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ABSTRACT: 
 
This paper introduces a new approach, nearest convex hull (NCH), for remote sensing classification. NCH is an intuitive 
classification method which labels the test point as the training class whose convex hull is closest to it. Some attractive advantages 
of this learning algorithm are the robustness to noises and the scale of training samples, the straightforward way to handle multi-
class tasks, and most of all the capability of processing high dimensional and nonlinear data. In our work, we deduce the NCH 
algorithm again basing on theories of the computational geometry, from which a simpler implementation of it is presented. Then we 
apply it to real-world remote problems and compare it with two other state-of-arts classifiers: K-NN and SVM. Experiments in this 
paper confirm the promising performance of NCH for remote sensing classification. 
 
 

1. INTRODUCTION 

For the reason of simpleness and effectiveness, K-nearest 
neighbor (K-NN) algorithms have been successfully used for a 
lot of remote sensing classification tasks (McRoberts et al., 
2002). The rule of this kind of classifies is that they label a test 
object as the most common class among its K nearest neighbors 
(Cover and Hart, 1967), where the smallest K is one for the 
nearest neighbor classifier (simplest version of K-NN ). In spite 
of the big success achieved in the past, K-NN is challenged by 
more and more remote applications with data of hyperspectral 
and high spatial resolution. For instance, it is likely to be 
subjected to noise affection or problems of small training 
samples (Muñoz-Marí and Bruzzone, 2007). And the K-NN 
approach was suggested that it should be cautiously used for 
high dimension data too (Beyer et al., 1999). 
 
To deal with challenges met by K-NN, a number of supervised 
and unsupervised classifiers have been proposed subsequently. 
One of the most famous tools is the support vector machine 
(SVM) which shows powerful abilities in almost all kinds of 
pattern recognition problems (Burges, 1998). Unlike K-NN, 
SVM was originally designed for classification of two 
categories and was built upon a complex statistical theory. 
Preferable advantages of SVM are listed below. Firstly, the 
principle of structural risk minimization equips SVM with a 
high ability to generalize. Secondly, since SVM essentially 
solves a convex optimization problem, its optimal solution is 
unique and global. Furthermore, SVM processes high-
dimensional data easily through the kernel trick. Applications 
of SVM in remote sensing fields can be found in (Brown et al., 
2000; Melgani and Bruzzone, 2004; PAL and MATHER, 2005). 
Nevertheless, one apparent defect of SVM is the extension for 
multi-classification, which is not direct and is still an ongoing 
research. For example, to choose a multi-class strategy among 
approaches one-versus-one, one-versus-all, all-versus-all, 
decision directed acyclic graph (Platt et al., 2000), pairwise 
coupling (Hastie and Tibshirani, 1998), error correcting output 
code (Dietterich and Bakiri, 1995) etc., which criteria should 

we prefer: accuracy or efficiency? How to handle unclassifiable 
regions effectively without loss of accuracy?  
 
In this paper, we introduce the nearest convex hull (NCH) 
(Nalbantov et al., 2007), a new classifier sharing some ideas 
with both K-NN and SVM, for remote sensing classification. 
NCH is an intuitive geometric classification method. According 
to Nalbantov’s state, NCH assigns the test point to the class 
whose convex hull is closest to it. Several attractive properties 
of NCH are: 1. Like K-NN approach, NCH determines the 
proximity of the test object to a given class without considering 
samples from other classes. 2. NCH also classifies multi-class 
problems in a straightforward way. 3. With the benefit from the 
kernel trick, dealing with high dimension data or nonlinear data 
is also relatively easy for NCH. 4. Because eliminating one 
member point of a convex set doesn’t or only locally affects the 
whole convex hull, NCH is robust to issues of small training 
samples and noise. The major work of this paper is dedicated to 
evaluating the performance of NCH for remote sensing 
applications. In addition, we improve Nalbantov’s method on 
implementation, from which NCH can be calculated using the 
optimization formulation of SVM for both separable and 
inseparable cases.  
 
