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ABSTRACT: 
 
This paper reports on research analysing the potential of Support Vector Machines (SVMs) for mapping vegetation from high spatial 
resolution Ikonos imagery.  The work investigated the utility of SVMs for mapping regional scale upland vegetation using limited 
ground data. Additionally, it analysed the ability of SVMs to be transferred as a classifier to pixels from remote geographical 
locations, which were not included in the training process. The classification and transferability of SVMs was investigated when 
varying their design and training. Overall, the classification and transferability results of SVMs showed very promising results, 
highlighting their capability and suitability for use in remote sensing classification. 
 
 

1. INTRODUCTION 

 
Support Vector Machines (SVMs) have gained a growing 
importance and recognition in remote sensing as a classification 
methodology. They have often outperformed other remote 
sensing classification methodologies, such as Artificial Neural 
Networks (ANN), and thereby underlined their potential for 
mapping from imagery. This paper reports on research which 
analysed the potential of SVMs for mapping vegetation from 
high spatial resolution Ikonos imagery at regional scale. It 
presents an investigation of the utility of SVMs for mapping 
regional scale upland vegetation from Ikonos imagery using 
limited ground data, transferring the methods applied to remote 
geographical locations. The classification and transferability 
potential was investigated and maximised when varying design 
and training, showing that pixels of remotely located areas can 
be classified with this advanced classification method. The 
study investigated the option of the optimal hyperplane of a 
SVM classification in relationship to generalisation, analysing 
if and how the generalisation of the hyperplane can be 
maximised to achieve high transferability classification with 
SVMs. 
 
The application of remote sensing over large geographical areas 
is still limited, in either accuracy (spatial resolution) or 
algorithm performance. Transferability of a mapping approach 
is required to consistently map areas of national and regional 
scale and to overcome the lack of large amounts of ground data 
for most studies. Transferability would also enable an 
application to be more time-efficient and enable the mapping of 
a large area regularly (Woodcock et al., 2001). The 
transferability of classifiers over large geographical areas has, 
however, been found to be limited so far and is dependent upon 
the ability of the classifier to generalise (Benediktsson et al., 
1990).  The lack of transferable algorithms using remote 
sensing has limited its potential contribution for environmental 
studies and is still a disadvantage of many remote sensing 
algorithms (Foody et al., 2003). 
 

This study, therefore, aimed to analyse the transferability 
potential of SVMs by applying them to map upland vegetation 
(Fukuda and Hirosawa, 2001; Gualtieri et al., 1999). SVMs 
require small training data sets, e.g. in comparison to ANN, as 
only the support vectors are used to locate the hyperplane 
between classes, resulting in a high generalisation ability  
(Huang et al., 2002). It highlights the potential of SVMs for 
remote sensing classification as sufficient training data are often 
expensive and difficult to obtain. The ability of SVMs to 
generalise using limited training data set offers an opportunity 
to achieve high classification accuracies. It was expected that 
SVMs would also be able to transfer knowledge gained during 
the training on one geographical area to classify pixels from 
unseen input data samples. The paper aims to highlight the 
advantages and potential of SVMs for remote sensing 
applications to the remote sensing community. 
 
 

2. SUPPORT VECTOR MACHINES 

The theory behind SVMs is only briefly described in this paper, 
as they have been explained in detail in (Foody and Mathur, 
2004). SVMs aim to reduce the learning error between target 
and output data to zero by locating the optimal boundaries 
between classes, thereby finding the optimal hyperplane which 
minimises the probability of classification error and separates 
the data points of two classes. The optimal hyperplane 
maximises the margins from the closest data points to the 
hyperplane, the most difficult ones to classify, and is hence the 
one offering the highest generalisation in comparison to other 
separating hyperplanes (  
Figure 1).  The optimal hyperplane is defined as the decision 
surface to maximise the separation to be fulfilled by weight w0, 
being normal to the hyperplane and bias b0 (1).   
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Figure 1: Hyperplane for linear separable patterns, showing the 
support vectors for the two classes on the hyperplane 
boundaries (dotted line) (Foody and Mathur, 2004). 
 
