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ABSTRACT: 
 
Geographical Information System and Remote Sensing are tools which integrated can perform different environmental analysis.  
The Netherlands ITC (Institute for Aerospace Survey and Earth Sciences) developed in 1984 on Integrated Land and Water 
Information System (ILWIS), that combines raster (satellite image and aerial photo analysis), vector and thematic data operations in 
one comprehensive integrated Remote Sensing –GIS software. Since July 1 2007, ILWIS 3.4 has been granted open source status and 
is currently maintained by the open source community 52North, a no-profit organization under German legislation. In this research I 
developed in the ILWIS environment new tools to perform an unsupervised Remote Sensing classification on a set of TM Landsat 
images to generate thematic maps for glacier analysis. The work starts after having tested some algorithms, inside the software, 
related to the supervised classification, which pointed out the potentiality of its performances for the computer-assisted interpretation 
of remotely sensed data and made in evidence dedicated spatial analysis for the glacier state monitoring. To integrate these 
procedures with other suitable classifiers I used the form of the script language to implement the K-means and the Fuzzy K-means 
algorithms with the aim to define landform elements. Finally I compared the results, coming from the different performances, by 
means some accuracy parameters. 
 

 
1. INTRODUCTION 

The Intergovernmental Panel on Climate Change (IPCC) has 
observed that the average temperature of the Earth suffers more 
and more frequent annual high values especially in these last 
years. The global climatic heating describes not only these 
phenomena but also the diminution of the snow precipitations, 
both factors that negatively engrave on the mass balance of a 
glacier. This situation causes the disappearance of some glaciers 
of the world and puts in danger other ones, providing many 
repercussions on the availability of natural water resource for 
agricultural, civil and industrial purposes.  
 
According to the 1989 last census, the glaciers of the Italian 
Alps are 800 and occupy a surface of 500 km2 (about a fifth of 
the whole glacial coverage of the Alps). In this research I took 
into account some data related the Alpine glaciers localized in 
the North of Italy, in particular I focused the attention on the 
Adamello group to determine a fast, simple and reliable 
monitoring method based on image classification.  
 
A previous research, presented at 5th EARSeL Workshop 
“Remote Sensing of Snow and Glaciers. Changing Climate – 
Changing Cryosphere” (on February 2008), illustrated the first 
approaches to realize a geo-database which allowed the 
extrapolation of the meaningful parameters for the evaluation of 
the glacier dynamism by means of Landsat scenes acquired by 
the sensors MSS (1976), TM (1992) and ETM+ (1999) 
(Malinverni et al, 2008) during the end of each hydrological 
year (June-September), mainly in the optical sensor mode 
(visible to near- and mid- infrared). 
 
 
The best results were achieved by applying a supervised 
Maximum-Likelihood classification to a combination of various 
input bands of different sensors. Obviously the absolute value 

of the derived parameters for the study of the glacier dynamism 
was not interesting, but the amount of their variation in the 
period of observation and the comparison with the threshold 
values was important to know the glacier displacement. Starting 
from these remarks I upgraded the methodologies developing 
some new procedures for an unsupervised classification, not 
only based on classical methods but also performing the logic 
theory (fuzzy) to improve the knowledge of land cover 
assessment. For this purpose the ILWIS software allows to use 
some internal functions and mathematical calculations in a 
sequence of instructions organized in script format. This is a 
very simple way to elaborate the data combining procedures 
already inside the software with other realized ex-novo 
according to the spirit of the free open source environment. The 
ILWIS script consists of set of commands that can be used with 
input parameters (the variables) which make the procedure more 
than customizable. Later on I am going to explain in detail the 
different unsupervised approaches built-up for land cover 
mapping by 
o
 
 

