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ABSTRACT: 
 
In hyperspectral imagery there are some cases when no pure pixels present due to the limitation of the sensors’ space resolution and 
the complexity of the ground components, and then the endmembers extracted by traditional algorithms are usually mixing ones still. 
In order to solve this problem, this paper proposes an endmember extraction algorithm based on the re-analysis of preliminary 
endmembers extracted by volume calculating concept under the linear mixing model. After extracting the pixels which are most 
approximated to the pure pixels from the image, using the convex polyhedron’s geometric characters to search out the boundary 
pixels which are around the preliminary endmembers and on the edge of the convex polyhedron formed by the pure pixels. 
Calculating the abundance fractions of every endmember in these pixels by the laws of sins, thus, with these coefficients the 
endmembers could be obtained using the inversion of linear mixing model. Hyperspectral scenes are simulated by the real spectra to 
investigate the performance of the algorithm. Preliminary results indicate the effectiveness of the algorithm. Applying the algorithm 
to a real Hyperion scene it also gets a better result.   
 
 

1. INTRODUCTION 

Hyperspectral remote sensing using imaging spectrometry 
technology automatically obtains the spectra information of 
ground targets. Pixels in the obtained images record nearly 
continuous spectra information with narrow bands, using these 
continuous spectra the ability of interpretation and classification 
of remotely sensed imagery have been greatly improved (Chen, 
Tong, 1998) . 
 
Due to the limitation of the sensors’ space resolution and the 
complexity and diversity of the ground components, most of the 
recorded pixels are mixed ones, thus the acquired spectra 
information is integrated response of few ground components 
spectra (Zhao, 2003). In order to improve the application 
precision of the pixel spectra, the problem of spectral mixing 
must be solved. 
 
For the simpleness and easy disposing, linear spectral unmixing 
model (Keshava, Mustard, 2002) has been widely used in 
unmixing and classification of multi/hyperspectral datasets. The 
approach includes two steps (Bateson, Asner, Wessman, 2000): 
first, to find out pure ground components signatures, usually 
referred to as endmembers (Kruse, 1998); second, to model 
every pixel to the linear combination of endmembers. Generally, 
the spectrum of any given pixel in a hyperspectral image given 
with N bands is assumed to be a linear combination of 
endmember spectra: 
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Where: e is the number of endmember, R(x,y) is a spectrum of 
pixel with coordinate(x,y), Ei is the endmember matrix, ci is 
endmember abundance fraction matrix for corresponding pixel, 
and εi is Gaussian random error. For the ideal endmembers, 
pixel compositions are assumed to be percentages, the mixing 
proportion coefficients are constrained to be sum to one and 
nonnegative as shown in function (2). If the influence of noise  
εi is ignored, endmembers can be N dimensional vectors and 
every pixel is N-D vector mixed by endmembers. In N-D space, 
pixel vectors based on linear mixing model form a convex 
polyhedron in which endmembers are vertexes and all the other 
mixing pixels lie within it (Winter, 1999). A mixture model 
based on three or four endmembers in the N-dimensional 
hyperplane has the simple geometrical interpretation as the 
triangle or tetrahedron whose vertices are the endmembers. 
Cover fractions are determined by the comparative position of 
the modelled spectrum in the figure, which could be within the 
interior or on the boundary (Antonio, 2002) , as Fig.1 shows. 
 

 
 

Figure 1. Scatter plot of 2-D spectral data illustrating the 
physical interpretation of a mixture model based on three 

endmembers. 
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Over the past decade, based on linear spectral unmixing model, 
scholars domestic and abroad proposed a number of well 
developed endmember extraction algorithms, such as: PPI 
(Theiler, 2000)、IEA (Staenz, 1998), ORASIS (Bowles, 1995), 
N-FINDR (Winter, 1999), AMEE (Antonio, 2002), CCA 
(Agustin, Chang, 1999), MEST (Bateson, 1993), etc. Some 
researchers studied the endmember extraction methods 
quantitatively and comparatively and got some important 
conclusions (Antonio, 2004). However, most existing 
endmember extraction algorithms are based on the assumption 
that endmembers exit and present in the images in the form of 
pure or unmixed pixels, through all kinds of algorithms the pure 
ones can be extracted from the image and be used as 
endmembers. 
 
