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ABSTRACT: 
 
Many authors explored the use of multi-temporal images, recorded within a season or across years, for (i) ecosystem monitoring, (ii) 
land cover (crop) identification, and (iii) change detection (Copin et.al, 2004). Temporary trajectory analysis, drawing on time-
profile-based data originating from a large number of observation dates, has mainly been done through threshold-based methods, 
compositing-algorithms, or Fourier series approximation. This paper presents findings of a multivariate change detection method that 
processes the full dimensionality (spectral and temporal) of 10-day composite (1998-onwards) 1-km resolution SPOT-Vegetation 
NDVI images. Using the ISODATA clustering algorithm of Erdas-Imagine software and all available NDVI image data layers, 
unsupervised classification runs were carried out. These produced minimum- and average-divergence statistical indicators that in turn 
were used to identify the optimum number of classes that best suited the data put to the unsupervised classification algorithm. The 
selected classified map is linked to a set of time-profile-based signatures (profiles) that form the map legend. Studies were carried out 
for (i) Portugal to identify the extend and nature of land cover units, (ii) the Limpopo valley, Mozambique to map gradients, (iii) the 
Limpopo valley, Mozambique, to monitor flooded areas, (iv) Garmsar, Iran, to detect spatial differences in water availability, (v) 
Nizamabad, India, to link NDVI profiles to land use classes and (vi) Andalucía, Spain to disaggregate reported agricultural crop 
statistics to 1x1km pixel crop maps. Results compose of statistical findings underpinning the method, maps showing the spatial-
temporal characteristics of the findings, and the applicability of the method for the studied topics. 
 
 

1. INTRODUCTION 
 
Land cover and land use studies often rely on maps derived 
from image interpretation coupled with field work. Images used 
represent mostly a single frame to cover the study area, or - at 
best – of a few repeats at different dates. Discussions frequently 
focus on resolution and scale. Agro-ecosystems however show 
frequently a higher temporal (seasonal) variability than a spatial 
one. This characteristic was in the past poorly used to support 
mapping due a lack of images. In recent years however, the use 
of NOAA-AVHRR, MODIS and SPOT-Vegetation data offered 
the option to study and gain insights of temporal dynamics due 
to their almost daily global revisiting frequency; this gain 
simultaneously implies a loss regarding spatial resolution (250m 
to 7km spatial resolution at a 10-daily availability of free 
synthesis products). 
 
Traditionally, vegetation monitoring by remotely sensed data 
has been carried out using vegetation indices. These are 
mathematical transformations designed to assess the spectral 
contribution of green plants to multi-spectral observations 
(Maseli, 2004). A number of studies have shown that the 
normalised difference vegetation index (NDVI) derived by 
dividing the difference between infrared and red reflectance 
measurements by their sum provides effective measure of 
photosynthetically active biomass (Sarkar and Kafatos, 2004; 
Justice et al., 1985; Sellers, 1985; Drenge and Tucker, 1988; 
Ringrose et al. 1996; Maggi and Stroppiana, 2002; Weiss et al., 
2004; Unganai and Kogan, 1998; Archer, 2004). Several studies 
also discussed the suitability of temporal NDVI profiles for 
studying vegetation phenologies, especially those of crops 
(Groten and Octare, 2002; Gorham, 1998; Hill and Donald, 
2003; Uchida, 2001; Murakami et al., 2001).  

 
Various authors have sought to map land-cover phenology, 
dynamics and degradation through multi-temporal NDVI data 
(e.g. Cayrol et al., 2000; Budde et al., 2004; Ledwith, 2000; 
Eerens et al., 2001; Brand and Malthus, 2004; Souza et al., 
2003).   
 
In this paper we explore an approach to utilise ten-day temporal 
resolution SPOT Vegetation data to identify (i) areas having 
different vegetation cover types and (ii) agricultural areas 
following different crop-calendars. The aim is to contribute to 
the development of compilation methods of spatial and temporal 
land-use data sets using existing data sources and improved 
RS/GIS-based methods.  
 