The idea of data grouping is simple and close to the human way 
of thinking that summarizes the number of data into a small 
number of categories in order to facilitate the analysis: this is 
the purpose of the classification. Conventional Remote Sensing 
classifiers are based on the theory that each pixel in an image 
can be unambiguously associated with a single cover class 
generating a “hard partition”. In a hard partition it is excluded 
that a pixel may partially belong to a class and simultaneously 
to belong to more than one class. Clearly, such a representation 
scheme has difficulty in dealing with the situations which 
cannot be precisely described by a single attribute. This is 
correct when the pixel records spectral characteristics of a 
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single cover class, but when the pixel contains mixed spectral 
characteristics, it reflects a mixture of surface-cover classes 
(Wang, 1990; Foody, 1999). In particular this occurs to Remote 
Sensing images at coarse resolution when the pixel size is larger 
than the size of the features. According to these considerations 
it is possible to note that the efficiency of the clustering method 
has a proportional reduction in relation to the amount of 
overlapping between the classes. To improve the thematic 
classification an alternative membership concept is needed. The 
correct approach is the “soft” classification, which allows the 
evaluation of the partitions of thematic classes in a single pixel 
how it was widely described in the soil science and 
geographical literature (Woodcock and Gopal, 2000; Foody, 
2002; Burrough, 1989; Burrough et al., 1997). McBratney and 
De Gruijter (1992) proposed the term “continuous” 
classification to describe the Fuzzy K-means technique, that 
allows the identification of types and proportions of land cover 
components improving the overall classification accuracy. In 
particular Cannon et al. (1986) applied a Fuzzy K-means 
clustering algorithm to perform an unsupervised classification 
on TM Landsat images. They underlined how the method based 
on the probability measures of a fuzzy logic classification may 
provide more precise information compared to discrete classes. 
Starting from the mentioned above literature I implemented in 
the software ILWIS two unsupervised algorithms to capture the 
uncertainty in classification through the development of a Fuzzy 
K-means method in comparison with the conventional K-means 
or Hard C-means clustering (Bezdek et al, 1984). The 
motivation for this choice has been manifold: very encouraging 
results have been obtained as a better identification of cover 
class components of mixed pixels and a higher overall 
classification accuracy. In fact the improvement was realized 
thanks to the fuzzy logic that allows for every pixel to assign 
different degrees of membership to each of the clusters, 
eliminating the effect of a ha  and exhaustive membership 

tering. 
 

2.1 Clustering inside ILWIS 

rd
introduced by the K-means clus

 
Figure 1.  Clustering in ILWIS 

At the present the unique tool in ILWIS which performs the 
clustering, is based on the Heckbert quantization algorithm 
(Heckbert, 1982). This algorithm produces a dynamic colour 
composite on the basis of statistical properties of the pixel 
values to group them into spectral clusters. For this processing I 
gave in input three channels of the TM Landsat sensor data (TM 
1, TM 4, TM 5) and 5 cluster groups to define the land covers of 

the objects inside the study area. The software starts with one 
cluster occupying the entire feature space, and then the cluster is 
split in two new clusters approximately containing the same 
amount of pixels. The process continues until the required 
number of clusters is reached. In the output raster map each 
pixel has a class name like Cluster 1, Cluster 2, Cluster 3, 

requ

representative of the centre up and useful to initialize 
ively 

executed. 

Euclidean distance 
etween a set of n vectors xj containing the pixels of each image 
nd the corresponding cluster centre ci (1):  

Cluster 4 and Cluster 5, according to the number of groups 
ired in input (Figure 1).  

The thematic map coming from an only run gives an idea of the 
initial data grouping that has to be improving with other 

techniques. For this purpose I saved for each output cluster the 
average spectral value in an attribute table. These values are 

 of each gro
the K-means and the Fuzzy K-means algorithms success

2.2 Development of the K-means algorithm in ILWIS 

The common approach of all the clustering techniques is to find 
cluster centres well representative of each cluster by trying to 
minimize a cost function (Lu and Weng, 2007). In most cases 
this is a similarity measure based on the 
b
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es (Figure 2). Testing the differences at different 

 
 
