects of multiple 
surface entities. In addition, a formula between the eigenvalues 
of the PCA and the surface properties such as the radius and 
direction of local curvature will be presented. From this formula, 
the maximum and minimum curvature directions can be also 
calculated in a closed form solution and this information 
provides a novel and detailed information of the neighbourhood 
of the point of interest. 
 
 

2. PRINCIPAL COMPONENT ANALYSIS 

PCA is performed by first calculating the covariance matrix Σ 
by the formula: 
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where xi is defined as the vector form of the position of the ith 
point in the neighbourhood containing the nearest k points and 
c0 represents the centroid of the neighbourhood calculated as 
the mean of the neighbourhood. Since Σ is a symmetric and 
positive semi-definite matrix, it can be decompiled by 
eigenvalue decomposition such that the real positive 
eigenvalues, λ0, λ1 and λ2, along with the corresponding 
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eigenvectors e0, e1 and e2 form an orthogonal basis of the 
neighbourhood in R3 (Golub and Loan, 1989). 
 
The covariance matrix Σ can be decomposed as follows: 
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where λ0 ≤ λ1 ≤ λ2. Note that eigenvectors ei represent the 
principal components, with the corresponding eigenvalues λi 
denoting the significance of each component in the form of the 
variance in these directions (Golub and Loan, 1989). 
  
For a local neighbourhood of a point cloud, e0 approximates the 
the local surface normal, with e1 and e2 approximating the 
tangential plane through c0 (Pauly et al., 2002). This result is 
equivalent to a first order least squares plane fit (Shakarji, 
1998). 
 
 

3. IMPROVING NEIGHBOURHOOD SELECTION 

The initial neighbourhood can be selected in various ways. The 
problem is how to ensure that the assumption of the 
neighbourhood containing only one surface entity is valid. 
Techniques exist that remove multiple surfaces or reduce them 
down to a single dominate surface. Many are based on random 
sampling techniques, such as RANSAC (RANdom SAmpling 
Consensus) and its variants (Bolle and Vemuri, 1991), outlier 
detection (Danuser and Striker, 1998), voting methods (Page et 
al., 2002) and filtering (Tang et al., 2007). 
 
This section aims to present a method that will iteratively 
converge to the correct solution for a neighborhood by 
adjusting the weights of points within a neighbourhood 
depending on the likelihood of that point being sampled from 
the dominate surface entity sampled within the neighbourhood. 
This will be done by examining the PCA of the neighbourhoods 
and, using statistical significance testing, determine and adjust 
weights iteratively for each point until the method converges to 
a stable solution (i.e. the weights remain constant). It will be 
demonstrated that the solution will have an uniform weighting 
for those points that are determined to belong to a dominate 
surface structure present in the neighbourhood, and zero for 
those that do not. 
 
The first stage of the proposed method is outlining how to 
determine the relationship between two points within a 
neighbourhood and whether they belong to the same surface 
entity. This is separated into two models: an internal 
relationship between a point and the neighbourhood being 
corrected, and an external relationship between the point of 
interest and the neighbourhood of another point. 
 
3.1 Internal and external neighbourhood relation between 
points 

An internal relationship is defined as the relation of a point xi to 
the neighbourhood N0 surrounding a point of interest x0 given 
that xi ∈ N0. Conversely, an external relationship is defined as 
the relation of a point of interest x0 to the neighbourhood Ni 
surrounding xi, given that xi ∈ N0. Illustration of the internal and 
external relationship is given in Figure 1(a) and Figure 1(b) 

respectively. An internal relationship of xi to x0 will be 
equivalent to an external relationship of x0 to xi. 
 
 

(a) (b) 
 

Figure 1: (a) Example of an internal relationship of xi to x0. The 
threshold is defined in red by Eq. 5 with all points inside 

considered to have an internal relationship. (b) Example of an 
external relationship of xi to x0. The threshold is defined in red 

by Eq. 6. 
 
The main concept of this method is that a geometric attribute of 
a point x0, which is related to its underlying surface, is 
dependent on its internal and external relationship with other 
surrounding points. In other words, the surrounding 
neighbourhood N0 for the point x0 should not only reflect the 
attributes within the neighbourhood, but x0 should also reflect 
the attributes for the neighbourhood around xi if they are to be 
considered to belong to the same surface entity. 
 
