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ABSTRACT: 
 
Classification methods are often employed to derive land cover information from satellite images. Although a variety of classifiers 
have been developed, some primary issues remain to be further investigated. Among others, two of them are: a) the determination of 
the number of distinct clusters, and b) obtaining optimal classification result utilizing the available classifiers. To investigate the first 
issue, a skewness measurement and a separation-cohesion index (SCI) are used to describe some characteristics of a clustering result. 
By plotting the two indices against the number of clusters, kinks and slope changes may emerge in the curves. With consideration of 
the spatial resolution of the imagery and the context of an application, an optimal number of clusters can then be determined. For 
most cases, the clusters in remote sensing images are different from the land cover types of interest. We need either to merge some 
clusters in order to form a land cover type or to split a cluster into more than one land cover types of interest. Because the statistical 
model of a land cover type does not always follow a distribution pattern, it may contain multiple models, or has no noticeable 
patterns, a collection of classifiers are proposed to accommodate any scenarios. This study used three classifiers: the maximum 
likelihood method for parametric model based approaches, the Kohonen’s self-organizing map (SOM) for neural networks, and a 
classification tree method. Through case studies, practical procedures are proposed: 1) identify the number of clusters within an 
application context; 2) associate clusters with land cover types; 3) classify images using the three classifiers, and assess their 
accuracies; 4) accept the result of classes from any one of the three classifiers, and process the remaining classes in the next iteration, 
and each class is then analyzed independently. The proposed procedures were shown to be efficient using case studies with three 
imagery data sets.. 
 
 

1. INTRODUCTION 

Land cover and land use change monitoring and modeling are of 
importance for natural resource management. The trend of land 
cover change and rate of deforestation are important factors that 
may affect global climate and sustainable development. Satellite 
remote sensing has been widely used for collecting images for 
deriving land cover information. Image classification methods 
are often employed to derive such information from currently 
collected and archived satellite images. Although there are a 
variety of commercially available software packages with a 
spectrum of classifiers, including supervised and unsupervised, 
parametric and non-parametric, classification trees and neural 
networks, there are still certain issues to be further investigated. 
Among others, two of the issues are the determination of the 
number of distinct clusters in remotely sensed data and the 
proper classifiers for obtaining optimal classification results. 
There have been research efforts that focus on certain aspects of 
these issues (Fraley and A. E. Raftery, 1998; Li and Eastman, 
2006; Zambon et al., 2006; and Zhu and Zhu 2007).  
 
Before classifying images into classes, we often need to 
determine how many classes we want in a given application 
context and how many classes there are in the images. In 
satellite images, similar land cover types exhibit similar 
reflectance and form similar patterns. If we plot their 
distributions, using each measurement (an image band) as a 
dimension, each land cover type tends to form a cluster in the 
data space. Given the fact that each land cover type contains a 
large number of pixels, the central limit theorem can then be 
applied. That is to say, the distribution of pixel values in a 
multiple band feature space for each cluster is likely to obey the 
normal distribution. This forms the theoretical basis for 

identifying the number of distinct clusters using the skewness 
measurement. 
 
The second component of this study focuses on how to achieve 
optimal classification results from some available classifiers. 
Classifier development has been an active research topic and 
many books have been dedicated for it (Tso and Mather, 2001; 
Richards and Jia, 2006; and Bishop, 2006). For most cases, the 
clusters in remote sensing images are different from the land 
cover types of interest. We need either to merge some clusters 
to form a land cover type or to split a cluster into different land 
cover types. In reality, due to the constraints from the sensor 
technology, mixed pixels effect, and spectral separability 
concerns, some clusters may obey a statistical model, and others 
do not. In order to classify imagery into land cover types, we 
need to take a collection of classifiers, each with different 
strength and be able to complement each other to obtain an 
optimal classification result.   
 
