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ABSTRACT: 
 
By reason of recent advances in airborne and ground-base hyperspectral imaging technology, many applications have been 
developed.  
One of the most important hyperspectral images applications involves automatic detection of hidden objects without any prior 
knowledge about them such as man-made targets, rare minerals in geology, vegetation stresses in agriculture, poisonous wastes in 
environments, cancerous cells or tumors in medical imaging, etc.  
The most robust class of algorithms for detection of this type of targets is arguably the one that searches the pixels of image cube for 
rare pixels whose information significantly differs from their surrounding pixels and local background. These targets are known as 
"Anomaly" in image processing and remote sensing literature.  
Considering mentioned concepts, in this research, a host of different anomaly detectors such as RX-base anomaly detectors (Basic 
RX, Modified RX, Normalized RX, Weighted RX, Causal RX, UTD, RX-UTD, and ACAD), Dual window-base Eigen Separation 
Transform (DWEST) method, Nested Spatial Window-base Target detector (NSWTD) and Combined F-Test (CFT) algorithm are 
investigated and compared. 
 
 

1. INTRODUCTION 

Hyperspectral imaging sensors acquire images in many 
contiguous and very narrow spectral bands in visible, near-
infrared, and mid-infrared portions of electromagnetic spectrum. 
This type of digital data shows vast potential for use in 
automatic target detection since it provides useful information 
about the spectral characteristics of the materials and targets in 
the image. 
This means that many targets that generally cannot be resolved 
by multispectral images can be located as a consequence of high 
spectral resolution in hyperspectral images according to the 
concept of a spectral signature which uniquely characterizes any 
given material. In this process, many factors should be 
considered such as variations in atmospheric conditions, 
location, noise of sensor, material composition, adjacent 
materials, etc. But in many cases there is not any prior 
information about the target. In this respect the most practical 
approach is to search for anything that displays significantly 
different spectral characteristics from its surroundings. This 
process is known as "anomaly detection" in remote sensing 
literature. 
The main purpose of these target detection methods is to locate 
targets which are commonly unknown, relatively small and only 
occur in the image scene with low probabilities. Also these 
algorithms can be applied directly to the radiance at the sensor 
level. Thus they do not require any training or difficult step of 
atmospheric correction and they are usually simple to 
implement, even in a real-time or near real-time manner. 
Nowadays anomaly detection has found in a broad variety of 
applications ranging from defence, agriculture, geology, 
environmental monitoring, medical imaging and etc. 
In this research, a group of different anomaly detectors are 
investigated and compared to select the best algorithm 

according to purpose of aimed application, data specifications 
and its quality (number of spectral bands, signal-to-noise ratio, 
etc) and other effective parameters.       
 
 

2. ANOMALY DETECTION ALGORITHMS 

In this section most important anomaly detection algorithms are 
briefly described theoretically which will be used for 
comparative analysis. 
 
2.1 Basic RX algorithm 

The basic RX algorithm is the benchmark anomaly detection 
algorithm, originally developed for multispectral images by 
Reed and Yu (1993) that is formulated based on two hypotheses. 
The first one models the image background as a Gaussian 
distribution with zero mean and an unknown covariance matrix 
which is estimated globally or locally from the data (N (0,∑)). 
The second hypothesis models the target as a linear combination 
of a target signature and background noise. So, under a spectral 
vector is represented by a Gaussian distribution with a mean 
equal to the signature of the target (s) and an additive noise 
equal to the background covariance matrix in hypothesis 
(N(s,∑)). 
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In this case detection process is based on exploiting the 
difference between the spectral signatures of an input pixel and 
its surrounding pixels that is very similar to the well-known 
Mahalanobis distance and given by (Chang, 2003): 
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Where r is the pixel spectral vector, μ is the mean spectral 
vector for the area of interest (the mean of each spectral band), 
L is the number of spectral bands, and K is the spectral 
covariance matrix. 
It is interesting to note that mathematically, RX algorithm can 
be considered to be an inverse procedure of the PCA algorithm 
which searches for targets in minor components. In this case, a 
small eigenvalue will create a large value of δRX(r). This is 
comparable to searching for minor components by finding 
smaller eigenvalue of K. It offers explanation of why RX 
algorithm works for anomaly detection. Other types of RX-base 
algorithms derived and developed from this basic algorithm to 
improve detection performance which will be discussed. 

