SOME ISSUES RELATED WITH SUB-Pixel CLASSIFICATION USING HYPERION DATA

A. Kumara, H. A. Minb,

aIndian Institute of Remote Sensing, Dehradun, India. anil@iirs.gov.in
bSatellite Data Processing and Digital Mapping Station, Union of Myanmar, hlaingaungmin@gmail.com

Commission VI, WG VI/4 ISPRS-2008-WgS – PS: WG VII/3 – Information Extraction from Hyperspectral Data

KEY WORDS: Hyperspectral Data, Sub-pixel, Mixed Pixels, Support Vector Machine (SVM), Fuzzy Error Matrix (FERM).

ABSTRACT: The most significant breakthrough in remote sensing has been the development of hyperspectral sensors. Due to the spectral resolution limitations of conventional multispectral remote sensing, hyperspectral remote sensing techniques have been introduced in 1990s. Natural earth surface is composed of heterogeneous surface features, so the features in the satellite data also have mixed pixel effect. The mixed pixels are treated as noise or uncertainty in class allocation of a pixel. Conventional hard classification algorithms may thus produce inaccurate classification outputs. The application of soft or sub-pixel classification methods may be adopted for classification of images acquired in complex and uncertain environment. The main objective of this research work has been to study the effect of feature dimensionality as well as the effect of training sample size on three different types of sub-pixel classification of images acquired in complex and uncertain environment. The main objective of this research work have been to study the performance of three classification methods (LMM, ANN and SVM) while applying soft approach (i.e. pixel size decreases). Hughes (1968), have reported that classification accuracy decreased, as additional features were included. This effect has been termed “the curse of dimensionality”. There are two main types of classification method, namely supervised and unsupervised approach. Both methods may be applied to perform hard and soft classification. In hard classification, pixel is allocated to one and only one class, which may produce erroneous results, particularly in classifying coarse spatial resolution images. It is important that soft classification is used to produce class proportions within a pixel in order to increase the classification accuracy and to produce meaningful and appropriate land cover composition. The main objective is to study the performance of three classification methods (LMM, ANN and SVM) while applying soft approach at allocation as well as at testing stage. So the objectives of this research work are stated as follows;

1. To study the effect of number of features on sub-pixel classification accuracy.
2. To study the effect of training data size on sub-pixel classification accuracy.
3. To compare the sub-pixel classification algorithms (i.e. LMM, ANN, SVM) while using optimum parameters.

1. INTRODUCTION

The most widely used method for extracting information from remotely sensed data is image classification. Research into the problem of land cover classification using multispectral remotely sensed data has been ongoing since the early 1970s, when ERTS (later Landsat - 1) multi-spectral scanner (MSS) data became available. Classification techniques such as the paralleloipped, minimum distance to mean and maximum likelihood methods were developed. Perhaps surprisingly, the accuracy of land cover classification was not necessarily improved (and, in some cases, was reduced) by the use of higher spatial resolution data and by the availability of additional bands in the near and mid- infrared wavebands (Cushnie 1987). Woodcock and Strahler (1987) suggested that this phenomenon is the consequence of an increase in within class spectral variability as spatial resolution increases (i.e. pixel size decreases). Hughes (1968), have reported that classification accuracy decreased, as additional features were included. This effect has been termed “the curse of dimensionality”. In 1990's onwards hyperspectral data was available to remote sensing application users. So, till 1990's the available classification techniques were not sufficiently powerful to identify patterns in hyperspectral data. In this study one statistical based classifier; Linear Mixture Model (LMM), learning based classifier; Artificial Neural networks (ANN) and statistical learning based classifier; Support Vector Machine (SVM) have been evaluated.