The remainder of this paper is structured as follows. Section 2 
briefly reviews some related theories of computation geometry 
and gives the idea of NCH algorithm. Section 3 describes the 
implementation of the new learning algorithm. In section 4, 
experiments are carried out on two real-world remote sensing 
data sets including one benchmark data set from UCI repository 
of machine learning databases (Blake and Merz, 1998) and one 
SPOT5 image of Shanghai. For comparison, algorithms K-NN 
and SVM are also evaluated. Finally, conclusions are given in 
Section 5. 
 

2. THEORIES OF THE NEAREST CONVEX HULL 

2.1 The convex hull and its properties 

The convex hull of a set, denoted conv(S), is the smallest 
convex set containing S (Bertsekas et al., 2003). For a convex 
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set S with a finite number of samples x0,…, xm-1, the convex hull 
can be calculated by all convex combinations of these samples, 
 

( ) { | },

. . 1 , 0, 0,..., 1.             
i i

i i

conv S x x a x

s t a a i m

= =

= ≥ = −
∑

∑
            (1) 

 
Convex hull has many properties, of which the following three 
are the most useful for pattern recognition tasks (Bertsekas et al., 
2003; Yang and Cohen, 1999): 
1. According to Krein-Milman theorem, a compact set S is 

equal to the convex hull of its extreme points. In this sense, 
not the whole but the extreme points are enough to compute 
the convex hull of a training set.  

2. Convex hulls are affine invariant, i.e., the convex hull 
undergoes the same affine transformation as its sample set 
does. 

3. Convex hulls have local controllability. By this property, 
adding or eliminating an extreme (or non-extreme) point 
from a training set will partly (or never) modify the convex 
hull of this set, which also means that convex hulls are not 
sensitive to noises.  

 
2.2 Convex hulls for classification 

Very lately, Nalbantov (Nalbantov et al., 2007) proposed the 
nearest convex hull (NCH) algorithm. The main idea of this 
classifier comes from the intuition for classification tasks. As 
we know, to label a new object, the most intuitive way is to 
assign it to the class having the minimal distance. Here a 
feasible choice of evaluating the distance from the test object to 
one class is using the distance from it to that class’s convex hull. 
Therefore the rule of NCH is to assign the test to the class 
whose convex hull is nearest (Nalbantov et al., 2007). In the 
following we’ll give an example to illustrate this learning 
algorithm in more detail. 

 
A simple synthetic problem of multi-category is presented in 
Fig. 1. Look at this figure, three classes (C0, C1, and C2) of 
training samples can be found, where points of each category 
are enclosed by their convex hulls (bordered by gray curves). 
For the vision comparison, we discuss two other state-of-arts 
classifiers K-NN and SVM at first. As illustrated in Fig. 2 (a), 
set K = 3, K-NN approach will draw a sphere (or circle on a 
plane) around the test point p with only three training samples 
inside. Obviously the final label of point p in this figure will be 
class C0, since two of three training points in the enclosure are 
from this class. Though K-NN is always thought as a simple 
and powerful nonparametric technique of pattern recognition, it 

is not robust to noises or high dimensional data (Muñoz-Marí 
and Bruzzone, 2007, Beyer et al., 1999). 
 

  
 

Figure 1.  Three-classification task and a test point p 
 
In contrast to the simpleness of K-NN, SVM is famous for its 
high generalization performance. By SVM’s rule, the 
optimization hyperplane maximizing the “margin” between two 
classes is the decision plane to classify a test sample. From 
Bennett’s geometric interpretation (Bennett and Bredensteiner, 
2000), in the separable case, finding the maximum margin 
between the two sets is equivalent to finding the closest points 
on two convex hulls of these sets. Take the Fig. 2 (b) as an 
example, the hyperplane H12 will be the separating plane 
between class C1 and class C2, for it rightly cuts the shortest 
line segment connecting the two convex hulls into two equal 
parts at 90°. Using the one-versus-one strategy, the test point p 
will be assigned as class C2. One drawback of SVM for multi-
class applications can also be demonstrated in this figure, where 
an unclassifiable region (the shade region in this figure) exists. 
 