 
 
2.2 Normalized RX (NRX) & Modified RX (MRX)  

It is interesting to see that the RX equation by (2) performs 
some kind of a matched filter that its performance is entirely 
depend on two parameters: the matched signal                        
( (r-μ)TKL×L

-1 )  and the scale constant (κ=1) which seems 
before the matched filter. According to this advantage, two 
alternatives of the RX referred as normalized RX and modified 
RX, those are denoted by (3) and (4) can be developed by 
setting  κ = [(r-μ) T(r-μ)]-1 and κ = [(r- μ) T(r-μ)]-1/2 in this way 
(Chang, 2002): 
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2.3 Weighted RX algorithm (WRX) 

In view of the fact that anomaly targets are generally small and 
the background is homogeneous, the sample covariance matrix 
of the entire image can be viewed as background sample 
covariance matrix. Also the anomalies or small man-made 
targets can be separated as outlier in image data cube. 
Consequently, the RX algorithm uses Mahanalobis distance to 
find them by using sample covariance matrix to whiten the 
background pixel, then those anomaly pixels become outliers. It 
would not be a problem when the number of anomaly pixels is 
few. But since this algorithm assumes Gaussian noise and uses 
sample covariance matrix for data whitening, when percentage 
of the anomaly pixels is relatively large, the sample covariance 
matrix cannot represent the background distribution. In this case 
the RX algorithm will not perform well. So to solve this 
problem, it is proposed to use weighted covariance matrix 
(Hsuan, 2005). 
In weighted RX algorithm, proper weight is assigned to each 
pixel in the sample covariance matrix using its distance to the 
data center for better representation of background distribution. 
So weighted matrix can be written as: 
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Where wi and qi are weight scalars for each pixel in the image 
defined by: 
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Finally RX filter with weighted covariance matrix can be 
applied to the image. 
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2.4 Uniform Target Detector algorithm (UTD) 

Another type of anomaly detector, referred to the low 
probability target detector (LPTD), it was developed by 
Harsanyi (1993) and given by: 
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This detector was designed base on the sample correlation 
matrix R. If  R is replaced with the sample covariance matrix K,  
an alternative LPTD could be develop using sample covariance 
matrix K, referred to as uniform target detector (UTD) which is 
given by: 
 

( μμδ − )−−×= rLxLKT
LrUTD

1)11()(    (10) 

 
Where 1L×1 is the L dimensional unity vector with ones in all the 
elements. Thus an anomalous target is assumed to have uniform 
distribution of radiance over all the spectral bands. Therefore it 
is predictable to extract background signatures which are 
uniformly distributed in the image scene.  
In this case it is remarkable to note that the background 
subtraction could enhance the RX detection algorithm 
performance as shown by Ashton and Schaum (1998). By 
incorporating the UTD into basic RX, the background can be 
removed as well as noise to improve the performance of basic 
RX detector. This advantage enables us to develop a new type 
of anomaly detector by subtracting UTD from RX as follows 
(Chang, 2003): 
 

)(1)()( μμδ −−−=− rLxLKTrrUTDRX   (11) 

 

304



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

2.5 Causal RX algorithm (CRX) 

Since RX detector involves mean and covariance matrix 
computation, it can not be implemented in real-time. Hence a 
real-time processing version of the RX is introduced where the 
sample correlation matrix (R) is used instead of the sample 
covariance matrix (K). It is called "Causal" which means that 
the information used for data processing is up to the pixel being 
processed and updated only based on the pixels that were 
already processed. 
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i

T
irirkkrR 1
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Since the computation of the inverse of a sample correlation 
matrix can be carried out in parallel via QR matrix 
decomposition method, this algorithm can be implemented in a 
real-time manner (Chang, 2003). 
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2.6 Adaptive Causal Anomaly Detector algorithm (ACAD) 