Oriented to solving the problem that the mixing spectra are 
ubiquitous and there may be case that no pure pixel exits in the 
imagery, this article proposes a new endmember extraction 
algorithm. Based on linear mixing model, the geometry of 
convex sets in N spectral dimensions illustrates that the N-
volume formed of the pure pixels is larger than any other 
volume formed from any other combination of pixels (Winter, 
1999). First the volume of convex polyhedron is calculated to 
extract the purest pixels which formed the possible largest 
volume, then search for the boundary pixels which are around 
the extracted pixels, using geometric relationship to calculate 
the fractional abundance of extracted endmembers in boundary 
pixels, finally using linear inversion the pure endmembers are 
obtained. Simulated hyperspectral images are synthesized to 
validate the effectiveness of this algorithm, and the algorithm 
has also been successfully applied on real hyperspectral 
imagery, advantages and shortages are commented.  

 
 

2. ENDMEMBER EXTRACTION ALGORITHM 

If there are no completely unmixed pixels exit in hyperspectral 
image, the pixels extracted by applying traditional methods are 
only the ones least mixed and most closely approximates the 
pure ones. In N-D space, outside the volume formed by the 
extracted pixels there are still other mixed pixels exit and these 
outside ones are within the biggest N-volume formed by the 
pure ones, only for that the vertices of the biggest N-volume do 
not appear in the image. And those pure pixels which did not 
present in the image are the object of this proposed algorithm. 
Fig.2 illustrates this situation formed by the combination of 
three endmembers, the extracted endmembers by only 
calculating the biggest N-volume in the image can not precisely 
represent the pure pixels in real. 
 

 
 

Figure 2. Sketch Map of the set of pixels with the largest 
possible volume, some mixed pixels are outside of this volume 

This algorithm assumes that the endmembers themselves are not 
represented in the datasets. First using improved N-FINDR 
algorithm (Geng, 2006)  to extract the preliminary pure pixels 
which form the largest possible volume in the image. 
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(, −= niRi Λ is the pixel vector, (n-1) is the number 
of dimensions occupied by the data. This improved N-FINDR 
algorithm could extract pixels constructed the possible largest 
N-volume from the image without dimension reduction. Father 
analysis is needed to obtain the endmembers. 
 
2.1 Three Components Mixing 

When the ground components in the image are comparatively 
simple and mixed by three substances, the geometrical 
interpretation of the convex polyhedron constructed by all the 
pixels is a triangle. Calculate V3 first, the extracted preliminary 
pure pixels are marked as S1, S2 and S3. As shown in Fig.3, after 
extraction of S1, S2 and S3, search around the neighbouring 
pixels in the hyper plane and find out the boundary pixels A, B, 
C, D, E and F. The selection of boundary points are required to 
stratified with next conditions. 
(1) Boundary vectors are in the hyperplane formed by 
preliminary endmembers. In the image comprised of only three 
ground components, this condition are automatically matched. 
However, when the image contains more than three ground 
components, finding boundary points must meet this 
requirement. According to linear correlation of vectors in plane, 
1×N dimensional row vectors S1, S2 and S3 built up a 3×N 
dimensional matrix [S1, S2 , S3]T with the rank of three, with the 
spectral vectors of original image have been previously 
transposed. Calculate every rank of the 4×N matrix formed by 
the combination of each pixel vector Ri with S1, S2 and S3, if the 
rank of this matrix is still three, the conclusion that Ri is linear 
correlated with S1, S2 and S3 can be got which means Ri is in the 
hyperplane formed by S1, S2 and S3.  
(2) Boundary vectors are outside the convex polyhedron 
formed by the preliminary endmembers. If Ri is outside the 
triangle S1S2S3, then the sum volume of three small triangles 
formed by Ri with every two of S1, S2 and S3 respectively is 
greater than the volume of original largest triangle. 
(3) Each boundary vector has the shortest distances to one of 
the preliminary endmembers respectively and the largest 
volume formed with other two preliminary endmembers.  
Searching the pixels one by one, finally the six pixels meet the 
requirements above are obtained and can be approximately 
regarded as the boundary pixels on the edges of the triangle 
formed by preliminary endmembers. 
 
The six boundary pixels on the edges of triangle in hyperplane 
are marked as A, B, C, D, E and F, linking the points one and 
another to form three line vectors AB, CD, EF. Let the pure 
pixel vectors signed as G1, G2, G3, and the three points are the 
intersection of extension line of AB, CD, and EF in two 
opposite directions. Using geometric triangle relationship to 
calculate the vectors, based on functions: 
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Where, x, y, z are three edge vectors of a triangle, X, Y, Z are the 
corresponding angles. Through calculation |G1G2|, |G2G3|, 
|G3G1| can be obtained. For the relative position of pixel vector 
within the convex polyhedron can be considered as the cover 
fractions of endmembers in pixel, the cover fractions of 
endmembers G1, G2, G3 in A, B, C, D, E and F are calculated 
out, thus cover fraction matrix C is obtained. According to 
linear model, (1) is inversed as: 
 
 

CRE /=               (6) 
 
 
Given C and prior boundary point vectors R of three boundary 
pixels, endmember matrix E is the solution satisfies (6), thus 
with this inversion of linear mixing model the endmember 
vectors are obtained. 
 