2. LITERATURE REVIEW

Mahesh and Mather 2006 have studied the sub-pixel classification of hyperspectral DAIS and Landsat-7 ETM+ data applying four algorithms (such as, maximum likelihood, decision tree, artificial neural network and support vector machine) and made the comparison of accuracy assessment, for the area of La Mancha Alta, South of Madrid, Spain. They conclude that no reduction in classification accuracy was observed as the number of bands was increased, even with the small training data set of 100 pixels per class. However,
classification accuracy starts to stabilize once a threshold number of bands are reached. The SVM produce higher classification accuracies than others with small training data sets. The effect of using different sampling plans was investigated and it was found that ML classifier produces higher classification accuracies when the training data were sampled randomly than those achieved using a systematic sampling plan. Both sampling plans produced similar results with SVM, DT and ANN. The level of classification accuracy when 13 MNF components were used were lower than those obtained by classifying the raw data, indicating that the MNF technique may not be effective for dimensionality reduction in the context of classification with this type of data. The use of DT based feature selection techniques and the accuracy achieved was close to the level reached using raw data, suggesting that the DT approach can be effectively used for feature selection with hyperspectral data. The ML classifier shows a greater dependence on the characteristics of the training data than do the other methods. This result indicates that the ML method does not generalize well to unknown cases. The SVM algorithm is least affected by the nature of the training data.

Aziz, M.A. 2004 has evaluated the soft classifiers for multi-spectral remote sensing data, and this study has focused on two statistical classifiers; maximum likelihood classifier (MLC) and linear mixture model (LMM), two fuzzy set theory based classifiers; fuzzy c means (FCM) and probability c means (PCM) and two neural network classifiers; back propagation neural network (BPNN) and competitive learning neural network followed by learning vector quantizers (CLNN-LVQ). IRS 1B LISS-2 data has been used for classified and IRS 1C PAN image derived reference map registered to LISS-2 has been used for testing image. The hypothesis of fuzzy error matrix (FERM) has been promoted to assess the accuracy of soft classification. As the formulation of majority of these classifiers and accuracy measures in the existing commercial image processing software are not available, so Soft Classification Methods and Accuracy assessment Package (SCMAP) has also been developed. The results showed that the distribution free classifiers based on fuzzy set and neural network produced more accurate classification than the statistical classifiers. An improvement in accuracy of 8% to 12% was observed. It was shown that how PCM classifier was robust to the existence of noise in the data. CLNN-LVQ produced the highest classification accuracy of 53.89% and showed an improvement of more than 5% over the FCM. The accuracy of hard classification was further increased by including a priori probabilities in BPNN and MLC classifiers. A new approach to include a priori probabilities by way of replicating the training data of a class in accordance with the proportional area covered by that class on ground was suggested. The accuracy of BPNN classifier increased by 20% whereas the accuracy of MLC increased by 7% on the inclusion of a priori probabilities. Even after classification through SVM with FERM based measures it led to an improvement of the order of 20% in the accuracy of the classification over the accuracy determined from traditional error matrix based measures for the same classification. Thus, it is recommended that soft classification outputs from any classifier should not be hardened for evaluation purposes, as this may result into loss of information. LMM as soft classifier produced the lowest accuracy whereas BPNN and PCM as soft classifiers produced the highest map accuracy of about 73%, which was an improvement of 20% over the highest accuracy achieved by the unsupervised classifiers. When the images are dominated by mixed pixels, their incorporation not just in allocation stage through generation of soft outputs, but also in training and test stages were also assessed. The results showed that by properly accounting for mixed pixels in all stages, same level of accuracy could be achieved as would have been obtained by using pure pixels in all stages.

