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ABSTRACT: 
 
In this paper, a set of quaternary arc time series of the double phase differences formed by a PS (Permanent Scatter) with its 
surrounding four PSs in each quadrant are processed together, where the spatial constrains on the parameters are included directly in 
the adjustment model. Equations of this spatiotemporal analysis model are formulated. A simulation example using this new method 
is presented. It shows that a priori information of the crustal deformation can be integrated into the integer least squares  adjustment 
model to improve the accuracy of parameters estimated. 
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1. INTRUDUCTION 

Repeat-pass satellites SAR interferometry (InSAR) technology 
has been used for providing EDMs with meter accuracy and 
terrain deformations with millimetric accuracy (Hanssen, 2001). 
It has significant advantages over traditional geodetic methods 
for its larger spatial coverage with high spatial resolutions and 
all weather running. InSAR technology has been used for 
crustal deformation monitoring, such as ground subsidence, 
slope slides, volcanoes and so on. However, the essential 
limitations of InSAR are due to temporal and geometrical 
decorrelation and atmospheric inhomogeneities effects on 
interferometric phases. In 1999, a new interferometric method 
based on permanent scatters, named PS-InSAR is proposed 
(Ferretti, et al., 1999). This method uses the long time reliable 
coherence properties of PSs to overcome the temporal and 
geometrical decorrelation and also uses the time series of 
interferometric phase differences of adjacent PSs to eliminate 
the effects of the atmospheric inhomogeneities. Actually, in 
Permanent Scatter Interferometry (PSI), a stack of N differential 
interferograms of PSs are analyzed for phase unwrapping and 
deformation parameters estimation. The conventional method 
processes the time series of phase differences of the adjacent 
PSs (usually called as double difference of arcs) using the 
Integer Least Squares (ILS) method, such as the LAMBDA 
(Least squares AMBiguity Decorrelation Adjustment method) 
(Teunissen, 1995). Then the spatial closure conditions among 
arcs are applied for validations and corrections of phase 
ambiguities and parameters of models estimated (Kampes, 
2006). And the temporal and spatial information in the 
interferograms are used separately. This PSI method sometimes 
fails to give correct estimations, so an integrated spatiotemporal 
analysis method is expected to be able to solve this kind of 
problem more efficiently. 

Considering a set of quaternary arcs of time series radiated from 
one chosen PS bearing both spatial and temporal information of 
model parameters, we use these quaternary arcs of time series 
as an elementary adjustment cell for double difference phase 
ambiguity estimation. At first a prototype of the quaternary 
spatiotemporal adjustment model is given. Then a simulated 
example is demonstrated and the results are obtained. At last a 
conclusion of this research is given. 
 
 

2.  QUATERNARY ADJUSTMENT MODEL 

Supposing we have N+1 SLC SAR images, based on the 
optimal baseline (spatial and temporal) distribution (Adam, et 
al., 2004), one image is chosen as master and the others as 
slaves. Each slave image has been coregistered with the master 
and N interferograms are obtained. With methods based on 
temporal stability of amplitudes or phases of a pixel, the PS 
candidates can be obtained (Kampes, 2006; Hooper, 2006). On 
each PSs, the wrapped phase in differential interferogram k  
can be decomposed to 
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where }{⋅W  is the wrapping operator, is the phase caused 

by uncompensated topography,  is the phase caused by 

displacement of the target in the time between master and 
corresponding slave image acquisitions, is the phase caused 

by atmospheric delays, and is the additive noise term, the 
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x presents the position of the PS. 
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Normally pairs of nearby PSs are chosen to form a number of 
arcs, the phase differences of these arcs are thought to be 
atmospheric delay free, i.e. 
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where x ,  are nearby points. According to Kampes (2006), 
the phase differences of arcs caused by topographic error and 
deformation can be written as the following: 
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where  is the topographic error difference between  

yxh ,Δ
x and  and  is the SOL(Sight of Looking) rate 

difference between
y yxv ,Δ

x and , and a linear SOL rate is assumed 

for the deformation; 
y
kT is the time baseline, and equals 

acquisition time difference between slave image k  and the 
master image; is an attitude to phase changing factor which 
is a function of interferometric baseline and radar wave length. 
So the observation equation of the wrapped double phase 
difference for the arc time series is 
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where is the integer ambiguity and is white noise. This is 
an underdetermined problem with N equations for N+2 
unknown parameters. Pseudo observations which composed of 
assumed, or statistical variances of topographic errors and 
deformation rates have been added for solving this problem in 
Kampes (2006) with a LAMDA method. There is no spatial 
information has been applied in these pseudo observations. In 
this paper we expanded the equation (5) to a set of quaternary 
arc series as in Fig.1. Then we have 4N equations for 4N+8 
unknown parameters.  
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Figure.1 Quaternary arcs by PSs 