 
 

Figure 3. Structure scheme of the algorithm. 
 
2.2 Four Ground Covers Mixing 

This section considers the situation when the image contains 
four ground components or four components with greatest 
difference are required to be extracted. Four materials linear 
mixed a convex polyhedron in geometric interpretation turned 
out to be a tetrahedron in N-D space. First, V4 is calculated, the 
four preliminary pure pixels are signed as S1, S2 , S3 and S4, as 
Fig.4 (a) shows. Then perpendicular is made from S4 to the 
hyperplane formed by S1, S2 and S3, intersection points signed as 
M. Next, search for boundary pixels A, B, C, D, E and F which 
are on the three arrises of the tetrahedron and around the 
preliminary endmembers. Spatial structure which the algorithm 
pursuant is shown in Fig.4 (b), the choice of boundary pixels 
meets following requests: 
(1) Boundary pixels are located in the hyperplane formed by 
the combination of every two preliminary endmembers and the 
vertical point M respectively. This condition can be achieved 
with the method described above which need to search from 
three the vertical planes inside tetrahedron. 
(2) Boundary pixels have the shortest distance with S1, S2, S3 
and S4 respectively, and the combination of one of the boundary 
pixels, S4 and one of S1, S2, S3, correspondingly can form a 
triangle with largest volume. 

(3) Boundary pixels in every two arrises are in a hyper plane, 
the rank of the matrix formed by each four vectors is three. 
Search the pixels one by one, finally the six boundary pixels 
meet the requests are obtained. Within the triangles formed by 
the vertical line inside the tetrahedron and each arrises, four 
vertices of the tetrahedron G1, G2, G3 and G4 can be extracted 
out as pure pixels. 
 

 
Figure 4. Four endmembers mixing. (a) The geometric 

interpretation of a tetrahedron. (b) Sketch map. 
 
 

3. IMPLEMENTATION WITH SIMULATED DATA 

Based on second-development platform of ENVI, the algorithm 
is implemented using IDL language, and simulated 
hyperspectral data are designed to evaluate the performance of 
the algorithm. Considering the mixing situation of three and 
four ground components respectively, two simulated images 
were generated. 
 
3.1 Generation of Simulated Data 

Three spectra were chosen from JUL spectral database 
(http://asterweb.jpl.nasa.gov/speclib/) in ENVI which presented 
soil, vegetation and manual target separately, and a water 
spectrum was chosen from spectral database commonly used. 
Resampling the four spectra, 50 bands with the wavelength 
covered from 508.220um to 1033.550um are saved, target 
spectra are shown in Fig.5. With different abundance fractions 
and the constraints of sum to one and nonnegative, two 
simulated image were designed under linear mixing model. 

 
 

Figure 5. Original Reflectance Spectrum 
 

First, soil, vegetation and manmade spectra were chosen to 
create a simulated hyperspectral data for implementation of 
three endmembers extraction. As Fig.6 (a) shows, the 60*60-
pixel scene is formed by six regions of ten-pixel width. In every 
region, pixel spectra in each line are the same; in row direction, 
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the abundance of endmembers in pixels has a gradually 
changing process (mixing fraction shows in Table.1) and the 
abundance fractions of every ground components are no more 
than 0.95 to insure no pure pixels exit in the scene. 
 

 
Table 1 Abundance assignment for regions in simulated scene 
 

 
 

Figure 6. Sketch map of simulated scene with 3 components 
 

 
 

Figure 7. Sketch map of simulated scene with 4 components 
 

 
 

Figure 8. The band 23 images of two simulated scenes  
 

Then all the four spectrum  were chosen to create the second 
scene with a size of 60*60 pixels, and the data was parted into 8 
regions in landscape orientation. The first four regions which all 
have the size of 2*60 pixels are formed with every three 
materials respectively. The abundance fraction of these regions 
is distributed as shown in fig.6 and tab.1. Due to the spectrum 
of water is distinguishedly different from the others, when there 
was water spectra in any of the four mixing regions, the max 
abundance fraction was changed to 11/12 but still no more than 
0.95. The next four regions each with size of 3*60 pixels are all 
mixed by four materials and with one component has the largest 
abundance fraction in one region respectively. Every region’s 
row direction still has a gradual changing of endmember 
abundance fractions. And with the abundance fraction of each 
components no more than 0.95, there is no pure pixel exit in the 
image. The images of band 23 of two simulated scenes are 
shown as Fig.8 (a), (b). 