Mahesh and Mather 2003 have done support vector classifiers for land cover classification. They have studied for two project areas; the first area used in the report is near town of Littleport in eastern England. The second is a wetland area of La Mancha region of Spain. For the Littleport area, ETM data acquired on 19th June 2000 is used. The classification problem involves the classification of seven land cover types (wheat, potato, sugar beet, onion, peas, lettuce and beans) for the ETM data set. For the La Mancha study area, hyperspectral data acquired on 29th June 2000 by the DAIS 7915 airborne imaging spectrometer were available. Eight different land cover types (wheat, water body, dry salt lake, hydrophytic vegetation, vineyards, bare soil, pasture lands and buildup area) were specified. Random sampling was used to collect the training and test for both data sets. Total selected pixels were divided into two part, one for training and one for testing the classifiers, so as to remove any possible bias resulting from the use of same set of pixels for both testing and training phases. A standard back propagation neural network classifier was used. All user defined parameters are set as recommended by Kavzoglu (2003). Like ANN the classification of SVM depends on a number of user defined parameters, which may influence the final classification accuracy. For the study, a radial basic kernel with penalty value C=5000 is used for both data sets. The values parameters were chosen after a number of trials and the same parameters are used with the DAIS data. Results obtained using ETM data suggests that the SVM classifier perform well in comparison with ANN and MLC. Further the training time taken by SVM is 0.3 minutes in comparison of 58 minutes by the ANN on a dual processor machine. Results suggest that SVM performance is statistically significant in comparison with ANN and MLC classifiers. To study the behavior of SVM classifier with hyperspectral data a total of 65 bands are used as the combination of first 5 bands, first 10 bands, etc. giving a total of 13 experiments. Results obtained from analysis of hyperspectral data suggested that SVM classifier increase almost continuously as a function of number of features, with the size of training data set held constant, whereas the overall classification accuracies produced by the ML, DT and ANN classifiers decline slightly once the number of bands exceeds 50 or so. They concluded that SVM outperforms MLC and ANN in terms of classification accuracy with both data sets. Several user-defined parameters affect the performance of SVM classifier, but it is easy to find appropriate values for these parameters than it is for parameters defining the ANN classifier. The level of classification accuracy achieved by SVM classifier is better than both MLC and ANN classifiers when used with small number of training data.

The review of literature suggests that there is a range of soft classification methods proposed and implemented by different researchers. From among a number of soft classification methods, this paper has focused on statistical method (Linear mixture Model), learning method (Artificial Neural network), and statistical learning method (Support Vector Machine). The details of these algorithms have been given in following sections. Fraction images generated from LMM, ANN and SVMs methods have been evaluated using FERM. This is a new approach that has been developed to assess the accuracy of soft classifiers (Binaghi et al., 1999). The elements of the fuzzy error matrix represent class proportions, corresponding to soft
reference data (R_n) and soft classified data (C_m), to class n and m, respectively.

3. TEST SITE AND DATA USED

The test site for this research work was near Nepali farm, south west of Rishikesh administratively belonging to Dehradun district of the Uttarakhand State. The district lies between the parallels of $30°04'14. 04"$ and $30°08'52.92"$ latitude and $78°13'12. 44"$ and $78°17'01.58"$ longitude. In this project, the hyperspectral data of Earth Observation Satellite EO1, Hyperion data has been used for classification and Indian Remote Sensing Satellite (IRS-P6), LiSS-3 data has been used for testing. Another dataset IRS-P6, AWiFS and LiSS-3 acquired at same time has been used to test and prove the earlier results (results from Hyperion EO1 and LiSS-3 data) for the project work. Survey of India, toposheet, 53 J/4, 53 J/8, 53 K/1 and 53 K/5 at 1:50,000 scale and GPS field data were used for image registration, training and reference data collection.

4. OPTIMUM PARAMETERS OF CLASSIFICATION ALGORITHMS AND OUTPUTS

While using different classification algorithms like; one statistical algorithm (Linear Mixture Model), one learning algorithm (Artificial Neural Network), and one statistical learning algorithm (Support Vector Machines) in this research work, the optimum learning parameters (Aziz, M. A. 2004, unpublished Ph. D thesis, IIT Roorkee) for ANN, are shown in Table 1 and logistic function as activation function has been used. For SVMs, four kernels were studied with, the optimum penalty value C has been used from Varshney and Arora, 2004. The optimum penalty values adopted for different kernel types are shown in Table 2.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Kernel Type</th>
<th>Penalty value (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Polynomial Function</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Radial Basic Function</td>
<td>5000</td>
</tr>
<tr>
<td>4</td>
<td>Sigmoid</td>
<td>7500</td>
</tr>
</tbody>
</table>