Support vectors are part of the training data and are chosen by 
the algorithm to guarantee a stable representation of the data.  
As a result, the performance of SVMs would only be influenced 
if training samples removed are those used as support vectors.   
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The optimal hyperplane maximises the margins from the closest 
data points to the hyperplane and is, therefore, the hyperplane 
of the lowest capacity, resulting in best generalisation in 
comparison to other separating hyperplanes.  
 
2.1 Support Vector Machines for Image Classification 

For a remote sensing classification, data sets consist of 
nonseparable pattern, indicating that the classification error 
does in many cases not reach zero. The optimal hyperplane has 
therefore to be designed to minimise the probability of the 
classification error (Figure 2).  
 

 
Figure 2: Classification of data points of inseparable data sets, 
with the filled round data point being within the region of 
separation but on the correct side (left) and the filled star data 
point being located within the wrong side of the hyperplane 
(Foody and Mathur, 2004). 
 
The classification is supported by the introduction of a slack 
variable ζ. The slack variable is applied as upper bound on the 
number of training errors. The best separating hyperplane can 
be found with (2). The regularisation parameter C, based on the 
slack variable, controls the tradeoff between complexity and the 
number of nonseparable points and can be defined 
experimentally or analytically (Huang et al., 2002). A low C 
value might conclude in a high number of support vectors, 
whereas a large value for C can cause overfitting to the training 
data and thereby limit the SVM generalisation.  
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The application of SVMs for pattern classification consists of 
two stages: the nonlinear mapping into a high dimensional 
feature space Φ and the construction of the optimal hyperplane 
in that feature space as linear separation. An inner kernel 
function K is used for the transformation into the feature space. 
It enables the training and application of the SVM classifier in 
the high dimensional feature space without the explicit 
knowledge of the feature space mapping function (3) (Huang et 
al., 2002).  

∑
=

=
N

i
iii xxKd

1

0),(α                               (3) 

Different learning machines can be applied: the two most 
common ones being the polynomial learning machine, with the 
power p defined by the user, and the Radial Basis Function 
(RBF). SVMs guarantee to find the global minimum of the error 
surface between target and output during the training process.  
 

2.2 SVMs for multi-class classification 

SVMs were developed as binary classification algorithms. To 
allow the application of SVMs for multiclass remote sensing 
classification, a combination of binary SVMs has to be used. A 
Multiclass SVMs can be carried out in two different ways: 
classification of training data for one class against the training 
data from all other classes (one vs. rest) or classification of all 
possible pairs of binary classification between two classes (one 
vs. one) (Gualtieri et al., 1999). The latter approach results in a 
higher number of classifications (4) and the pixels are given the 
class label of the class, which has gained most votes during the 
one vs. one classifications (Gualtieri et al., 1999).  
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3. APPLICATIONS OF SVMS IN REMOTE SENSING 