To determine these relationships, two definitions of distance are 
utilised. Let c0 and n0 denote the centroid and normal 
approximation for neighbourhood N0 around point x0. The 
equation for the distance for the internal relationship is defined 
as: 
 
 
 ( ) oiir nxcdist •−= 0    (3) 
 
 
with c0 being calculated from the mean of the neighbourhood 
and n0 is specified through PCA. In a similar manner, let ci and 
ni denote the centroid and normal approximation for 
neighbourhood Ni around point xi. The equation for the distance 
for the external relationship is defined as: 
 
 
 ( ) iier nxcdist •−= 0    (4) 
 
 
Again, ci is calculated from the mean of the neighbourhood and 
ni is specified through PCA. 
 
In order to determine if an internal or external relationship 
exists, the Boolean operators can be defined respectively as: 
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for the internal relationship and: 
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for the external relationship. This Boolean operators come from 
a statistically significance test to determine if the relationship is 
likely to exist. s0 and si are the error in the approximate normal 
direction for neighbourhood N0 and Ni respectively. These 
values can be set as √ λ0 from the PCA of the respective 
neighbourhoods. The value t is the test statistic from the t-
distribution with υ degrees of freedom and a significance factor 
of α. 
 
3.2 Iterative generation of point membership weighting 

PCA is performed to obtain the initial approximation for the 
variance and normal directions. The proposed method will use a 
slightly modified version of the covariance matrix formula such 
that: 
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pi is the weight of point xi in the neighbourhood. Initially, the 
points will all be equally weighted as pi = 1/k, with k being the 
number of points in the neighbourhood. In a similar manner, the 
formula for the centroid value will be modified to: 
 
 

     (8) ∑
=

=
k

i
ii xpc

1
0

 
 
If a point pi is not related either internally or externally to point 
p0, it is likely that it is not sampled from the same surface and 
the weight is decreased. Conversely, if a point pi has an internal 
and external relationship to point p0, then it is likely that they 
belong to the same surface, and the weight is increased. If there 
is only one relationship, then it is likely that at least one of the 
neighbourhoods (N0 or Ni) is affected by multiply surfaces, and 
as such the weighs are left as it is until the neighbourhoods 
become more refined. From this, the rules for updating the 
weights are specified as: 
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where p’i are the adjusted weights and δ is the small change to 
modify it by. If p’i becomes a negative, then it is set to be zero 
in order to ensure all weights are non-negative. The new 
weights are then normalised by: 
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so that the summation of the weights equal unity. p”i is then 
used as the weight in the recalculation of the covariance matrix 
for the next iteration. 
 
3.3 2D case example 

In this section, a 2D example of an intersection will be 
presented. The example is presented in Figure 2. As can be seen, 
the surface normals for the points near the edges are initially 
perturbed away from the normal direction of the surface they 
are sampled from as the neighbourhood is affected by more 
than one discrete surface structure. As defined method is 
applied, the weights are iteratively updated until they become 
stable, i.e. that successive iterations do not effect the solution 
and p”i ≈ pi. The results are shown in Figure 3. 
 
 

 
 

Figure 2: Example of correction applied to a 2D intersection. 
The blue lines represent the initial normal approximation and 

red lines represent the corrected normal approximations. 
 
 

 
 

Figure 3: Angle of the normal orientation. The values for the 
surfaces should be approximately -45 and 45 degrees. The blue 

lines represent the orientation of the initial normal 
approximation and red lines represent the corrected values. 

 
If the internal relationships were solely used to update the 
weights, the points whose neighbourhoods are only mildly 
affected by another surface structure are corrected as it behaves 
similar to an outlier removal process. If only the external 
relationships are used, while the results are similar to when both 
are used, the process can become unstable with all the points in 
the neighbourhoods being removed. If the weights of the points 
are examined at every iteration, as shown in Figure 4, it can be 
seen that they stabilised with either a zero value or an uniform 
value for those that are non-zero. 
 
It should be noted that if the point closest to the intersection did 
not get corrected in order to conform to one of the surfaces. 
This is because the surfaces are equally represented in the 
neighbourhood and therefore one cannot be considered better 
than the other. The normal can be forced to align to one of the 
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surfaces by replacing the centroid c0 with x0. This instability 
caused in the covariance matrix allows it to align to one of the 
surfaces; however it can also affect the normal approximation 
detrimentally and provide biased solutions. 
 