 

2. INDICES FOR DETERMINING THE NUMBER OF 
CLUSTERS 

Within remotely sensed imagery, determined by their physical 
characteristics, similar land cover types normally form clusters 
in the data space. Given that each cluster has a large number of 
pixels, according to the central limit theorem, the distribution of 
each cluster should be approximately normal. Based on these 
assumptions, we adopted two indices, a skewness and a 
separation cohesion index (SCI) (Mardia, 1970 and Zhu and 
Zhu, 2007), to determined the proper number of clusters. A 
skewness measure is one of the indices to evaluate the overall 
clustering validity. Skewness is the 3rd central moment: E{[X-
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E(X)]3}, and is a measure of the asymmetry of a density 
function about its mean. A Gaussian density’s skewness is 0; a 
negative skewness indicates that the density is skewed left (with 
a long tail on the right in the univariate case); a positive value 
indicates the opposite. A measure of P-variate skewness is given 
in (Mardia, 1970) as 
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In practice, the covariance matrix may be very close to be 
singular in certain cases due. To avoid this problem, we use a 
weighted average of the absolute sknewness of each variable in 
each cluster, where the size of each cluster is used as its weight 
of P image bands: 
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where skk,p is the skewness of the pth variable of the kth cluster 
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Here, pk ,σ  is the standard deviation of the pth variable of the 

kth cluster. 
 
The second index to be used is separation-cohesion index (SCI). 
For each cluster, we calculate the distance between its centroid 
and the centroids of the other clusters. The ratio of the smallest 
distance (a measure of separation) and the cluster’s standard 
deviation (a measure of cohesion) can be computed for each 
cluster. SCI is the weighted average of the ratio (Zhu and 
Zhu ,2007): 
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We can plot sk  and SCI against the number of clusters. By 
visually identifying the kinks and slope changes in the curves, 
together with context of an application, an optimal and practical 
number of clusters in the data can be determined.  

 

3. USING A COLLECTION OF CLASSIFIERS FOR 
OBTAINING OPTIMAL RESULTS 

Although there are many tools that can be used for image 
classification, no one classifier outperforms all others in all 
occasions. A consensus is that each classifier has its strength 
and may perform better within a given application, using a data 
set from a certain sensor at a specified geographic region. In this 
study, we select three widely used classifiers: the maximum 
likelihood, the Kohonen's self-organizing map (SOM) neural 
network, and the classification tree method. The IDRISI 
software package, which implements these classifiers, was used 
in this study. In addition to the three supervised classifiers, the 
k-means clustering method, an unsupervised approach, was 
used to assist with the determination of the number of clusters. 
A brief review of the three classifiers indicated the strengths of 
the maximum likelihood method was for parametric 
classification, the SOM’s approach was in handling multiple 
models, and classification tree method was efficient in handling 
data with no distribution patterns. Detailed descriptions of the 
algorithms can be found from Bishop, 2006; Tso and Mather, 
2001; and Richard and Jia, 2006.  
 
3.1 Maximum likelihood classifier 

The maximum likelihood classifier is one of the widely used 
classifiers. It uses Bayesian probability theorem and 
multivariate density (usually Gaussian)  to evaluate the posterior 
probability of a multidimensional data point x belongs to a class 
k in the follow fashion: 
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where p(ck|x) is the posterior probability of pixel x being class 
ck, p(ck) is the prior probability of x being class ck, and p(x |ck) is 
the conditional probability of x given class ck .  
 
By assuming an equal prior probability for all classes and using 
the multivariate Gaussian density function to approximate the 
frequency distribution associated with each of the classes 
parameterized by its mean  and covariance (Swain and 
Davis, 1978), the class k which has the maximum value of: 
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is assigned to that pixel. 
 
3.2 Kohonen's self-organizing map (SOM) 

The SOM neural network contains two layers, the input layer 
and the output layer. Its input layer represents the input feature 
vector and thus has neurons for each image band. The output 
layer is normally organized as a two-dimensional squared array 
of neurons. Each output layer neuron is connected to all neurons 
in the input layer by synaptic weights, and the weights are 
initialized with random weights. The organization procedure 
uses progressive adjustment of weights based on data 
characteristics and lateral interaction such that neurons with 
similar weights will tend to spatially cluster in the output 
neuron layer (Kohonen, 1990;  Kohonen 2001; Li and Eastman, 
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2006). Specifically, let X = {x1, x2, …, xp} be an p-dimensional 
feature vector input to the SOM, the Euclidean distances 
between an output layer neuron and an input feature vector can 
then be calculated, and the neuron in the output layer with the 
minimum distance to the input feature vector (known as the 
winner) is then determined as: 
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where is the input to neuron i at iteration t, and is the 

synaptic weight from input neuron i to output neuron j at 
iteration t. The weights of the winning neuron and its neighbors 
within a radius 