With respect to the NCH algorithm, the class of minimum 
distance is chosen to predict a test point. For the above n-class 
(n=3) classification task, NCH has the following decision 
function: 

0,..., 1
( ) arg min ( , ( ))k kk n

class x d x conv C
= −

= ,              (2) 

where dk(x, conv(Ck)) is the distance between the unclassified 
sample x and the convex hull of class Ck . 
 
Note, to be distinguished with the parameter K in K-NN, k is 
used to represent the k-th class of a classification task in this 
work. Fig. 2 (c) demonstrates the idea of NCH algorithm to 
estimate the label of the test object p. In this demo, distance 
dpC2 is the shortest one, thus object p belongs to class C2 by 
NCH. 

 

   
                                   (a)                                                     (b)                                               (c)                                    

Figure 2  Classify point p by different algorithms  
(a ) K-NN with K =3, (b) SVM with the linear kernel, and (c) NCH with the linear kernel. 
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3. THE IMPLEMENTATION OF NCH 

Consider a more common n-class classification for the formula 
(2), where the k-th class has mk training samples. From the 
above analysis, one of the key questions of NCH’s approach is 
the calculation of the distance dk(x, conv(Ck)). Assume that all 
training samples of the k-th class forms a new class A and the 
test point x forms a new class B. With the definition (1), 
calculation of the k-th distance dk(x, conv(Ck)) can be 
transformed into solving the following quadratic optimization 
problem: 
 

2

' '
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2
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= = ≤ ≤ ≤ ≤
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where

0 1( ,..., ) 'x
kkA mx x −= , kB x=x . In formula (3), vector μ is 

the convex coefficient vector of class A, and vector ν of class B. 
Parameters σA and σB are the reduced factors for convex hulls 
of class A and B respectively.  
 
According to Bennett’s similar conclusion in (Bennett and 
Bredensteiner, 2000), optimization problem (3) can be proved 
to be the dual problem of the C-Margin problem with the 
following formulation: 
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In formula (4), ŵ is the normal of the parallel hyperplanes ( x′ŵ 
= α and x′ŵ = β ) separating class A and B with a margin (α-β) ⁄ 
||ŵ||. Parameters ξ̂  and η̂  are soft margin errors to make all 
training samples be separable. Furthermore, C-Margin problem 
(4) is the equivalent problem of the inseparable SVM problem 
as follows: 
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In formula (5), x′w + b = 0 is the separating hyperplane to 
classify class A and B according to the maximum margin rules. 
In order to address inseparable cases, slack variables ξ and η are 
employed. ГA and ГB are weight vectors for the unbalanced 
training data.  
 
A special relationship here is that if ŵ* is the KKT point of C-
Margin problem (4) and w* is the KKT point of SVM problem 
(5), then the formulation below exists: 
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where *a  is the optimal solution of the following dual problem 
of SVM problem (5): 
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with Г = (ГA′, ГB′ )′. To solve the problem (7) in practice, a 
Mercer kernel function k(xi, xj) is usually introduced to replace 
the inner product (xki·xkj) (Burges, 1998). 
 
However, it’s not true that the two separating hyperplanes 
produced by methods (4) and (5) are the same (Bennett and 
Bredensteiner, 2000). Despite this pity, distance dk(x, conv(Ck)) 
can be computed through the following representation: 
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Based on deductions above, optimization problem (3) can 
finally be resolved through Eq. (8). In this process, separable 
classification problems are the special cases for all formulas 
discussed, i.e., set the reduced factor σA to one or set the weight 
coefficient ГA to the infinite. That is, for all classification tasks, 
NCH can be implemented through the optimization formulation 
of SVM. At this point, the proposed method is superior to 
Nalbantov’s which only handles separable cases easily. 
 
For the three-class problem in Fig. 1, the output of algorithms 
K-NN, SVM and NCH are given in Fig. 3. As can be seen from 
this figure, both SVM and NCH have a smoother decision 
boundary than K-NN, in other words, the former two algorithms 
are less sensitive to noises than the latter. It may be due to the 
fact that algorithms SVM and NCH classify a new object using 
information of the global training samples, while K-NN does 
this basing on local neighbors of the test sample. Look at the 
center part of each figure, all three algorithms are observed to 
leave no unclassifiable region. However, with the multi-class 
method of the LIBSVM tool (Chang and Lin, 2001), SVM 
assigns all the primal unclassifiable points (the dashed lines 
region) the same class C0. 