SVMs have been applied to pattern recognition and 
classification problems for a limited set of applications (Huang 
et al., 2002). In comparison to other classification approaches, 
such as ANNs, SVMs have proved to be superior in accuracy 
and stability for remote sensing problems (Fukuda and 
Hirosawa, 2001; Huang et al., 2002). Overall, the achieved 
classification accuracies of SVMs in comparison to ANNs 
showed an improvement of 1-4%  and have highlighted the 
advantages and potential of SVMs for remote sensing 
classification. The SVM applications ranged from binary 
classification (Perkins et al., 2001) to multiple-class 
classification, of e.g. 13 classes (Fukuda and Hirosawa, 2001). 
For a SAR classification of 13 classes the one versus rest 
multiple classification approach was applied and showed a 
visually closer match to the reference map than the map of the 
ML classification (Fukuda and Hirosawa, 2001). The same 
strategy was applied for a three class (forest, non-forest and 
water) problem using simulated MODIS imagery (Huang et al., 
2002). SVMs consisting of a polynomial kernel of a higher 
order presented the best performances. The study also 
confirmed that a large amount of training data does not 
necessarily improve the classification, because only the support 
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vectors are used in the separation process between classes. A 
further SVM classification concluded in an improved accuracy 
of 1-2 % against ANNs (Huang et al., 2002). The ease of the 
SVM design was highlighted in a study using SAR and ATM 
imagery to map a site in Southern England into five classes. For 
different SVM designs accuracy between 89.4% and 91.6% 
were achieved, which were higher than the ones achieved with 
an ANN classification (Roli and Fumera, 2000). Similar 
classification accuracies, ranging between 87% and 96%, were 
attained for hyperspectral AVIRIS imagery, depending on the 
number of classes: six or 16 classes respectively (Gualtieri et al., 
1999). Research showed that SVMs can be trained to high 
classification accuracies, even if only a small number of 
training samples is used, as long as those are defined as support 
vectors for the separation between two classes (Foody and 
Mathur, 2004).  Further research into the optimal design and 
suitability of SVMs for different land cover applications has 
still to be carried out.  
 
The acknowledgment of the suitability of SVMs for remote 
sensing applications could raise the recognition of the potential 
of remote sensing for many scientific areas and real world 
applications.  SVMs offer a high generalisation ability which 
supported the decision to test their transferability and 
classification of multi-site upland vegetation in this study.  
 

4. SVMS FOR MAPPING UPLAND VEGETATION 

4.1 Study site and data 

Upland vegetation is protected under British and European laws, 
which require information on the extent, condition and changes 
of upland vegetation species for managing and monitoring 
purposes. Previous research showed that traditional 
classification approaches resulted in varying accuracies of 
below 80% which were seen as in appropriate for public funded 
monitoring schemes. Given the published performance of 
SVMs for remote sensing classifications, SVMs were expected 
to offer a potentially improved classification tool for upland 
vegetation. A multispectral Ikonos Carterra™ Geo imagery was 
obtained, as recorded on 2 September 2002, covering an area of 
156 km2, in Northumberland National Park (UK). This is 
probably the optimum time for the acquisition of remote 
sensing imagery for upland areas, as most upland vegetation 
types are fully developed. The imagery was radiometrically and 
geometrically corrected using various Ground Control Points 
(GCP’s), which were established using high precision geodetic 
Global Positioning System (GPS) receivers. Each point was 
corrected for relief displacement caused by the altitude 
variation of the area in the Ikonos image. The georectification 
was completed to an ‘artificial’ reference plane of 300 m (the 
average height above sea level of this area), resulting in an final 
horizontal accuracy of 2.5 m using 18 ground control points. 
Additionally, the Normalised Difference Vegetation Index was 
calculated to enhance the spectral separability between all 
 
4.2 Design of SVMs  

The design and training of SVMs was required to be carried in 
such a way that it would enable the SVMs to result in a high 
generalisation, even if this may decrease the classification 
accuracy of the training parameters. For the kernel function, 
two design parameters have to be chosen: the regularisation 
parameter C as the penalty parameter, and γ describing the 
characteristic of the kernel functions (Foody and Mathur, 2004). 

No rules yet exist for the optimal choice of these two 
parameters. Large values for both parameters might lead to 
overfitting of the SVMs to the training data and therefore to a 
limited generalisation ability (Cortez et al., 1997). Values of 
both parameters were varied for each kernel function, ranging 
between 0.01 and 600.  
 
The multi-class SVM classifications were performed as one 
versus one classification, training the classifier on all possible 
pairs of binary classification between two classes. It resulted in 
21 classifications (with seven classes). Despite the fact that this 
multi-class methodology consists of more binary classifications 
than the one versus rest classification approach, it terminates 
faster because of smaller data sets in each binary SVM and as a 
result requires less training data (Huang et al., 2002). The one 
versus one multi-class approach has also previously resulted in 
higher classification accuracy than the one versus rest SVM 
classification.  
 