 

2. DATA 
 
Data available for this part of the study concern geo-referenced 
and de-clouded SPOT-4 Vegetation 10-day composite NDVI 
images (S10 product) at 1-km2 resolution from April 1998 till 
present as obtained from www.VGT.vito.be. De-clouded means: 
using by image and pixel the supplied quality record; only 
pixels with a ‘good’ radiometric quality for bands 2 (red; 0.61-
0.68 µm) and 3 (near IR; 0.78-0.89 µm), and not having 
‘shadow’, ‘cloud’ or ‘uncertain’, but ‘clear’ as general quality, 
were kept (removed pixels were labelled as ‘missing’). NDVI 
indicates chlorophyll activity and is calculated from (band 3 - 
band 2) / (band 3 + band 2). 
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3. METHOD 
 
Using the ISODATA clustering algorithm of Erdas-Imagine 
software and all compiled and stacked NDVI image data layers, 
unsupervised classification runs were carried out to generate a 
map with a pre-defined number of classes. Unsupervised 
indicates that no additional data were used or expert’s guidance 
applied, to influence the classification approach. The maximum 
number of iterations was set to 50 and the convergence 
threshold was set to 1.0. An iteration performed an entire 
classification, and was "self-organizing" regarding the way in 
which it located the clusters that are inherent in the data; the 
ISODATA algorithm minimizes the Euclidian distances to form 
clusters (Erdas, 2003; Swain, 1973). Of the produced map, 
selected NDVI-profiles (annual averaged profiles) are 
graphically presented and their spatial representation is shown. 
This paper will rely heavily on included figures to discuss the 
value of the chosen method. 
 
 

4. RESULTS 
 
4.1 West-Iberia: Area Stratification 
 
Figure 1-top shows 45 generated NDVI profile classes and at 
the bottom 11 selected classes. For clarity, only annual averages 
of 7-year profiles are presented in the figure generated from 252 
stacked images. The variation in behaviour between profiles 
differs considerably. The top-figure (red-arrow) suggests that 
around August a gradual gradient exists from rather low to very 
high NDVI values. This possibly relates to a weather defined 
gradient based on latitude and/or altitude. 
 
Equally different is the area presented by each of the profiles 
(Figure 2). The presented map suggests a clear spatial 
stratification that is caused by a combination of weather, soil, 
terrain, and land use characteristics. It also presents distinct 
units that show remarkable homogeneity and at the same time 
locations where fragmentation of ecosystems occur. This logic 
can be reversed: the NDVI-profiles reflect and are good 
indicators of the environment in which the ecosystems occur. 
Use of the temporal dimension and NDVI values as an index for 
habitat / ecosystem functioning, provides an untapped 
stratification tool for mapping and monitoring. The down-side is 
that the product has a scale of 1:250.000 at best that consists of 
many ecosystem complexes compiled at a 1 km-sq spatial basis. 
 
A key for effective monitoring and studying of natural resources 
is to define map units ‘of interest’ on the basis of their 
behaviour in time as can be detected by the chosen procedure. 
The following examples focus on various possibilities 
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Figure 1 Top. All 45 NDVI-Profiles generated for the 

specified area,  
Figure 1 Bottom. 11 Selected averaged annual SPOT NDVI-

Profile classes (see Fig.2). 
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Figure 2.   Spatial location of the shown 11 NDVI-Profile 
classes (see Figure 1). 

 
4.2 Limpopo Valley, Mozambique: Gradient Mapping 
 
On wind-blown sandy terraces along the coast of Mozambique, 
remnants of large-scale Cashew plantations can be found.  After 
independence the plantations were abandoned and small parcels 
became property of local farmers who live under subsistence 
conditions in traditional villages scattered across the terraces. At 
present, management of the cashew is poor and selling surplus 
cashew-wood as charcoal on the local market generates most 
income. Progressive degradation of the tree-based land cover is 
widespread. Small land pockets exist where natural vegetation 
is allowed to become the dominant land-cover type because 
these areas are still contaminated by land mines. 
 
An Aster image (Figure 3 top) shows that the vegetation density 
(in 2002) is far from homogeneous and that at the same time 
clear demarcation of land-cover map units is hard to establish. 
This is because three-cover can hardly be differentiated from 
other vegetated land-cover types (all red on the image). The 
zone consists of gradients that are partly caused by land factors 
and partly by its socio-economic history. The gradient can 
clearly be seen by comparing vegetated versus bare soil 
fractions across the area. 
 
By running an unsupervised ISODATA clustering algorithm of 
stacked SPOT-Vegetation NDVI images (using a much larger 
window than the shown image extent), the area was stratified 
into 7 relatively homogeneous map units (Figure 3 bottom).  
 