A set of n vectors xj, j =1,…,n, are to be partitioned into k 
groups Gi, i = 1,…, k. 
K-means uses a procedure that starts with an initial centre for 
each cluster (in terms of attribute values). The data vectors are 
allocated among the classes according to the distance between 
each vector and each of the cluster centres. The partition of the 
data set into several groups is such that the similarity within a 
group is larger than among the groups. Reallocation proceeds by 
iteration until that a stable solution is reached. The performance 
of the algorithm depends by the initial cluster centres. So 
several iterations are necessary to have better results. The K-
means procedure is not a tool of ILWIS so I had the necessity to 
develop it. I used the script language to solve the functions and 
realize the map calculation displaying the results in form of 
raster grid (the classified image) and attribute tables to control, 
step by step, the correct processing evaluating the new values of 
the cluster centr
stages the procedure is stopped when the centre stability is 
achieved. 

 
igure 2.  Cluster centres values step by step until the achieved F

stability 
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The Figure 3 shows the result of the classification after six 
iterations with the assignment of the cover class hard partitions. 
In fact at the end of an unsupervised technique you have to 
interpret the results assigning the clusters into meaningful 
information classes. In this research to make simpler the 
allocation of the classes it was necessary to reduce the domain 
satisfying the studied area characteristics and focusing the 
attention on a limited set of locally optimal classes to make 
more comparable the results with the previous supervised 
lassification. The land cover class domain is: Rock, Vegetation, 
ater bodies, Glacier area, Null. 

c
W
 
 

 
 

tion 
 

 probability value to each cluster. The 
rmulation to determine the fuzzy membership degree is (2) 
urrough et al., 2000): 
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Figure 3.  Hard K-means classifica

2.3 Fuzzy theory implementation in ILWIS 

Starting from the same data set and defining the same similarity 
measure (the Euclidean distance) I introduced the fuzzy logic 
theory implementing, always in ILWIS by another script, the 
Fuzzy K-means algorithm. The aim was to take into account the 
overlapping class into the pixels with mixed spectral values by 
means of a membership
fo
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osen to match the present amount of class overlap, 
hich is generally unknown. The number of cluster k has to be 

e membership degrees for 
ach cluster: the dark gray signifies no membership and white 
presents 90-100% of membership.  
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where μik is the membership value of i to cluster k, dik is the 
distance measure, q is the fuzzy exponent determining the 
degree of overlap. For q → l there is not overlap, for q > 4 there 
is complete overlap and all the clusters are identical. Ideally q 
should be ch
w
chosen too. 
 
The membership μ of the ith object to the kth cluster has a value 
in a range between 0 (not a class member) and 1 (wholly and 
only in a class) but can be expressed on an intermediate scale. 
The sum of values for class membership for any data point is 

equals 1. The maximum degree of fuzziness identifies the 
highest membership value to a class. The derived raster grid for 
each cluster shows, in the study area, the distribution of the 
affinity degrees with the centroid (or central concept) of the 
cluster. The results for the cluster 4 (hard class “Glacier area” 
assigned successively) were relevant (Figure 4). The continuous 
sequence of gray values represents th
e
re
 
 

 
 

Figure 4.  Maximum membership degree to the cluster 4 

 information about the differences between 
e clusters and to evaluate their values respect to the starting 

he cluster centre C of the kth cluster for the jth attribute x is 
alculated for N observations as (3): 

( ) ( )

“Glacier area” 
 

Furthermore analyzing the fuzzy class centroids it was possible 
to obtain additional
th
centres (Figure 5). 
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Figure 5.  The attribute value of the centroids change from the 

 to a class (Figure 
). Furthermore it provides information regarding the overall 

starting points to the several iterations 

 
The fuzzy classification output displays in raster map the 
maximum probability for each pixel to belong
6
spectral separation among the various classes 
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Once the membership values have been calculated, an 
observation can be assigned to a “hard class” formed by all the 
observations that have their highest membership on the same 
lass generating a thematic map representation (defuzzification) 

pported 
y the comparison with the membership values assigned at the 

c
(Figure 7). 
 