t
ix t
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unaltered) according to a learning rate as follows: tα
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where  is the learning rate at iteration t and  is the 

distance between the winner and other neurons in the output 
layer. The learning rate is a value between 0 and 1 that 
decreases with time between its maximum and minimum values 
according to the following time-decay function:  

tα jwinnerd ,
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An identical time-decay function is also used to reduce the 
radius (γ ) from an initial size that can encompass all of the 
neurons in a single neighborhood to an ending one which 
includes only the winner neuron. This adjustment of weights 
thus proceeds from global order to local adjustments. As for a 
supervised classification, a majority voting technique is used to 
associate these neurons in the output layer with training data 
classes. 
 
3.3 Classification tree 

A classification tree approach successively splits the data to 
form increasingly homogenous subsets and resulting in a 
hierarchical tree of decision rules. In this study, a univariate 
binary tree structure is adopted. It is a supervised procedure, 
containing training and classification steps. For the training step, 
an entropy rule is chosen to guide the growth of the tree. In 
general, the rules attempt to locate a splitting point in one of the 
multiple input images in order to isolate the largest homogenous 
training samples from the remainder of the training samples. An 
entropy rule uses the entropy (Shannon, 1948) as a measure in 
identifying an optimal band from the input images and locating 
the best splitting point in that band for splitting a node: 
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where Nk is the number of pixels for cluster k in a group, and N 
is the total number of pixels in a group. The split should yield 
minimum entropy. Iteratively, the classification tree is grown by 
progressively splitting a node into two new nodes. A newly 
grown node may turn into a leaf when it only contains training 
pixels from one training class and that would stop further 
splitting. The second step is to classify the images, in which 
every pixel is classified into a class utilizing the hierarchical 
rules of the decision tree. Since it does not assume any 
distribution pattern in the training samples, it can deal with non-
cohesive spectral characteristics of land covers.  
 
 

4. CASE STUDY AND DISCUSSION 

Case studies were performed to validate the methodologies for 
identifying the number of clusters and obtaining optimal 
classification results using three data sets.  
 
4.1 Data sets 

Three data sets were utilized: ASTER (advanced spaceborne 
thermal emission and reflection radiometer), SPOT, and 
simulated SPOT images. They were all from the region of 
Worcester Country, located in central Massachusetts of the 
United States. The first data set contained three bands of 
ASTER L1B data (received on June 24, 2006), corresponding to 
green, red, and near infrared wavelengths with a 15-meter 
spatial resolution, covering approximately 236 km2. The second 
data set was SPOT satellite imagery (received on July 10, 2003), 
containing four bands in blue, green, red, and near infrared 
wavelengths. The image contained 513*513 pixels with 20 
meter resolution, covering some 105 km2. The third dataset was 
derived from the second one through a simulation process (see 
appendix for details), and it had four bands with known normal 
distribution for seven spectrally separable land cover types. A 
composite for each was given in Figure 1 (a), (b), and (c). 
 

 
(a)              (b)          (c) 

 
Figure 1. False color composites of the three data sets. (a)-

ASTER, (b)-SPOT, and (c)-SPOT simulation. 
 
The dominant land cover types of the study area were deciduous 
and coniferous forests, commercial and industrial build ups, low 
density residential areas, water bodies, some agricultural and 
recreational land uses. Field visits and Google Earth software 
were used to visually identify actual land cover types of 
clustered images. In the preparation of the SPOT simulation 
images, seven primary land cover classes were identified: water 
body, coniferous forest, deciduous forest, concrete, asphalt, 
bare soil/rock, and grass. In that process, more attention had 
been given to the land vegetation cover, while manmade objects 
and build up areas were grouped into asphalt and concrete 
categories, even with the awareness that asphalt land cover type 
had a wide data range. Each class was generated using a 
Gaussian model estimated from samples of visually identified 
classes, thus each pixel’s class was known.  
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4.2 Identifying the number of clusters 

The following three procedures were taken to identify the 
number of distinct clusters that exist in the three data sets. 
Among the three data sets, the SPOT simulation one was 
intended as a testing set since it had known number of clusters 
(seven) with known normal distribution. 
 