The additive Matlab toolbox LIBSVM was chosen for this 
study for the execution of SVMs because it enabled the 
application of multi-class classification.  
 
4.3 Input and training data for SVMs  

Firstly, SVMs were applied as an ordinary classifier, being 
trained on limited pixels of the study area and then applied to 
classify the remaining (majority) pixels of this area. For this 
part of the study, the SVMs (SVM_original) were trained using 
data from both test sites - the site A and site B and then applied 
to classify validation pixels from those sites. In the second part 
of this paper, the transferability of SVMs is evaluated when 
being trained on pixels of one area (site A) and then applied to 
second area (site B) of which no pixels were included in the 
training process (referred to as SVM_transfer). A third set of 
SVMs was developed which consisted additionally of a 
geographical label as input data set to boost the generalisation 
ability of the SVMs, resulting in six input parameters (referred 
to as SVM_label). The geographical label referred to the 
geographical location of the pixel: label ‘one’ was added as 
additional input information for pixels from site A and label 
‘two’ was given to pixels from the site B. To allow appropriate 
training for this input data sets, training pixels of both sites had 
to be included in the training process. 
 
The success of a classification algorithm depends on the quality, 
quantity and suitability of the selected training data. The chosen 
training data sets have to be representative as support vectors, 
only then will the position of the optimal hyperplane represent 
the characteristics of the vegetation and will be able to be used 
for transferability to classify vegetation of other geographical 
areas. An intensive field campaign was conducted at a time 
concurrent with image acquisition to provide training and 
validation data for the classification. Two randomly chosen 
field sites within the study site provided areas for the collection 
of field data, the larger one being named here Site A, while the 
second one was carried out at a site 8 km away (referred to as 
site B). Both areas are similar in terms of vegetation types and 
altitude, and are relatively flat, thus minimising spectral 
variation due to anisotropic reflectance effects. Mixed pixels 
were however excluded from the classification with SVMs. 
 
Seven different upland classes were introduced with the SVM 
classification scheme, depending on the available ground data: 
Calluna vulgaris, mire (cotton grass), bogmire, bracken, acid 
grass, Molinia caerula and Juncus species. All data sets were 
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separated into approximately 2/3 training data and 1/3 
validation data. Each data set was normalised and rescaled 
between -1 and 1 to ease the execution of the SVM 
classifications. 
 
The statistical properties of each pixel in the training data (e.g. 
standard deviation and mean) have been found to affect the 
classification accuracies of SVMs (Foody et al., 1995). The 
deviation from the mean was used as a guideline to include 
border pixels, covering the whole spectral range of each 
waveband for each class and identify the pixels which will be 
difficult to classify and may therefore characterise the support 
vectors.  
 

 
5. RESULTS 

The SVMs were applied in a supervised classification approach. 
Firstly, the SVMs, of each design, which resulted in the highest 
classification accuracy for the training data, will be described, 
followed by those which resulted in the highest classification 
accuracy for the validation data and, if applicable, the ones with 
the most successful transferability. Each of these SVMs was 
also evaluated against the other data sets and the resulting 
accuracies are described. Due to space limitations this paper 
only presents the results achieved with the SVMs based on an 
RBF kernel. 
 
5.1 Classification with SVM_original classifier 

At first, all SVMs were trained with data extracted from both 
geographical training locations (Site A and Site B).  
 
5.1.1 SVM_original Classifiers Resulting in the Highest 
Accuracies for the Training Data: The SVMs classified the 
training data from both training sites with a maximum kappa 
coefficient of 99.89% (Table 1). The averaged classification 
accuracy of the training data over the best four performing 
SVM classifiers consisted of a kappa coefficient of 98.8%. The 
same selected networks were also applied to the validation data, 
consisting of pixels from both training sites. The SVM 
classifiers, which resulted in the highest kappa value for the 
training data (99.89%), resulted in a kappa coefficient of only 
70.92% for the classified validation data (Table 1). 
 