 
4. EXPERIMENS AND FURTHER COMMENTS 

In this section, we present an extensive evaluation of the NCH 
technique and two other methods of K-NN and SVM for remote 
sensing data classification. Two groups of data sets are 
provided in this work: one benchmark data satimage from UCI 
repository of machine learning databases (Blake and Merz, 
1998) and one remote sensing image of SPOT5. All features of 
both two data sets are linearly scaled to [-1, 1]. In these two 
experiments, some default settings are given below. The one-
versus-one method is chosen as the SVM’s multi-class strategy. 
To simplify the parameter sets in training stages, both NCH and 
SVM adopt RBF kernel only. Confusion matrixes are built to 
evaluate the differences of different classification results. The 
statistical accuracies in terms of the kappa coefficient (KC) and 
the overall accuracy (OA) are also recorded. In all experiments, 
only parameters to make each classifier achieve the top 
accuracy remain. In addition, it’s worth noting that most of 
experiments in this work are finished basing on the freely 
available LIBSVM software packages (Chang and Lin, 2001). 
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                                                          (a)                                  (b)                                  (c) 

 
Figure 3.  Results of different algorithms to classify the data in Fig.1.  

(a ) K-NN with K =3, (b) SVM with the linear kernel, and (c) NCH with linear the kernel. 
 
 
4.1 Classification of a benchmark data set: satimage 

The preliminary experiment is on data satimage which is also 
one of the common benchmark databases in pattern recognition 
fields. This database actually is a small section of Landsat MSS 
imagery that consists of four digital images of the same scene in 
four spectral bands with a spatial resolution of about 80m × 
80m. There are 4435 training samples and 2000 test samples in 
this database. Each sample pixel is represented by 36 features 
(all spectral values of its and its 3x3 neighbors’). Six different 
classes are used to label all samples, which are red soil (RS), 
cotton crop (CC), grey soil (GS), damp grey soil (DGS), soil 
with vegetation stubble (SVS) and very damp grey soil (VDGS). 
 
In this experiment, optimization parameters of the SVM are ГA 
= 5e, ГB = 5e, and γ = 1. For NCH, these parameters change as 
ГA = 1e, ГB = ∞, and γ = 1. The only parameter K of the K-NN 
here is set to 3. Statistical results of different classifiers are 
shown in table 1, table 2 and table 3. 
 
From table I to table Ⅲ, all three classifiers show a good 
performance for the satimage database with the OA bigger than 
90%. In detail, the best OA is 92.30% with KC = 0.9052 
achieved by NCH, which yields a gain of 1.7% and 0.45% with 
respect to K-NN and SVM. However, none of them can classify 
all six classes well in this database. For example, though all 
classifiers have a high classification accurate on the red soil 
class (the top is even 99.35% by NCH), they are challenged by 
the damp grey soil class, where the worst score observed is only 
66.35% by SVM. Furthermore, as far as the statistical votes 
been concerned, K-NN attains one vote for the best accuracy 
rate on class damp grey soil, SVM gets two on class cotton crop 
and class soil with vegetation stubble, and NCH holds three for 
the class red soil, grey soil and very damp grey soil. It’s clear 
that in this database NCH performs better than the other two 
algorithms. 
 

 
 Table 1 Classification of K-NN for satimage 

 
 

 
 

Table 2 Classification of SVM for satimage 
 
 

 
 

Table 3 Classification of NCH for satimage 
 
 
4.2 Classification of a high spatial resolution image  

The study data shown in Fig. 4 is a SPOT5 image of Shanghai 
containing 1171 × 910 pixels. The image is acquired with a 
high spatial resolution of approximately 2.5 m. In this 
experiment, all samples are expected to be classified into six 
classes: road, barren, building, vegetation, pool, and river. 
Before classification, the remote sensing image can be 
segmented by some segmentation algorithms such as multi-
resolution segmentation (Baatz and Schape, 2000). Then 
classification can be carried on samples of segmented regions, 
which is also called object-oriented classification. Therefore, 
besides pixels’ spectrum attributes, more information, such as 
shape features and texture features contained in the high spatial 
resolution image, can be employed to determine one test 
object’s class index. In this work, total 1035 image regions are 
generated after segmentation. Among these regions, nearly 20 