In Figure 4 it is interesting to note that the variability in NDVI 
(DN-values) over time (averaged yearly profiles) not only 
shows vegetation density differences by map-unit, but also that 

over time the behavior of the NDVI-profiles differs. Besides a 
gradient of vegetation density, the units also contain different 
mixes of vegetation types. Profiles that remain high over time, 
represent more permanent cover-types (trees) and curves that 
have reduced NDVI values, especially during the dry season 
(July-Nov), represent more degraded areas or fields (used for 
annual cropping). The gradient is best seen when comparing the 
September NDVI values between profiles. The difference in 
cover-types is best seen when comparing the general shapes of 
the curves. Profiles 45 and 43 remain high throughout the year: 
permanent cover of trees and undisturbed natural vegetation; 
profiles 22, 27 and 28 show clear dips during the dry season: a 
mix of trees and fields; profile 9 and 10 show considerably 
poorer NDVI values from April to July: fields and/or degraded 
cover-types are dominant. 
 
Use of NDVI-images to capture the variability in time of cover 
types as present in an area to augment content derived from a 
single high-resolution image, proves thus relevant and required. 
Not only gradients can be delineated, but also meaning can be 
provided to what the gradients signify. Note that when required, 
the coarse resolution NDVI-map can be improved by re-
delineating the given units with the support of the Aster image. 
The results show that besides the Aster image of May, an image 
around September is required to allow proper delineation of 
most relevant land-cover type complexes. 
 
 

 
 

 
 
Figure 3 Top. Aster image of 10 May 2002 (RGB-b321) with 

a 5km grid showing sandy terraces left and 
right of the lower-Limpopo vally, 
Mozambique 

Figure 3 Bottom. As above, with 10 SPOT-Vegetation NDVI 
classes displayed on top. 
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Figure 4.   Legend of Figure 3: 7 NDVI profile classes. 
 
4.3 Limpopo Valley, Mozambique: Flood Mapping  
 
As in section 4.2 the Limpopo Valley is the area of interest. 
During the later part of the 20th century, the lower-floodplain of 
the Limpopo River is converted into an irrigation scheme 
demarcated by dams, irrigation structures and a regular pattern 
of large fields. 
 
On the 15th of February 2000, after exceptional heavy rains and 
the passage of tropical cyclone 11S, main barriers upstream of 
the Limpopo river (located in S-Africa) had to be opened. This 
caused water levels to riserapidly, lower dams to break (Figure 
5 top) and an overnight major flood to occur in the lower-
floodplain of the Limpopo river (Figure 5). The SAR image 
shows clearly the extent of inundated areas one month after the 
major floods. Surplus water was only slowly drained to the sea 
due to the barrier of sand dunes aligning the coast (funnel 
effect). 
 
Unsupervised stratification of stacked SPOT-Vegetation NDVI 
images covering three years and a larger extent as shown 
resulted in 6 NDVI based map units (Figure 5). The NDVI-
profiles (Figure 6) were clearly classified on the basis of land-
cover anomalies that occurred immediately after the floods. 
Land cover changed dramatically and recovered very gradually 
pending on the duration of inundation by area.  
 
Local knowledge learned that unit 12 (dark brown) was 
inundated for a very short time-span (only days); its NDVI-
profile shows only a minor dip. Units 15 and 7 were submerged 
for around one month (as confirmed by the SAR image); their 
NDVI-profiles showed considerable dips that recovered to 
normal after about 2-months. Units 10, 6 and 4 however 
remained for 1 to 3 months fully inundated (with standing water; 
Figure 6). Their NDVI-values dropped and remained below 
zero for months. Afterwards, the NDVI-profile of unit-6 shows 
a very strong vegetation growth beyond its normal density. It 
behaved like a swamp with excessive vegetation growth. This 
area is in reality not part of the irrigation scheme but consists of 
low-lying areas used for seasonal grazing. Unit 4 consists in 
reality of low-lying back-swamps where local farmers try to 
grow some sugarcane without any management. These 
remained like ‘lakes’ for 3 months. Only after 6 months their 
NDVI-values reached values of other classes.  
 

Six months after the floods, due to severe inundation suffered, 
the whole area, but especially units 6 and 4, skipped the drop in 
NDVI as is normal during dry seasons (Jul-Nov). Clearly soils 
remained water-saturated well beyond the period required to 
drain all surplus standing water. 
 