In this experience, the fuzzy classification processing localized, 
at the first run, the whole glacier area. This result was su
b
cell and by other metrics illustrated in the next section. 
 

 
 

Figure 6.  A raster map probability distribution for each pixel to 
belong to a class 

 

 

Figure 7.  Fuzzy K-m ns “defuzzification” 

rence data coming from the 
aximum Likelihood classification, previously achieved on the 

 

ea
 
 

3. EVALUATION OF CLASSIFICATION 
PERFORMANCES 

The utility of a thematic map is largely dependent on its quality 
that is expressed in terms of classification accuracy. The 
evaluation of the classification results is an important process in 
the classification procedure but the accuracy assessment is 
difficult to quantify and express (Foody, 2002). In this section, 
in order to compare the unsupervised algorithms illustrated 
above, it was necessary to evaluate the corresponding thematic 
accuracy. An objective quantitative method, generating the 
related confusion matrix, was integrated by the use of some 
others metric parameters which give a good interpretation of the 
different performances of the two algorithms. Conventional 
methods of accuracy assessment are “global”, in fact they 
provide a single summary metric of the quality of the entire map. 
This is normally done with the error or confusion matrix that 
indicates either an overall accuracy value or the percentage of 
correctly allocated pixel to a single class. The error matrix 
contains rows corresponding to the classification and columns 
corresponding to the reference data set. The main diagonal 
represents correctly classified pixels while elements in the off-
diagonal (left or right) represent two types of thematic errors: 
omission and commission. An error of omission occurs when a 
pixel belonging to a class has been not allocated to that class by 
the classification. On the contrary an error of commission 
occurs when a pixel has been erroneously allocated to another 
class. To assess the correctness of the cluster allocation in the 
output raster map with respect to the field observation data, you 
have to perform a Cross processing with a ground truth map. In 
the absence of ground data I used a suitable and reliable 
alternative performing the Cross processing between the 
classified data and the refe
M
same set of images with good results (Malinverni et al, 2008; 
Okeke et al, 2006) (Figure 8). 
 

 
 

Figure 8.  The supervised Maximum-Likelihood classification 
useful as reference data set 

 
In this case some arguments could be raised on the suitability of 
the term ‘accuracy assessment’ since the reference data are not 
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an accurate representation of reality because they were derived 
from a classification at the same time and so they could contain 
ome errors. However in any case to improve the assessment I 

sult has been an improvement of 13% 
ferring the fuzzy “Glacier area” user’s accuracy, the fraction 

f correctly classified pixels with regard to all pixels of that 

s
calculated some other indices moreover to support the Fuzzy K-
means results.  
 
The statistical parameters provided by the confusion matrix, 
derived by the crossing between the Fuzzy K-means and the 
reference data and those coming from the crossing between the 
conventional K-means and the same reference data, are close 
different. A 51% of overall accuracy was measured from the 
result of the conventional classification (Figure 9), while a 
52,4% of overall accuracy was achieved on the “hardened” 
classification generated from the fuzzy partition matrix (Figure 
10). The relevant re
re
o
reference data class.  
 
 

 
Figure 9.  The K-means error matrix 

 

 
Figure 10.  The Fuzzy K-means error matrix 

 
Calculating the fuzzy accuracy, I create a map of spatial 
isagreement to highlight areas that need improvement. The d

uncertainty is mapped spatially to produce an ‘uncertainty map’ 
(cross map) (Figure 11). 
 