4.2.1 Partitioning the imagery into clusters: 
 
 K-means unsupervised classification method was utilized to 
partition the imagery into 20 clusters using a random initial 
seeding option. Within the clustering process in k-means, its 
objective function is to minimize the total sum of squared errors 
to reach an optimal partition of the imagery (Bishop, 2006). 
After the k-means clustering process was completed with 20 
clusters labeled, then iteratively, two closest clusters were 
merged and a new clustering image was derived using the 
updated cluster centroids. And the new clustered image 
contained one less than the number of clusters in the previously 
clustered image. Progressively, a series of clustered imaged 
were obtained. We stopped the cluster reduction process when 
the number of clusters was reduced to 2.  
 
4.2.2 Deriving and plotting indices: 
 
The sum of squared errors (SSE) to the centroids, the skewness, 
and the SCI indices against the number of clusters for the series 
of clustered images were derived and plotted in Figure 2. 
 
4.2.3 Identifying the optimal number of clusters in the 
images by interpreting the plots:  
 
We first looked at the plots for the SPOT simulation data set, 
which contained seven known clusters in Figures 2 (a) and (b). 
The skewness index, consistent with the truth, yielded the 
smallest value at cluster number seven. When we examined the 
SSE and SCI indices, we found that both showed support at 
number seven: SSE had gone through a significant drop, and 
SCI was gradually decreasing before it dropped again after the 
cluster number got too large. We were aware that the SSE 
should monotonically decrease and the SCI did not have to be 
so due to the nature of k-means clustering algorithm and the 
algorithm for estimation of SCI. 
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(a) Simulated SPOT SSE        (b) SCI and skewness 
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(c) SPOT SSE                         (d) SCI and skewness 
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(e) ASTER SSE                   (f) SCI and skewness 

 
Figure 2. Plot the sum of squared errors (SSE), sknewness, 

and SCI indices against the number of clusters for SPOT 
simulation, SPOT, and ASTER data sets. 
 
As for Figures 2 (c) and (d), they were both derived from the 
real SPOT images. The SSE curve had experienced a noticeable 
drop and the SCI had a pit at seven clusters, although its 
skewness went up a little from six. Due to the complexity of a 
real data set, we may not be able to see support from all indices. 
In this case, at number six the skewness had reached a local 
minimum and SCI did so at number seven. Therefore, we could 
reasonably determine number seven as the optimal number of 
clusters presented in the imagery. 
 
Finally, Figures 2 (e) and (f) indicate that there are likely 10 
clusters. It was because at number ten, both SCI and skewness 
yielded local minima, and SSE had drop significantly after 
number four. From another point of view, domain knowledge 
suggested that a higher than SPOT spatial resolution (15 m vs. 
20 m) should allow us to recognize more land cover types than 
that from SPOT, assuming that mixed pixels had similar effects. 
 
With the identified number of clusters, the clustering images 
were then identified from the series. They were shown in Figure 
3, of which, only the seven clusters in the SPOT simulation data 
were known. 
 
 

 
(a)                      (b)                         (c) 

 
Figure 3. Clustered images from ASTER, SPOT, and simulated 
SPOT images: (a) ASTER data with 10 clusters, (b) SPOT data 

with 7 clusters, and (c) SPOT simulation data with 7 known 
clusters. 

 
4.3 Obtaining optimal classification result 

In this investigation of achieving optimal classification result, 
the SPOT simulation image was only used to verify the 
parametric classifier, i.e. the maximum likelihood method. A 
test had been given and proved it worked as expected with all of 
the classes classified correctly. The rest of the study was 
focusing on using the real SPOT image data, and the ASTER 
data was only used for verification of the methodology.  
 
4.3.1 Labeling clusters with land cover types:  
 
After the number of clusters had been determined in the real 
SPOT data set, the clustered image was then examined and 
seven clusters could be labeled as forest stands (including 
deciduous and coniferous), water bodies, croplands plus 
asphalt pavement, bare soil plus some asphalt, wetlands 
together with some asphalt, concrete surfaces, and grey asphalt 
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surfaces. We realized that asphalt had a very wide data range, 
from new pavement with very dark color, to old surfaces with 
very light color. That had caused misclassifications with 
wetlands, bare soil, and harvested croplands in the clustered 
image. Actually it constituted a generic case for testing the 
methodologies for achieving optimal classification results. 
 