Use of NDVI-images to capture the variability in time of 
inundation as occurs in an area to augment other land use and 
land cover maps and/or to differentiate further responses to 
inundation, proves thus possible and meaningful. This applies to 
disaster areas but also to regular wetlands. Besides information 
that can be extracted using the temporal dimension, that 
dimension can thus also be used to delineate gradients of 
inundation and of related cover-types. 
 

 

 
 

 
Figure 5.   A main barrier dam north of Chokwe after the 

February 2000 floods, and below an Aster image with 6 SPOT-
Vegetation NDVI classes displayed on top. As inset: a SAR 

image of 16 March 2000. 
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Figure 6.   The legend of Fig.5, consisting of 6 NDVI profile 

classes. 
 
4.4 Garmsar, Iran: Mapping Irrigation Water Supply 
 
 
 
Garmsar, Iran, consists of an alluvial fan where 30 to 40 years 
ago an irrigation scheme was established (Figure 7 top). Use of 
a single Aster image and of data on followed crop calendars 
obtained through interviews with farmers, resulted in a detailed 
land-cover map as shown in Figure 7 (bottom). Using land-
cover as of July 2001, a number of followed crop calendars 
could be differentiated, but only at the level of major land-use 
complexes. Data revealed that farmers exchange a fallow-year 
with a cropping year during which different crop-sequences are 
followed. Sharing the limited irrigation water rights between 
distinct canal command areas causes these changes. The 
presented land-cover map reflects land-cover at one point in 
time. It shows (see e.g. the fallow areas) the extent of distinct 
canal command areas. It could not be used to map agricultural 
land-use across years. For that purpose, the cover-map has a too 
limited validity in time. 
 
 
 
 

 

 
 
 
 
Figure 7 Top. Garmsar: 3D display of an Aster image (RGB-

b321) of 30 July 2001 (based on the SRTD 
90m DEM), with a topo-sheet at “zero” 
level and with contour lines,  

Figure 7 Bottom. Aster image classification based on 43 
interview data sets obtained from farmers. 

 
 

807



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

 

 
 
Figure 8 Top. 30 Unsupervised SPOT-Vegetation NDVI 

classes of Iran; Garmsar is marked by the 
circle,  

Figure 8 Bottom. All generated annually averaged SPOT-
Vegetation NDVI profiles (DN-values by 
April-March period). 

 
Use of multi-year stacked SPOT-Vegetation NDVI data for Iran 
(Figure 8), led to an NDVI-map that differentiated 30 eco-
systems on the basis of their NDVI-profiles. Zooming-in to 
Garmsar (Figures 9 and 10), showed that out of the 30 classes, 6 
occurred in and around the irrigation scheme. The units showed 
particular spatial patterns.  Units 22, 17 and 14 are aligned 
parallel to the irrigation scheme; unit 22 consists of a saline 
seepage zone (Figure 7 top) where limited vegetation grows 
(halophytes) from May to July (Figure 9 bottom). Unit 17 is 
intermediate between 22 and 14 where unit 17 consists of pure 
desert. Within the irrigation scheme units 19, 27 and 23 occur. 
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Figure 9 Top. Garmsar: Zoomed-in map based on Figure 8 

showing 6 unsupervised SPOT-Vegetation 
NDVI classes,  

Figure 9 Bottom. The 6 generated annually averaged SPOT-
Vegetation NDVI profiles. 

 
The centrally located unit (2 areas of unit 19; Figure 9 top), 
receives irrigation water early (already in Jan-March), and 
shows strong vegetation growth afterwards. Around it, areas of 
unit 27 are located. They show a delayed vegetation growth 
(Mar-May) of equal vigor; it clearly receives water after the 
primary areas are supplied sufficiently. The remaining areas of 
the irrigation scheme (unit 23) follow the NDVI-profile of unit 
27, but only up to about half of the maximum shown NDVI 
values; it clearly suffers from water-shortage and on a 1 sq-km 
area basis, many fields must have remained fallow while others 
received what was available. The shown features were not 
reflected in the land-cover map derived from the Aster image 
(Figure 7 bottom).  
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Figure 10.   Impression of the Garmsar area. 
 
 
Clearly use of multi-year hyper-temporal NDVI images 
revealed the ‘larger’ picture as occurs in the irrigation scheme 
studied. Annual variation was partly nullified by using images 
across years and partly by using a reduced scale. The validity 
and quality of content of the NDVI-map far exceeds the detailed 
Aster interpretation. In retrospect, organizing the fieldwork 
should have been based on the prepared NDVI map (through 
stratified sampling). Use of additional (multi-year) Aster images 
taken around March is suggested in case a better resolution map 
is required; use of a canal-command area map could have 
delivered additional value. 
 