ACAD algorithm is a developed version of causal RX model. In 
this algorithm, strong signatures of detected anomalies are 
removed during detection process due to their undesirable 
effects on detection of subsequent anomalies. Because one 
major problem encountered in CRX algorithms is that if an 
earlier detected anomaly has an intense signature it may have 
considerable impact on the detection of later anomalies. This 
occurrence is mainly caused by an inappropriate use of sample 
correlation matrix. According to Chang (2003), a proper sample 
correlation matrix should be one that removes all the earlier 
detected anomaly pixels being included in the sample 
correlation matrix. For this reason, the (R) in Causal RX 
equation should be replaced with a sample correlation matrix 
that removes all detected anomalies defined by (Hsueh, 2004): 
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Where Δ(k) is the set of earlier detected anomalous target pixels 
tj prior to the currently being processed image pixel (rk). 
 
Also the mentioned Rx-base algorithms are known as Global or 
Local anomaly detector if the mean spectrum is derived from 
the full image data or from a local window around each pixel 
during detection process. 
 
2.7 Dual Window-base Eigen Separation Transform 
anomaly detector (DWEST) 

DWEST model implements two local windows, entitled inner 
and outer windows which are used to maximize the separation 
between anomalies and background. The idea of using the inner 
window is to detect an anomaly present in it, whereas the 
purpose of the outer window is to model the background of the 
anomaly assumed in the inner window[5]. By moving these two 
local windows entire the image, local mean (min, mout) and 
covariance matrix (Cin, Cout) of each window and their 
differences are calculated as below: 

 
inmoutmdiffm −=  

      (15) 
outCinCdiffC −=  

 
Consequently anomalies can be extracted by projecting the 
differential mean between two windows on to the eigenvector 
associated with the largest positive eigenvalue of differential 
covariance matrix (Kwon, 2003) by: 
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Also in order to implement the RX for the dual windows, the 
RX in equation is modified as: 
 

)()(1)()( rdiffmroutCTrdiffmrDWRX
⎥⎦
⎤

⎢⎣
⎡ −=−δ  (17) 

 
 
2.8 Nested Spatial Window-base Target Detector (NSWTD) 

NSWTD model implements a nested three local windows, 
entitled inner, middle and outer windows where the first two 
windows are used to extract smallest and largest anomalies 
respectively, while the outer window is used to model the local 
background. Moreover the other main distinction of this model 
from the DWEST and RX-base algorithms is using the 
Orthogonal Projection Divergence (OPD) as measurement 
criterion instead of eigenvector projection or sample covariance 
matrix (Liu, 2004) by:  
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Since three nested windows used in this algorithm, the inner 
window implanted in the middle window which is in turn nested 
in outer window, the OPD must be implemented twice. First 
between inner and middle windows is specified by 
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Where mdiff,1 is the mean of the outer window with subtraction 
of the inner window. The second OPD is between the middle 
and outer windows is specified by 
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Where mdiff,2 is the mean of the outer window with subtraction 
of the middle window. Finally, a 3-window NSWTD, denoted 
by δ 3W−NSW ( r ): 
 

)}(2{2,1max)(3 rNSWW
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2.9 Combined F-Test anomaly detector (CFT) 

CFT method is based on a nonparametric model that compares 
two sets of data (random variable), background data and target 
data by using a typical inner/outer window mechanism to 
sample the image for local detection, or using full image data to 
global detection. In this method after combining two mentioned 
samples, statistical parameters of them (mean and variance) are 
estimated. Then ratio of these parameters are calculated (ZCFT) 
and tested by Fisher distribution of (1,1) degree of freedom. 
A decision threshold T is determined via defining a type I error 
for F distribution function and compared with the result of ratio. 
If ZCFT is greater than T, it means that these two sets are most 
likely sampled from different distributions. Therefore they are 
anomalous to each other. If not, they are likely sampled from 
the same distribution.    
The main assumption in this method is asymptotic behaviour of 
Fisher’s F distribution for data sets which are examined by a 
common statistical test (Rosario, 2005). 
 