Table 1. Optimum parameters for ANN

Classification accuracy using the SVM algorithm (with sigmoid kernel) has been 71.184% when first thirty bands (1-30 bands of Hyperion EO1 data) were used and 76.294% when all bands (1-150 bands of Hyperion EO1 data) were used. The maximum classification accuracy of LMM, 85.318% occurred when the bands combination of 1-150 bands dataset of Hyperion EO1 data with 400 samples per class was used. For ANN classifier, the highest classification accuracy, 68.033% was in the band combination of 1-90 bands data with 500 pixels per class. The maximum accuracy of SVM classifier with sigmoid kernel, 90.846% had been produced by 1-120 bands data set of 500 sample pixels per class randomly. The effect of dimensionality on classification accuracy achieved from three classifiers (LMM, ANN, SVM) at fixed training data size of 300 is shown in figure 1.

5. VERIFICATION OF CLASSIFICATION RESULTS

It was difficult to get the Hyperion EO1 data and reference data of LiSS-3 data of same time. So to check how was the performance of these classifiers with classified (AWiFS data) and reference (LiSS-3 data) data set acquired at same time had been used from IRS P6 satellite. This test site was located west of Dehradun city, of the Uttarakhand State. The area of interest (AOI), number of land cover classes, number of training samples, classification algorithms with their optimum parameters and all other processing procedures were set with the same as in previous dataset.

6. RESULTS AND DISCUSSIONS

In this research work influence of feature dimensionality on classification accuracy is assessed using the Hyperion EO1 data. Also it has been accessed the relative performance (in terms of classification accuracy) of the three classification algorithms and to check how classification accuracy varies with a fixed number of training data as the number of bands is progressively increased from 30 to 150. Five subsets of Hyperion EO1 bands had been extracted, comprising bands, 1-30, 1-60, 1-90, 1-120 and 1-150, respectively. The classifications were performed using the LMM, ANN, SVMs (used four kernel types) with five training data set sizes of 100, 200, 300, 400 and 500 sample pixels per class randomly. The effect of dimensionality on classification accuracy is assessed using the Hyperion EO1 data.

In this research influence of feature dimensionality on classification accuracy is assessed using the Hyperion EO1 data. Also it has been accessed the relative performance (in terms of classification accuracy) of the three classification algorithms and to check how classification accuracy varies with a fixed number of training data as the number of bands is progressively increased from 30 to 150. Five subsets of Hyperion EO1 bands had been extracted, comprising bands, 1-30, 1-60, 1-90, 1-120 and 1-150, respectively. The classifications were performed using the LMM, ANN, SVMs (used four kernel types) with five training data set sizes of 100, 200, 300, 400 and 500 sample pixels per class randomly. The effect of dimensionality on classification accuracy is assessed using the Hyperion EO1 data.

Classification accuracy using the SVM algorithm (with sigmoid kernel) has been 71.184% when first thirty bands (1-30 bands of Hyperion EO1 data) were used and 76.294% when all bands (1-150 bands of Hyperion EO1 data) were used. The maximum classification accuracy of LMM, 85.318% occurred when the bands combination of 1-150 bands dataset of Hyperion EO1 data with 400 samples per class was used. For ANN classifier, the highest classification accuracy, 68.033% was in the band combination of 1-90 bands data with 500 pixels per class. The maximum accuracy of SVM classifier with sigmoid kernel, 90.846% had been produced by 1-120 bands data set of 500 training samples per classes. Of the three classifiers used, the SVM with sigmoid kernel gave the highest classification accuracy when 1-120 bands data had been used while ANN method generally gave the lowest classification accuracy value over all training sample sizes. But the difference between the lowest and highest accuracy was not too much different. Generally, the classification accuracy of SVM with sigmoid kernel and LMM had been increased when the numbers of bands were increased. For ANN, the maximum classification accuracy had been occurred when the number of bands reached at 1-90 bands and after that it decreases when the number of bands where further increased. But classification accuracy of SVM with other kernel types, such as linear kernel, polynomial