592



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 
 

samples per class are randomly selected as the training set. To 
get the statistical evaluation of each classifier, total 256 random 
regions are also obtained for testing. In addition, fourteen 
features of spectrum, shape and texture are extracted from each 
segmented object to participate in this experiment. 
 

  
 

Fig. 4.  SPOT5 Image of Shanghai  
 
 

 
 

Table 4  Statistical Result Of K-Nn For Spot5 Image 
 
 

 
 

Table 5 Statistical result of SVM for SPOT5 image 
 
 

 
 

Table 6 Statistical result of NCH for SPOT5 image 

Parameter configurations for the SPOT5 image are set as 
follows: K=1 for K-NN, (ГA, ГB, γ) = (200e, 200e, 0.077) for 
SVM, and (ГA, ГB, γ) = (200e, 200e, 0.077) for NCH. Fig. 5 
shows the results for methods tested in this section, and table Ⅳ 
to table Ⅵ give the related statistical analysis. 
 
From Fig. 5 (a) to Fig. 5 (c), algorithms K-NN, SVM and NCH 
perform similarly well on classes of river, pool and most of 
vegetation. However, for the remainder three classes, wrong 
outputs or distinct differences occur often with these three 
classifiers. This conclusion can be further confirmed by table Ⅳ, 
tables Ⅴ, and table Ⅵ. In the prediction of all the 256 test 
samples, the pool class is ideally classified by each algorithm 
with accuracy bigger than 90%. But for class road, barren and 
building, all classifiers have a bad accuracy. And the road class 
is the most critical. For this class, NCH exhibits the best 
accuracy (53.85%), whereas the worst accuracy (46.15%) is 
obtained by the SVM classifier. Global evaluation of these three 
algorithms is acquired using the OA and the KC. In terms of 
these two statistics, NCH again has the top OA of 69.92% with 
the KC = 0.6282, where OA and KC are (69.14%, 0.6180) for 
SVM and (67.97%, 0.6037) for KNN. 
 
 

5. CONCLUSIONS 

This paper has addressed the problem of remote sensing 
classification with a new algorithm NCH, which has been 
reported to have an excellent generalization to deal with 
ordinary pattern recognition problems (Nalbantov et al., 2007). 
The main analysis of our work aims two different objectives: 1) 
easier implementation of the NCH algorithm comparing with 
the original version and 2) evaluation of NCH’s performance 
for common remote sensing tasks. 
 
Basing on theories of computation geometry, we deducted 
NCH’s algorithms in another way different from the original 
method. And then an easier implemental approach for it was 
proposed in this work, which can be simply programmed with a 
little modification to the famous tool LIBSVM. 
 
The classification ability of NCH was assessed on three kinds 
of data sets: one synthetic data for demo example, one 
benchmark set of satimage, and one SPOT5 image. In our 
experiments, comparison was carried out with the other two 
state-of-arts classifier: KNN and SVM. For the synthetic data, 
NCH was observed to have a smooth decision boundary like 
SVM, where this algorithm also resolved the unclassifiable 
regions left by the latter. Experiments on real remote sensing 
datas further showed the promising performance of NCH. On 
the database satimage, NCH had a high OA of 92.30% which is 
the top rank among all three classifiers. Even for the hard task 
to deal with the spop5 image, NCH was also found to perform 
slightly better than K-NN and SVM. With all the obtained 
results, NCH is proved to have a good potentiality for remote 
sensing classifications. Two points for our future work will 
concentrate on the automatic choice of the parameters for the 
learning algorithm and on the optimization of faster prediction. 
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              (a)                                                     (b)                                                       (c) 
 

Figure 5.  Results of the SPOT5 image with different algorithms 
(a ) K-NN, (b) SVM, and (c) NCH  
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