4.3.2 The preparation of the training and testing data 
sets:  
 
The clustering result served as a guide for developing ground 
truth data, including training and testing data sets. Since any 
scenario may occur in real world application and without losing 
generality, the clustering result was taken as the ‘truth’ to 
develop training and testing data sets. Credit thus had been 
given to the theoretical base of identifying the number of 
clusters as explained in the previous section. And the mislabeled 
clusters that needed further merging and splitting processes, 
would be dealt with in the next iteration. In this study, we took 
about 28% of pixels randomly for the training, and the rest some 
72% as testing data set.  

 
4.3.3 Obtaining the optimal classification result: 
 
The three classifiers, the maximum likelihood, the SOM, and 
the classification tree methods were all applied on the real 
SPOT images. An analysis started from analyzing the three 
error matrices for each classifier respectively (Congalton and 
Green, 1999). As it was implied previously, the analysis was not 
intended to provide evidence of which particular classifier 
performed better. It was because the creation of training and 
testing data in this case or any real cases may favor a particular 
classifier (the parametric maximum likelihood classifier in this 
case). We would rather focus on the accuracy of each class and 
to accept the classification result from any one of the three 
classifiers that better met a given accuracy threshold. Due to the 
size of the error matrix and the limitation of the paper length, 
the error matrix could not be inserted. According to those error 
matrices, classes for water body and concrete were accepted, 
from maximum likelihood and classification tree methods 
respectively. They had showed above 99% of consistency with 
the testing data set. In the first iteration, we could not obtain 
results for any other classes with acceptable classification 
accuracy. In the next iteration, the classes that did not meet a 
given accuracy were to be further analyzed. In this case, for 
example, the forest land cover needed to be split into deciduous 
and conifers; three different asphalt classes needed to be 
separated from their misclassification with croplands, bare soil 
and wetlands.  
 
In the second round analysis, the already identified classes with 
acceptable accuracy (water body and concrete) were masked out 
from analysis, and only the remaining ones were analyzed. Each 
class was processed separately. That had made identifying the 
number of clusters straightforward. Most of them contained 
only two or three misclassified classes, such as asphalt from 
wetlands; or one correctly identified class needed to be further 
split into finer classes, such as splitting forest into deciduous 
and conifers. The second iteration completed all of classes. 
 
The ASTER data set was used to validate the proposed 
methodology. There were two differences though, one was that 
the deciduous and coniferous forests were identified in the 
cluster identification phase, and they got classifier correctly in 
the first iteration. The other was that the asphalt land cover type 
was identified as several different land cover types. They could 

be aggregated into one single asphalt pavement class in a post 
processing, depending on the interest of an application. 
 
We did not indicate which classifier obtained optimal classes at 
which iteration. Since their strengths were complementing each 
others weakness at any scenario, an optimal classification result 
was always available from one of the three classifiers for a 
given class within an iterative process. 

 
 

5. CONCLUSION 

We have presented procedures for identifying the number of 
clusters exist in remote sensing images and practical approaches 
leading to obtaining optimal classification result. The practical 
methodologies for supervised classification avoided the 
normally time consuming practice of editing training data to 
meet classification accuracy requirement and dilemmas of 
picking a classifier to accommodate all classes in a imagery data 
set. Future work is planned to investigate the effect of resolution 
change to the number of distinct clusters and responses of their 
statistical indices. 
 
 

6. APPENDIX 

The following procedure was used to generate the SPOT 
simulation imagery using the original SPOT imagery: 1) In the 
original imagery, seven clusters were identified and training 
samples were developed. They were water body, conifer forest, 
deciduous forest, concrete, asphalt, bare soil/rock, and grass.  
The samples were used to estimate the mean vector and 
variance and covariance matrix of each class. These parameters 
were treated as Gaussian density parameters to generate data 
later. 2) A supervised classification with seven classes of the 
SPOT image was undertaken. From this point onwards the class 
of a pixel was known and was fixed. 3) A principal components 
analysis (PCA) was applied to the original imagery, yielding 
four components. The Gaussian parameters estimated earlier 
were converted into the PCA data space. The 7 Gaussian 
models in the PCA space were used to regenerate the pixels to 
replace the original ones; each pixel’s class was preserved. Then, 
the pixels in the PCA space were converted back to the original 
data space. This procedure added white noise to the generated 
data and preserved the correlations between variables within 
each class. 
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