 
For solving this quaternary arc underdetermined equations,  
similar pseudo observations with value of zeros and a priori 

variances for topographic errors and deformation rates are 
added, however the spatial correlations of deformation rates are 
considered and relevant variance and covariances for 
deformation rate differences are formulated under assumption 
of constant strain rate tensor. The equation (5) can be written in 
a matrix form as: 
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 they are wrapped phase difference vector, unknown ambiguity 
vector, unknown topographic error and deformation rate vector, 
and white noise error vector respectively; 1 , are 
respectively 

A 1B
NN 44 × and coefficient matrix. 84 ×N

The pseudo observation equations are added as: 
 
 

2222 ebBaAy ++=     (7) 
 
 
where 2 is an A N48× matrix with all elements zero, 2B is 
an8 8× identity matrix, and . The covariance  matrix of 

and are assumed as following: 
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where is variance matrix of the arc phase difference 

observations which can be estimated from error propagation 
law (Kampes, 2006); 

arci
ifgQ thi

hσ is the standard deviation of 

topographic error differences, is the variance of deformation 
rate difference and 

2
dσ

ijσ is the covariance of deformation rate 

difference between the i and the arc. The SOL deformation th thj
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rate difference of each arc caused by a constant surface 
deformation rate can be deduced (Malvern, 1969) 
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where ε&is strain rate tensor, is the arc geometric vector, 

xyL
θ is radar side looking angle.  Then the variance matrix for the 
quaternary arc phase differences in SOL can be deduced based 
on error propagation law using equation (10), it can be written 
approximately as 
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where is variance of components of strain rate which are 
assumed to be equal accuracy and independent, and  
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where , are length of the and the arc respectively; iL jL thi thj

iα is azimuth angle of the arc vector with respect to the 
range axis positive direction. This variance matrix 

thi
D integrated 

a priori information of constant strain rate and will take place 
the sub matrix [

ijσ ] in equation (9) during the ambiguity 

determination in the following simulation example. 
 
 

3. SIMULATION EXAMPLE 

The simulation scenario is same as that in Kampes (2006), 
except that the LOS deformation rate is simulated by a constant 
strain rate model, see equation (10). ERS satellite parameters 
are used in the simulation. Input data is simulated at 1000 
points, for an area of approximately , of 31 SAR 
images. The 31 SLC SAR images are ordered in their 
acquisition times and the middle acquisition time image are 
used as the master image of interferometry. Totally 30 
interferograms are obtained. We randomly choose a set of 
quaternary arcs, see Fig.2, to get the four arc time series. Table 
1 lists the relevant values in simulation data set. The ILS 
method are used to solve for the ambiguity and model 
parameters. The covariance matrix of pseudo observations are 
formulated by (9) and (11). The true and estimated parameters 
are listed in Table 2, and the histogram of data residuals are 
drawn in Fig.3. 

21010 km×

 
 

Parameter Value 
Span of perpendicular baseline 1636.2m 
Span of temporal baseline 7.96year 
Maximal DEM error 24.9685m 

Minimal DEM error -24.9752m 
Uniform dilation strain rate 5.0E-5/year 
Phase noise level 20 degrees 

 
Table 1 The relevant values in simulation interferometric data 
 
 

 
 

Figure.2 Quaternary arcs chosen 
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25.989 -24.5 -
13.647

9.1 -
5.990 

-0.3  -
4.718 

-10.4 

Est. 25.860 -24.6 -
13.353

8.9 -
5.984 

-0.3 -
5.019 

-10.5 

 
Table 2 True and estimated parameters 

 
 

 
 

Figure. 3 Histogram of data residuals 
 
From Table 2, we can see that the estimated SOL rate 
differences are almost same as the true values. However, the 
estimated DEM error differences are large in somewhat, the 
maximum estimated DEM error is about 0.3m, which is about 5 
cycles of phase ambiguity. Fig.3 shows the histogram of the 
120 data residuals. Most of them are located between -0.5rad 
and 0.5rad, this is comparable with phase noise level added 
(noise standard deviation is set to be 20 degrees) in the 
simulation data.  
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4. CONCLUSION 

We have developed an adjustment model of quaternary arcs for 
realizing an integrated spatiotemporal analysis for double 
difference phase unwrapping. Because the double difference 
phase unwrapping is generally an underdetermined ILS problem, 
a priori information of unknown parameters is necessary for 
getting solution. Under the assumption of a constant strain rate 
of deformation, the variances of SOL rate differences are 
deduced as in equation (9) to (12), and are incooperated  into 
the phase unwrapping solving using the LAMBDA method. 
Further research may include more radiation arcs at a PS so as 
to include more bearing spatial information in double difference 
phase unwrapping. 
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