RBF Kernel Training Validation
C γ data data 
2 500 99.05% 49.54% 
50 100 99.37% 71.29% 

100 100 99.89% 70.92% 
Table 1: Kappa coefficient for the three best performing 
SVM_original classifiers, with SVM resulting in the highest 
kappa value shown in bold. 

 
5.1.2 SVM_original Classifiers Resulting in the Highest 
Accuracies for the Validation Data: Similarly the 
SVM_original classifiers resulting in the highest accuracies for 
the validation data (unmixed pixels from both training sites) 
were analysed. The best SVM classifiers classified the valida-
tion data to a kappa coefficient of 81.22% (Table 2). In addition, 
the best performing SVMs for the validation data were applied 
to classify the training data. The SVM classification, which had 
resulted in the highest accuracy for the validation data, classi-
fied the training data to an accuracy of kappa values of 81.27% 
(Table 2).  
 

RBF Kernel Training Validation
C γ data data 
5 5 81.39% 80.85% 
10 3 81.27% 81.22% 
20 2 81.48% 81.21% 

Table 2: Kappa coefficient for the best three performing 
SVM_original classifiers, with SVM resulting in the highest 
kappa value shown in bold. 
 
5.2 Transferability of Support Vector Machines 
(SVM_transfer): 

The second part of this paper examines the transferability 
potential of SVMs. It involved the training of SVMs only on 
pixels from site A followed by the application of those SVMs to 
previously unseen data from site B.  
 
5.2.1 SVM_transfer Classifiers Trained on the site A: As 
expected, the accuracy with which the training data were 
classified was high, with the highest kappa coefficient being 
96.91% (Table 3). On average, only considering the best four 
performing SVMs, 91.3% (kappa coefficient - 87.1%) of pixels 
were correctly classified with the SVM. The SVM classifier, 
which classified the training data to the highest accuracy, 
succeeded in the classification of the validation data only to a 
kappa value of 35.17% (Table 3).  
 

RBF Kernel Training Validation Site B 
C γ data data data 
2 2 78.98% 85.35% 14.44% 
1 200 94.07% 69.06% 0.83% 
1 600 96.91% 35.17% 0.62% 

Table 3: Kappa coefficient for the best three performing 
SVM_transfer classifiers, with SVM resulting in the highest 
kappa value shown in bold. 
 
The ability of these SVMs to classify previously unseen data 
from a remote location was evaluated, when the classifiers were 
applied to the site B. The success of the classification was very 
limited: if the site B pixels were classified with these 
SVM_transfer classifiers, the classification was limited to a 
kappa coefficient of 14.44% or less for the best performing 
SVM classifiers. 
 
5.2.2 SVM_transfer Classifiers Resulting in the Highest 
Accuracies for the Validation Data: The SVM_transfer 
classifiers which resulted in the highest accuracies for the 
validation data were analysed in the same way. The highest 
accuracies observed for the classification of the validation data 
was a kappa coefficient of 86.51%. On average, the validation 
data were classified with a kappa statistic of 85% when 
considering the four best performing SVMs (Table 4). The 
selected SVM_transfer classifiers of the highest accuracies for 
the validation data were also applied to the training data. A 
kappa value between 84.88% was calculated for the training 
data if classified with the SVM classifier, which produced the 
highest accuracy for the validation data (Table 4).  
 
The kappa value of the site B pixels, classified with these 
selected SVM classifier, was 9.13% (Table 4).  
 
 

RBF Kerne
l Training Validation Site B 

C γ data data data 
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0.5 2 76.12% 85.56% 23.43% 
1 2 78.29% 85.35% 19.48% 
1 20 84.88% 86.51% 9.13% 

Table 4: Kappa coefficient for the best three performing 
SVM_transfer classifiers, with SVM resulting in the highest 
kappa value shown in bold. 
 