 

 and 

verlapping classes can be easily expressed using the Confusion 
dex (CI) which compares the first sub-dominant membership 

 

Figure 11.  The uncertainty map after the cross processing 
 
The fuzzy classification accuracy assessment, in absence of 
ground data, is possible using some other fuzzy metric 
parameters too. The approach however can be considered 

complementary to more conventional assessment methods
not a substitute of these. This approach requires no additional 
external data but it uses metrics computed by the fuzzy 
algorithm to obtain the classification quality at each pixel.  
The confusion associated with the placing of a pixel i in more 
o
In
value to the dominant membership one for each observation (4): 
 
 

( )( ) ( )( )iiCI max1max μμ −=         (4) 
 
 
If CI → 0 then the observation clearly has a strong affinity with 
the dominant class, but if CI → 1, then both values are almost 
equal and there is confusion about the class to which the pixel 
most nearly belongs. The defined zones where CI → 1 could 
indicate geographical boundaries or transition area between the 
mixed classes not well defined. If the class membership values 

r two or more continuous classes vary continuously over 
 

fo
geographical space there will be a transition both in attribute
and geographic local boundary (Figure 12). 
 

 

he evaluation of CI at first step indicates a good stability for 
e localization of the glacier class but much confusion for the 

other classes (Figure 13). 
 
 

 

Figure 12.  In evidence the boundaries of the “Glacier area” 
 
T
th
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Figure 13.  CI raster grid displays the good stability for the 
“Glacier area” classification 

 
Other two parameters can improve the fuzzy accuracy 
assessment: the partition coefficient F and the classification 
entropy H, which scaled in dependence of the number of 
clusters k are more interpretable (5) (6): 
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where µik is the membership value of pixel i to class k, k=1,...n 
(Burrough et al., 2000). F is conceptually comparable to the F-
ratio of the cluster internal variance and the variance between 
the clusters; it is closed to 1 for the most significant clustering. 
H mathematically is as the thermodynamic entropy and 
approaches zero for the most significant clustering. While the 
CI denotes the success of the classification for individual 
observations, F and H are indicative of the quality of the 
classification as a whole. A good classification combining 
relatively large values of Fscaled and small values of Hscaled. The 
metrics performed in this research gave a good value for Fscaled 

(0.77) and small value for Hscaled (0.04). 
 
Some consideration may be made on the different way to stop 
the running process of the two algorithms. The classical K-
means has only a way to stop the iteration: the achieved stability 
of the cluster centres. On the contrary the fuzzy process can be 
controlled viewing the fuzzy membership map where is stored 
the degree of probability for every pixel to belong to each 
cluster. On the study area I performed six iterations to achieve 
the final results using the K-means but the glacier area was not 
completely classified, how is evident in the error matrix. By 
means of the Fuzzy K-means procedure was needed only a step 
to allocate in better way the glacier cover. 
 
 

4. CONCLUSIONS 

The proposed methodologies presented in this work are related 
to the unsupervised classification procedures not yet 
implemented in the ILWIS software. From the comparison 
between the conventional K-means and the its fuzzy 
implementation some remarks can be made: in general, the 
fuzzy technique improves over the K-means clustering, in fact 
the fuzzy methodology has good accuracy and requires less 
number of iterations. However a difficulty occurs when the 
values of the centroids of some classes are very close. 
Furthermore the correctness of the thematic classification 
sometimes appears to be dependent of classifier type. Another 
limit of the procedure relies on the capability of the analyst to 
provide accurate labelling of classes after classification 
maintaining a high level of consistency. When you used these 
methods with natural resource data, the comparison of the 
classification with the environment allows the identification of 
phenomena in correspondence with data classes. Moreover 
thanks at the possibility to use different accuracy parameters it 
is expected that these methods could be useful where training 
data and ground data are difficult to obtain for the classification 
and the accuracy assessment. 
 
Concluding I can underline how the Remote Sensing can be a 
convenient tool for mapping ice wide areas, where few direct 
measurements, documenting the changes in glacier thickness, 
cannot be achieved directly. In this case it is possible to perform 
classification analysis of image time series giving in indirect 
way an evaluation of the glacier area variations in the temporal 
displacement of observations. 
 
This work, developing and testing the integrated GIS – Remote 
Sensing analysis performed by the ILWIS 3.4 open source 
environment, brings to light the potentiality of these tools. In 
fact the open source software allows a free use and the functions 
not available currently can be successively implemented. It is 
not time consuming during the data processing also using a high 
massive structure of data and it is rather intuitive software too.  
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