 

3. EXPERIMENTAL RESULTS  

Two sets of hyperspctral data have been used for these 
experiments. 
The first one is a real hyperspectral data (AVIRIS image of 
Cuprite region which is available in ENVI sample data) for 
visual inspection of detection results. The second one is a 
synthesized hyperspectral data for quantitative evaluation which 
was simulated by sampling of contiguous spectral curve with 20 
nanometre spectral resolution for some natural and man-made 
targets such as dry grass, sandy loam, sagebrush, galvanized 
iron and aluminium metal using ENVI spectral libraries and 
MATLAB software. This synthetic hypercube’s size was 
100×100 pixels which made up linear combination of some 
above signatures for background region and anomaly panels. 
In background region first pixel is started with 100 percent dry 
grass and 0 percent sandy loam. Then by moving to next pixel 
percentage of dry grass is decreased and percentage of sandy 
loam is increased. This process is repeated until the last pixel 
has 0 percent of dry grass and 100 percent sandy loam. Then 
anomaly pixels are added to this data in various locations. 
Anomaly panels in each column have the same pure signature 
with various sizes and they have the same signature in each row. 
All of anomaly pixels have 10 percent abundance of anomaly 
signatures such as galvanized iron and 90 percent abundance of 
background signatures. Also Gaussian noise is added to each 
pixel to achieve 30:1 signal-to-noise ratio.  
Figure (1) shows the simulated hypercube in band number 20 
(800 nanometre) and location of considered anomaly pixels in it. 
 
 
 
 
 
 
 
 
 

(a)                                      (b) 
 

Figure 1. Simulated image in band number 20 (a), 
 location of anomalies (b) 

 
 
All mentioned algorithms (in global or local manner with 
various window sizes) are implemented in MATLAB software 

and their performances are compared by discrete Receiver 
Operating Characteristic (ROC) curves and their area under 
curves (AUC) as appropriate criterions for evaluation of 
detection algorithms. Therefore seven threshold values are used 
to achieve confidence levels about 93% to 99% for calculating 
probability of correct detection and false alarm.   
For example figure (2) shows the visual result of local RX 
method with local window size 15, correct detected targets and 
ROC curve of this algorithm  
 
 
 
 
 
 
 
 
 

(a)                                     (b) 
 
 
 
 
 
 
 
 
 

 (c)                                      (d) 
 

Figure 2. Result of local RX (a), correct detected anomalies in 
99% confidence  level (b), full ROC curve (c),  

comparable part of ROC curve (d)  
 
 
Local DWEST and NSWTD algorithms are tested with different 
combination of local window sizes. Figure (3) shows the best 
visual results of these methods. 
 
 
 
 
 
 
 
 
 

(a)                                   (b) 
 
 
 
 
 
 
 
 

 (c)                                 (d) 
 

Figure 3. Global DWEST-RX (a), global DWEST (b), 
 local DWEST with in/out window size 1/7 (c), 

NSWTD with in/mid/out window size 1/11/25 (d) 
 
 
Also figure (4) shows the visual results of global RX-base 
methods. 
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(a)                                    (b) 
 
 
 
 
 
 
 
 

(c)                                     (d) 
 

Figure 4. Global RX (a), Global RX-UTD (b),  
Global modified RX (c), Global normalized RX (d) 

 
 
Figure (5) shows the visual results of global weighted RX-base 
methods. 
 
 
 
 
 
 
 
 

(a)                                    (b) 
 
 
 
 
 
 
 

(c)                                    (d) 
 

Figure 5. Weighted RX (a), weighted RX-UTD (b), 
 Weighted  modified RX (c), weighted normalized RX (d) 

 
 
Figure (6) shows the visual results of local RX-base algorithms. 
 
 
 
 
 
 
 
 

(a)                                    (b) 
 

 
 
 
 
 
 

(c)                                    (d) 
 

Figure 6. Local RX (a), local modified RX (b),  
local normalized RX (c), local RX-UTD (d) 

Figure (7) shows the visual results of causal RX, ACAD and 
CFT algorithms. 
 