251
land cover classes, testing of classified data had been done with
work, while using three classification algorithms, allocation of
space and the effect of training sample size. In this research
The objective of this project was to understand the behaviour of
Classification accuracy depends on a number of factors, of
results to identify the minor features, (within classes).
using hyperspectral data, a sub-pixel classification method can
give the proper high classification accuracy and more accurate
by using hyperspectral data obtained about the earth surface features. By
which the nature of training samples, the number of bands used,
function with degree 2 and radial basic function has variations.
1. The SVM with sigmoid kernel produced the higher
classification accuracies compared to ANN and LMM even
with small number of training sample data set, suggesting its
appropriateness in situations where the training sample data
are difficult to collect.
2. Classification accuracy had been increased in case of SVMs
with increased in number of training samples as well as with
increased in number of bands. Out of four kernels used in
SVM classifier, sigmoid kernel gave the higher classification
accuracy. Other classification algorithms were not consistent.
3. ANN gave the lower classification accuracies through out all
the bands combination and different number of training
samples data sets.
4. The highest accuracy was not over 90.846% in this analysis
by using different acquired date of satellite data. In this
project the acquire date was nearly one month different, (i.e.
test image LISS-3 was one month before the classified image
of Hyperion EO1 data. The time different was not too much,
but the crop season was totally different, LISS-3 data is in
nearly harvested season but the Hyperion EO1 data was after
harvested season.
5. The further investigation for classification accuracy of three
classifiers used in this work was done using AWIFS data as
input and LISS-3 data as test image with same data
acquisition dates, to verify the performance of three
classification algorithms used. It had proven that the
classification algorithms used in this study generally have the
same trends as in hyperspectral dataset (Hyperion EO1 and
LISS-3 data).

7. CONCLUSION AND FUTURE SCOPE
The objective of this project was to understand the behaviour of
classification algorithms on effect of dimensionality of feature
space and the effect of training sample size. In this research
work, while using three classification algorithms, allocation of
land cover classes, testing of classified data had been done with
fuzzy error matrix (FERM) approach. The conclusions of this
research work are as follows:
1. When band was set to minimum, 30 bands and it was
increased up to 150 bands, SVM (Sigmoid) gave the
maximum classification accuracy in all cases. It does not
follow Hughes (1968) law.
2. When training data was set to 100 samples and changed up to
500 samples/class, SVM (Sigmoid) gave the maximum
classification accuracy in all cases.

8. FUTURE SCOPE
Hyperspectral remote sensing holds the potential to provide a
high spectral data obtained about the earth surface features. By
using hyperspectral data, a sub-pixel classification method can
give the proper high classification accuracy and more accurate
results to identify the minor features, (within classes).
Classification accuracy depends on a number of factors, of
REFERENCES
sensing data, unpublished Ph. D thesis, Indian Institute of
Technology Roorkee, Roorkee, India.
Congalton R. G., A review of assessing the accuracy of
classification of remotely sensed data. Remote Sensing
4257(91)90048-B
Hughes G. F, 1968. On the Mean Accuracy of Statistical
Pattern Recognizers., IEEE transactions on Information Theory,
14, pp.55-63
Kavzoglu, T. and Mather, P. M. 2003: The use of
backpropagating artificial neural networks in land cover
classification., IJRS, 24, pp. 4907-4939.
Mahesh and Mather, Support vector classification for land
cover classification, Processing’s of Map India 2003 Image
processing and Interpretation theme.
Mahesh and Mather, 2006; Some issues in the classification of
DAIS hyperspectral data, IJRS, 27 (14). pp. 2895-2916.
Varshney P. K. and Arora M. K., Advance Image Processing
Techniques for Remotely Sensed Hyperspectral Data, Springer-
Woodcock, C. E. and Strahler, A. H. 1987: The factor of scale
311-332.
Figure 1. Variation in classification accuracy with increasing numbers of bands for training sample sizes of 300 pixels per class