5.2.3 Transferability of the SVM_transfer Classifiers: 
Finally, the SVM_transfer classifiers were assessed when 
classifying the pixels from the site B data set. The highest 
kappa value achieved for unseen pixels over all trained 
SVM_transfer classifier was 29.04% (Table 5). A high 
classification accuracy for the unseen pixels also stood for a 
high classification accuracy for the validation pixels from the 
site A, based on the generalisation of the SVM_transfer 
classifiers. The kappa values of the validation data were 82% 
for the SVM classifier, which resulted in the highest 
classification accuracy for the unseen data (Table 5). The 
accuracy of the training data, when classified with the chosen 
SVM_transfer classifiers showed lower kappa values of 73.75% 
for this SVM classifier.  
 

RBF Kerne
l Training Validation Site B 

C γ data data data 
0.50 0.5 72.04% 79.88% 28.05% 
0.50 0.75 73.75% 82.04% 29.04% 
0.50 1.00 75.48% 83.46% 27.18% 

Table 5: Kappa coefficient for the best three performing 
SVM_transfer classifiers, with SVM resulting in the highest 
kappa value shown in bold. 
 
5.3 SVM_label Classifiers Enhanced with a Geographical 
Label  

An enhancement to the Support Vector Machines was carried 
out by including a label related to the geographical location of 
each pixel (SVM_label). 
 
5.3.1 SVM_label Classifier Resulting in the Highest 
Accuracy for the Training Data: The highest kappa values for 
the training data classified with the SVM_label classifiers was 
92.60%, resulting in an averaged kappa value of 89.4% (Table 
6). If the SVM_label classifiers, which classified the training 
data to the highest accuracies, were applied to the validation 
data, most of the accuracies exceeded 80% (Table 6).  
 

RBF Kerne
l Training Validation Site B 

C γ data data data 
1 50 89.95% 85.47% 74.28% 
1 100 92.60% 81.64% 61.81% 
10 10 88.49% 84.00% 72.19% 

Table 6: Kappa coefficient for the best three performing 
SVM_label classifiers, with SVM resulting in the highest kappa 

value shown in bold. 
 
A big improvement was found for the classification accuracies 
of the validation pixels from the site B when classified with 
SVM_label classifiers. All selected SVM_label classifiers 
classified those pixels with a kappa value of over 60%. The best 
four SVMs for the training data resulted in average kappa value 
of 70.9%. The SVM classifier, which resulted in the highest 
accuracies for the training data, classified the pixels from the 
site B to 70.18% (kappa value 61.81%) (Table 6). The 

integration of the geographical label, therefore, seemed to 
support the generalisation of the SVMs, as is shown further 
below.  
 
5.3.2 SVM_label Classifiers Resulting in the Highest 
Accuracies for the Validation Data: This study further 
investigated the SVM_label classifiers which resulted in the 
highest accuracy for the validation data, consisting of pixels 
from both test sites. A maximum kappa value for the validation 
data of 86.6% was achieved (Table 7). The selected SVM_label 
classifiers resulted in an average kappa value of 86.1% for the 
SVM for the validation data.  
 

RBF Kerne
l Training Validation Site B 

C γ data data data 
0.5 5 80.51% 86.61% 80.87% 
1 10 82.86% 86.43% 79.75% 
3 5 84.14% 86.24% 78.57% 

Table 7: Kappa coefficient for the best three performing 
SVM_label classifiers, with SVM resulting in the highest kappa 
values shown in bold. 
 
The SVM which classified the validation data to highest values 
also classified the site B pixels to the highest accuracies, 
namely a kappa value of 80.87% (Table 7). The averaged 
accuracies for the pixel for the selected SVM_label were 79.5%. 
This showed that the training data class accuracies were lower 
than their maximum possible classification accuracy, when 
classified with SVM_label classifiers, but this decrease in 
classification accuracy, on the other hand, increased the 
generalisation ability of the SVMs. 
 