 
3.2 Evaluation with experimental results 

Comparative analysis of endmember extracted with this 
proposed algorithm, original spectra and preliminary pure 
pixels extracted from the images using improved N-FINDR are 
illustrated in Fig.9 and Fig.10. Black solid lines present original 
spectra and black dashed lines are the preliminary endmembers, 
red solid lines are the spectra extracted with this researched 
algorithm. From the both graphs, red solid lines are well 
matched with the black solid lines. Although the black dashed 
lines are approximated to the black real ones, difference still 
exits, and this is caused by no pure pixels present in the data, 
the pixels extracted by traditional methods are most 
approximated to the original pure spectra, but still mixing ones. 
This researched algorithm based on the extracted possible 
purest pixels, search the boundary pixels and through using 
inversion of linear mixing model could successfully extracted 
the pure spectra which don’t exit in the image. 
 

 
 

Figure 9. Comparison of three extracted endmembers with 
original spectra.(a) Soil, (b) Vegetation, (c) Manmade 

 
Spectral similarity measurement between extracted spectra and 
original spectra are calculated using SCM, SAM and ED (Van 

Region Soil Vegetation Manmade 
R1 (10/12)*(i/60) 0.5*[1-

(10/12)*(i/60)
] 

0.5*[1-
(10/12)*(i/60)]

R2 0.5*[1-
(10/12)*(i/60)

] 

(10/12)*(i/60) 0.5*[1-
(10/12)*(i/60)]

R3 0.5*[1-
(10/12)*(i/60)

] 

0.5*[1-
(10/12)*(i/60)

] 

 
(10/12)*(i/60)

R4 (2/3)*(1-
i/120) 

1-(2/3)*(1-
i/120) 

0 

R5 0 (2/3)*(1-
i/120) 

1-(2/3)*(1-
i/120) 

R6 1-(2/3)*(1-
i/120) 

0 (2/3)*(1-i/120)

i=1,2,……60 
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der Meer, 2006)\. As Tab.2 (a) illustrates the SCM values 
between the original spectra and this algorithm extracted ones 
are more close to 1 than the values between original spectra and 
the preliminary pure ones, and the new endmembers present 
higher spectral similarity to ground truth. The SAM and ED 
values of this algorithm also show the advantages 
correspondingly. Similarity analysis of four endmembers 
combination shows the same results as shown in Tab.2 (b). 
The experiment results proved that, when the pixels in the 
image are all mixed and the image is combined by three or four 
components, the proposed algorithm can successfully extract 
the spectral vectors highly approximated to the ground truth. 

 

 
 

Figure 10. Comparison of four extracted endmembers with 
original spectra. (a) Water, (b) Vegetation, (c) Soil, (d) 

Manmade 
 

 (a) Three endmembers combination 
Endmember SCM SAM ED 

O/P 0.99738815 0.030642001 0.043332638C1 

O/F 0.99999998 0.000039943 0.000056489

O/P 0.99991274 0.020130492 0.028468334C2 

O/F 1.0000000 0.000030774 0.000043522

O/P 0.99554831 0.033732950 0.047703333C3 

O/F 1.0000000 0.000027181 0.000038439

Components: 1-soil, 2-vegetation, 3-manmade. 
O/P-Original/Preliminary; O/P-Original/Final. 

 
(b) Four endmembers combination 

Endmember SCM SAM ED 

O/P 0.75273329 0.23198298 0.32733832 C1 

O/F 0.99895786 0.000000037 0.000000021

O/P 0.99989903 0.021801584 0.030831495C2 

O/F 1.0000000 0.000000015 0.000000035

O/P 0.99722484 0.031696471 0.044823703C3 

O/F 0.99999998 0.000039943 0.000056586

O/P 0.99523259 0.034829329 0.049253619C4 
O/F 1.0000000 0.000027181 0.000038439

Components: 1-water, 2-vegetation, 3-soil, 4-manmade. 
O/P-Original/Preliminary; O/P-Original/Final. 

 
Table 2. Spectral similarity measures between original and 

extracted spectra 
 
 

4. VALIDATION OF HYPERION IMAGE 

In this section the performance of the proposed algorithm was 
evaluated by applying on a Hyperion image. The hyperspectral 
image was captured by EO-1 Hyperion on Sep.7 2005 in 
Jiangyan area of Jiangsu Province and the image contained 167 
bands after correction and processing (Datt, 2003) . For this 
experiment, a region covered a size of 60*60 pixels was chosen, 
after resampling the data bands, 50 contiguous bands (covering 
508.22um to 1033.55nm) were selected from the dataset. Fig.11 
(a) shows the study area in CIR, regions in red are covered with 
vegetation, of which the dark red are rice fields; roads and 
buildings are in cyan regions; and the region in black is water. 
Ground components in each area are relatively stable and fit for 
algorithm validation. 
 