 

 
 

Figure 4: Trend of the weights for points in a neighbourhood as 
the iterations progress. The neighbourhood is affected by the 
presence of multiple surfaces with the points belonging to the 
dominant surface tending to a value of 0.077, and the others 

tending to a value of zero. 
 
3.4 Practical Example 

This section will demonstrate the outlined correction procedure 
as applied to a 3D point cloud. The point cloud, presented in 
Figure 5, is scanned from a door arch with a Leica ScanStation 
with a nominal point spacing of 0.01m. The correction 
procedure is applied to the point cloud with a neighbourhood 
size of 30 and the threshold for determining internal and 
external relationships set at a significance level of α = 0.5. 
 
 

 
 

Figure 5: Point cloud sampled from a section of a door archway 
with a Leica Scanstation. 

 
In Figure 6(a), the initial normal approximations are display on 
a Gaussian sphere. The clusters on the sphere represent the 
presence of surfaces with that normal orientation. The striping 
effect occurring between the clusters represents normal 
approximations being effected by more than one surface. Figure 
6(b) shows the Gaussian sphere of the corrected normal 
approximations using the proposed method. As can be seen, the 
stripping effect is significantly reduced as those points affected 
by more than one surface are corrected to align with the 
dominant surface element in the neighbourhood. The 
neighbourhood weights are stabilised within 50 iterations of the 
procedure. 
 

(a) (b) 
 

Figure 6: (a) shows the Gaussian sphere of the uncorrected 
normal directions and (b) the Gaussian sphere of the corrected 
normal directions. The colour indicates the density of normal 
directions from blue representing zero to red representing in 

excess of a hundred. 
 
On examining those points near a surface intersection Figure 
8(a) shows the orientation angles for the uncorrected 
approximations and Figure 8(b) for the corrected 
approximations. This illustrates an increase in the accuracy of 
normal alignment after the correction with approximately 90% 
of the edge points now being aligned to within 5 degrees of 
their correct orientation. 
 
 

(a) (b) 
 

Figure 7: Histograms for edge points of the orientation angles 
for the normal directions. (a) is the uncorrected normal 

approximations and (b) is the corrected normal  approximations. 
Peaks in the histogram denote orientation of the surface present 

in the point cloud. 
 
 

4. APPROXIMATING CURVATURE 

There are a variety of techniques to approximate curvature such 
as surface fitting (Besl and Jain, 1988), variation in surface 
normals (Jiang et al., 2005), tensor voting (Tong et al., 2004), 
and angles between neighbourhood members (Dyn et al., 2001). 
Two of the methods that involve PCA are given in Pauly et al. 
(2002) and Jiang et al. (2005). Pauly et al. (2002) uses the 
percentage of total population variation in the normal to 
determine the surface variation as a measure of curvature for a 
local neighbourhood. However, there is no unit or direction 
given to this curvature approximation. Jiang et al. (2005) 
provides an approximation of curvature based on the variation 
of the approximate normal directions in a local neighbourhood. 
While this measure as a directional component, it does not have 
a unit of measurement. 
 
The advantages of both are their robust nature and fast 
computational time. A method will now be presented to 
combine the PCA of the coordinates and the normal directions 
for a neighbourhood to determine the principal directions of 
maximum and minimum curvature, in addition to the radius of 
curvature approximation in these directions. 
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4.1 Principal component analysis on point coordinates 

The properties that can be derived from PCA have been 
described previously. In the case of curvature, the value of λ0 
describes that amount of surface variation in the normal 
direction. Since curvature can cause a variation in the normal 
direction, λ0 can be used to measure the level of curvature. In 
most cases λ0 is divided by the total variation to provide an 
approximation (Pauly et al., 2002), otherwise the measure will 
be dependant on the span of the neighbourhood (Belton and 
Lichti, 2006). It is the span of the neighbourhood that is of 
interest in this method, and is described by λ1 and λ2. In the 
conic section displayed in Figure 8(a), if the distance d and the 
angle θ is known, then it becomes a simple matter of 
determining the radius of curvature by the following equation: 
 
 
 rd=θsin     (11) 
 
 
and d can be approximated statistically using confidence 
interval as: 
 
 
 1λsd =     (12) 
 
 
with λ1 being the standard deviation in this direction calculated 
from PCA of the neighbourhood, and s being a scale factor or 
number of standard deviations on either side of the mean that 
covers the span of the points. This leaves the only unknown in 
the formula as θ. 
 