6. DISCUSSION 

The following section discusses the potential of SVMs for the 
classification and transferability of knowledge within images. 
The classification and transferability performance of SVMs is 
affected by different design and training parameters: SVMs 
design, number of input parameters and output classes. Due to 
the restricted length, however, this paper is not sufficient to 
analyse each of those parameters in detail and the number of 
output classes was not changed during this paper, leading to no 
conclusions regarding the influence of output classes on the 
performance of SVMs. Therefore findings are just presented as 
bullet points in this publication: 
 The best choice of the C and γ parameter, to enable either 

the highest classification accuracy or the highest 
transferability ability, depends on trial and error to gain the 
optimal design of the SVMs. The recommendation of 
higher values for both parameters resulting in a higher 
classification potential can not be applied if a SVM with a 
high transferability ability is required ( 

 Figure 3). Smaller values for the C and γ parameters are 
required to achieve the highest transferability ability, 
although this may lead to poorer accuracies for the training 
and validation data than theoretically achievable with 
SVMs. 
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Figure 3: Influence of the design parameter γ for the 
classification accuracy of SVMs for the training data  

 
• Intensive trial and error tests have to be carried out for the 

design of the SVMs prior to the training. SVMs are, 
consequently, more time intensive at this stage than ANNs.  

• The use of ancillary input parameters, e.g. a geographical 
label, enhanced the generalisation performance of SVMs, 
resulting in higher accuracies for the validation data than 
without it. The analysis of the classification accuracy 
highlighted the capabilities of ancillary input variables for 
both the classification and transferability potential of 
SVMs.  

 
6.1 Discussion of transferability of the classification 
methodologies 

A classification algorithm consisting of a high generalisation 
ability is required to enable the transfer of knowledge obtained 
from one (or few) sites, to across a whole image, but also, 
ideally, across images, time and scale. An ‘ideal’ remote 
sensing classifier would be trained on a limited number of 
pixels from one training site within the area of interest and 
would be able to classify the remaining area to accuracies 
around 85%, the standard remote sensing classification 
accuracy. This paper reported on research into the suitability of 
SVMs for mapping vegetation at a remotely located area, 
requiring the classifier to be able to transfer the knowledge 
obtained during the training process. The following conclusion 
can be drawn: 
 Caution has to be applied in choosing the design 

parameters for SVMs to achieve a high transferability, 
with large values for both design parameters decreasing 
the generalisation. Additionally, it showed that SVMs 
resulting in the highest kappa coefficient of the training 
data resulted in a lower kappa coefficient for the validation 
and transferability data. No overall rule could be defined 
for the best choice of those parameters.  

 It was observed that the integration of even just a small 
number of pixels from the remotely located training area 
resulted in a improvement in classification accuracy for the 
pixels from this site, not encountered during the training 
process.  

 The performance of SVMs is affected by the support 
vectors, therefore, the sample points allocated as support 
vectors are the most important points, when defining the 
optimal separating hyperplane to minimise the probability 
of the classification error. The training data is therefore 
required to be representative of the whole data set.  

 
 

CONCLUSION 

The potential of SVMs for the mapping of upland vegetation 
was investigated because the high generalisation ability of this 
classifier has recently been recognised in remote sensing. 
Overall, the classification and transferability results of SVMs 
showed very promising results, highlighting the capability and 

suitability of SVMs for use in remote sensing classification. On 
the other hand, certain issues of transferability in classification 
accuracy persist when using SVM classifications which may 
limit the utility for mapping from high spatial resolution 
remotely sensed data. Spectral variability within high spatial 
resolution pixels caused by different vegetation types can 
decrease the chance of finding the optimal hyperplane. 
Additionally, vegetation rarely exist within a monoculture, but 
rather occurs as a mixture of several species, resulting in mixed 
pixels for which classification SVMs are not suitable.  
 
In general, the success of the transferability was limited when 
each classifier was applied to a location from outside the area 
from which the training data had been extracted. The 
transferability of SVMs could be greatly increased with 
ancillary input parameters, showing the opportunity for 
developing methodologies for within image, and potentially 
across image, time and scale classifications. It highlighted the 
potential and advantages of the use of SVMs for mapping, i.e. 
vegetation classes, from remotely sensed imagery. Further 
research into the optimal design and suitability of SVMs for 
different land cover applications has still to be carried out. 
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