 
 
 
 
 
 
 

(a)                                    (b) 
 
 
 
 
 
 
 
 

(c)                                    (d) 
 

Figure 7.  Causal RX (a), ACAD (b),  
local CFT (c),  global CFT (d) 

 
 
For comparing all implemented algorithms together, their area 
under ROC curves, number of correct detections (from 70 target 
pixels) and false alarm detections in 99% confidence level 
displayed in table (1).  
 

 
Table 1.  Comparative result of anomaly detection algorithms 

 
 
Moreover, all of these algorithms are compared with 
computational complexity point of view and they are tested by 
simulated hyperspectral data with various additive Gaussian 
noises (20:1, 10:1 and 5:1 signal-to-noise ratio) to investigate 
noise sensitivity of them. For example figure (8) shows the 

 Method AUC Correct 
Detected False Alarm

1 Global  NRX 0.6429 11 201 
2 Global  UTD 0.8237 29 189 
3 Local  NRX 0.8981 47 143 
4 Causal  RX 0.9248 39 141 
5 Global  RX-UTD 0.9413 46 133 
6 ACAD 0.9464 54 33 
7 Local  DWEST 0.9569 59 106 
8 Local  MRX 0.9625 55 99 
9 Global  MRX 0.9641 49 132 
10 Local  CFT 0.9666 58 52 
11 Global  RX 0.9686 53 108 
12 Local  UTD 0.9698 59 113 
13 Global  DWEST-RX 0.9706 60 14 
14 Global  DWEST 0.9719 63 110 
15 NSWTD 0.9731 64 89 
16 Local  RX 0.9764 59 67 
17 Local  RX-UTD 0.9801 64 86 
18 Global  CFT 0.9823 60 41 
19 Global  Weighted  MRX 0.9861 60 89 
20 Global  Weighted  UTD 0.9934 60 81 
21 Global  Weighted  RX 0.9944 61 71 
22 Global Weighted  RX_UTD 0.9946 61 68 

307



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

visual results of weighted RX using simulated image with 
various SNR. This algorithm is selected, because it has more 
sensitivity of noise increase.  

Method SNR = 5 SNR = 10 SNR = 20 SNR = 30 

Global  RX 38 44 49 53 

Local  RX_UTD 37 38 41 64 
Global  Weighted  

RX-UTD 3 11 29 61 

DWEST 14 34 61 63 

NSWTD 24 33 45 64 

CFT 17 40 49 60 

 
 
 
 
 
 
 

  
Table 3.  Number of correct detections in various SNR  

 (a)                                    (b) 
  
  
  
  
  
  
  
 (c)                                    (d) 
  
 Figure 8. SNR 30:1(a), SNR 20:1(b), SNR 10:1(c), SNR 5:1(d) 
  
  

Figure 10. Effect of SNR on correct detection Table (2) and figure (9) show the effect of Signal-to-noise ratio 
on detection performance (AUC).  

  
4. CONCLUSION  

 
Table 2.  AUC in various SNR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Effect of SNR on AUC 
 
 
Also table (3) and figure (10) show the effect of signal-to-noise 
ratio on number of correct detections. 
 
 
 
 

 

Finally our experimental results show that weighted RX-UTD is 
the highest performance algorithm (maximum AUC), NSWTD 
method has maximum number of correct detections, DWEST-
RX method has minimum number of false alarms, global RX 
algorithm has less sensitivity of various SNR and NSWTD is 
the highest speed method and it is suitable for processing of 
ultraspectral images. 

Method SNR = 5 SNR = 10  SNR = 20 SNR = 30 

Global  RX 0.8528 0.9095 0.9285 0.9686 

Local  RX_UTD 0.8568 0.8806 0.9189 0.9801 
Global  Weighted 

RX-UTD 0.6575 0.7210 0.8326 0.9946 

DWEST 0.6711 0.8689 0.9642 0.9719 

NSWTD 0.7863 0.8364 0.9061 0.9731 

CFT 0.7010 0.8724 0.9210 0.9823 
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