Three preliminary endmembers and endmembers extracted by 
the proposed algorithm were obtained. Compared with the 
spectra practically measured, the extracted three spectra are 
cotton, rice and water respectively. Applying LS and abundance 
fractions of extracted endmembers were estimated. Using these 
abundance fractions to rebuild the scene and then RMSE of the 
rebuilt scene were calculated to analyze the abundance 
estimated. The RMSE are 0.13349068, 0.13270831 by using the 
preliminary pure endmembers and the endmembers extracted by 
the proposed algorithm respectively, and the error decreased by 
applying the proposed algorithm. 
 
Using the two kind endmembers to classify the scene by SAM 
method, classification results are shown in Fig.11, in (b) the 
regions marked A represent rice fields, the regions marked B 
are other vegetations and proved to be cotton fields; (c) is the 
classification result using SAM with preliminary pure pixels 
extracted by improved N-FINDR, (c) is the classification result 
using SAM with endmembers obtained by the researched 
method. Compared the three images, rice and cotton fields were 
well distinguished in (c), red regions represented rice fields and 
blue were rice fields respectively. However, in (d), the two 
crops were treated as one sort and the blue ones had no obvious 
meanings. SAM classification results also showed the 
advantage of this proposed algorithm. 
 
 

 
 

Figure 11. SAM classification results of Hyperion scene(a) 
Original scene in CIR; (b) Regions signed; (c) Classification 
with preliminary pure pixels; (d) Classification with the new 

endmembers 
 

However, both RMSE calculated from the two scenes were 
comparatively higher due to that there were more than three 
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ground components in the scenes and the black areas in the 
classification images were ground covers didn’t classified. Only 
extracted three endmembers and rebuilt the image could caused 
great errors, thus the algorithm that can extracted more 
endmembers is the next step to improve the classification 
precision. The result of SAM classification shows that the water 
hadn’t be well extracted out, this may be caused for the pixels 
containing water also contained other ground covers thus 
affected the spectra of water. During the progress of the 
algorithm, it is found that in captured images, the spectral 
mixing of pixels is always performing as nonlinear and causes 
the deviations of extracted results. When extracting four 
endmembers in real images, there are some errors presented and 
how to judging the boundary pixels is quite significant. Further 
investigation is to overcome the limitation of linear mixing 
model. Although there are some shortages of linear mixing 
model, this algorithm still has higher extracting precision and 
has certain application value. 

 
 

5. CONCLUSION AND DISCUSSION 

(1) Aiming at the hyperspectral images which have no pure 
pixels and are formed by three or four ground components, a 
improved endmember extraction algorithm is proposed. The 
preliminary pure pixels formed the possible largest volume 
from the images are treated as mixing ones and through analysis 
it aims to extracted spectra which do not exit in the images as 
endmembers. Using the simulated images to validate the 
algorithm and the spectral similarity were measured, the 
advantage of this algorithm was proved. And the algorithm also 
applied on Hyperion image, comparing the SAM classification 
results and RMSE proved the advantage again. 
 
(2) In real captured image, the effect of outside environment 
while obtaining the image and the performance of the sensor 
itself caused the nonlinear mixing of real ground components, 
convex polyhedron in N-D space is not as simple as assumed in 
linear mixing model but more complicated. When judging the 
boundary points, how to find the proper pixels is the most 
important step. Through setting the threshold, allowing the 
boundary points have small dissociation distances could solve 
the problem for certain degrees. However, this may cause the 
results relying on the threshold and boundary points would be 
very sensitive to the changing of threshold values. Thus how to 
choose the proper boundary points and overcome the problem 
under real complicated conditions are the stuffs need to be 
investigated next. 
 
(3) The complexity of ground components also decides the 
abundance of information contained in image. Only suppose 
there are three or four endmembers to extract could not satisfy 
the application requirement, more endmembers extraction 
method should be put forward. Assuming images containing 
more than four endmembers, first to extract four endmembers, 
and then using orthogonal subspace projection to compress the 
fourth endmember information into the background formed by 
three preceding endmembers, and the fifth endmember could be 
extracted out in the tetrahedron in a compressed hyperplane. 
Repeat these steps until all the endmembers are extracted out. 
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