 

(a) (b) 
 

Figure 8: (a) Conic section for the neighbourhood of point 
coordinates. (b) Conic section for the neighbourhood of point 

normal directions. 
 
4.2 Principal component analysis on normal estimation 

As illustrated in Jiang et al. (2005), the PCA performed on the 
normal directions of a neighbourhood can also provide an 
approximation of curvature. In this case, the covariance matrix 
Σ is defined as: 
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with ni denoting the normal direction and μ(n) denoting the mean 
of the normal directions. The results from the eigenvalue 
decomposition with the eigenvalues λ0

(n), λ1
(n) and λ2

(n), along 
with the corresponding eigenvectors e0

(n), e1
(n)  and e2

(n) such 

that λ0
(n) ≤ λ1

(n) ≤ λ2
(n). In this case, λ2

(n) represents the variation 
of the normal direction along the direction of maximum 
curvature (denoted by e2

(n)) and λ1
(n) represents the variation of 

the normal direction along the direction of minimum curvature 
(denoted by e1

(n)). 
 
The conic section for the normals, displayed in Figure 8(b) can 
be examined in a similar manner to the conic section for the 
point coordinates. In this case, θ is solved as: 
 
 
 1sin )(nd=θ     (14) 
 
 
with d(n) being approximated as: 
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with λ1

(n) being the standard deviation in this direction 
calculated from PCA of the normal, and t being a the number of 
standard deviations that covers the span of the normal variation. 
 
4.3 Radius of curvature approximation 

If the value of θ is the same in Figure 8(a) and Figure 8(b), then 
it becomes a simple matter of solving the radius of curvature. 
Assuming that there is only a single curved surface, by 
examining Figure 9, it can be seen that the neighbourhood for 
the normal directions is a scaled down version of the 
neighbourhood of point coordinates by a factor of r. The reason 
for this is that the scaling of the coordinate values would occur 
along the normal direction for each point. Therefore, the 
information for the PCA on the neighbourhood of point normals 
can be used to solve for the value of θ. 
 
 

 
 

Figure 9: Neighbourhood of point normals overlaid on the 
neighbourhood of point coordinates. Depicts how 

neighbourhood of coordinates is scaled only along the normal 
direction of each point to get the neighbourhood of the normals. 
 
Combining Eq. 11 and Eq. 14 and rearranging, the resulting 
equation for the radius of curvature is: 
 
 

 
)(

1

1

nt

s
r

λ

λ
=     (16) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing 2008 

 

481



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing 2008 

If it is assumed that they follow the same distribution (which is 
valid since one is a scaled version of the other), the values for s 
and t will be equal, thus cancelling out to leave the approximate 
radius of curvature as follows: 

5. CONCLUSION AND FUTURE WORK 
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PCA is an important tool for deriving the local point properties 
through the examination of a local neighbourhood. In this paper, 
two methods were presented to utilise the information gained 
from PCA. The first method was an iterative correction 
procedure applied to a neighbourhood to filter out points 
deemed likely to belong to a different surface. The second was 
a method to combine the PCA performed on the point 
coordinates with the PCA performed on the point normal 
approximations to approximate the maximum and minimum 
curvature directions and the radius of curvature in each 
direction. 

 
For the 2D case, this is simple as the principal components will 
be nominally aligned between the PCA on the neighbourhood 
of coordinates and normal. In the 3D case, they are often not 
aligned. Therefore, in order to use the approximation, the 
variance in the neighbourhood of point coordinates must be 
determined for the direction specified by e1

(n) and e2
(n), the two 

principle curvature directions. This can be done by using the 
ellipsoid defined by the eigenvector decomposition (Golub and 
Loan, 1989) to determine the variance in these directions. If λ’1 
and λ’2 denote the variance of neighbourhood of point 
coordinates in the directions of e1

(n) and e2
(n) respectively, then 

radius of curvature in the minimum curvature and maximum 
curvature direction can now be defined respectively as: 

 
While these results are still preliminary, there is an indication 
that these methods could be used to retrieve information for 
procedures such as classification and segmentation. Future 
work will focus on examining the error propagation of point 
noise to increase the accuracy of the information. 
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4.4 Practical Application 

 
This section will present the approximate radius of curvature 
measure applied to a practical data set. The point cloud used is 
shown in Figure 10 and was captured with a Leica 4500. 
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