 

4.5 Nizamabad, India: Mapping and Monitoring Land Use 
 

Nizamabad district, located in Hyderabad province, India, 
features an irrigation scheme used for rice cultivation, dry-land 
cropping on poor sandy soils and some cotton cultivation on 
vertisols that retain soil moisture beyond the wet monsoon 
period. Also degraded areas occur and hills covered with forests. 
The study area consisted of 6 Mandals (sub-districts). 
 
Stacked Spot-Vegetation NDVI images covering 1998-2002 
were subjected to the ISODATA unsupervised classification 
routine of Erdas-Imagine. Almost similar annual averaged 
NDVI-profiles were combined in order to reduce the number of 
classes and to remove inter-annual differences within the time-
period studied. Figure 11 shows the resulting land unit map plus 
its legend. Further grouping of the classes was made on the 
basis of unit location and major shape of the NDVI-profiles 
concerned (see areas A, B, and C in Figure 11). 
 
Using published crop-statistics by Mandal (in ha) and the area 
of each NDVI-class per Mandal (also in ha; see Table 1), by 
season (Kharif or summer and Rabi or winter) and crop, the 
following equation was estimated through step-wise multiple 
regression:  
 
 

[Cropped Area by Mandal (ha) = f (Area NDVI-Class by Mandal (ha))] 
 
 
No constant was used and regression coefficients were 
constraint to the 0 to 1 range. 
 
Table 2 reports the results, e.g. [ Cotton Area during summer 
(ha) = 0.148 for NDVI-Class (‘7,8’,9) ], denoting that all 1 km-
sq pixels of NDVI class ‘7,8’ or 9 were estimated to represent a 
fraction of 14.8% of cotton during summer. The variability 
explained by all the 13 derived regression equations varied 
between 78 and 95%. In spite of the low available degrees of 
freedom (number of Mandals), all equations delivered 
significant coefficients (relations with NDVI-classes) and a high 
explanatory power (Adjusted-R2). This success can only be 
explained if the derived NDVI-curves are strongly related to 
followed crop-calendars in the area and if those crop-calendars 
are sufficiently distinct. In area-A rice was dominant, in area-B 
pulses and groundnuts were found besides some maize and 
sugarcane, and in area-C pulses and sorghum were found 
besides some cotton. In degraded areas (unit ‘3,4,5,6’) only 
sorghum was grown during summer on 25% of the area. As 
anticipated, the derived map consists of land-use complexes, 
since it has a scale of 1:250.000 at best. 
 
After obtaining map units that clearly demarcate areas put to a 
known and distinct mix of land-uses, monitoring at unit level 
becomes like monitoring of pre-specified areas and land uses 
(cropping systems). Figure 12 provides an example. Area-A, 
representing NDVI-profiles ’13,15’, 17 and 18 is monitored 
during summer (49% irrigated rice) for 4 consecutive years. 
Within area-A the crop intensity (ratio of cropped to fallow 
fields) of unit-18 is high, of unit-17 average, and of unit ’13,15’ 
low. During the 3rd year, the disparity between the three units in 
crop-intensities increases, and during the 4th year all units 
showed a distinct drop in crop intensities. Local knowledge 
revealed that during the 2001 monsoon, India suffered from 
major droughts and farmers were faced with load shedding 
(only a few hours of electricity supply per day). Because most 
paddy fields (rice) are irrigated by submerged pumps run by 
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electricity, farmers decided to increase the area kept fallow so 
that sufficient water could be pumped for fields cropped. Yields 
per hectare may not have dropped, but the total production for 
the concerned districts did. 
 
The data-mining exercise, converting published crop-area 
statistics to a land-use map proved feasible through the 
intermediate use of hyper-temporal NDVI images. The quality 
to map different cropped areas and the explanatory power of the 
equations that estimate the fractions cropped by sq-km proved 
very robust. Using the delineated areas for monitoring will 
likely be used for future generations of monitoring methods. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11.   1-km2 NDVI-unit map with 11 NDVI-profiles as 
preliminary legend. Area A: Classes ’13, 15’, 17 and 18 (brown, 

red, orange), Area B: Class ’10, 12, 14’ (yellow), Area C: 
Classes ‘7, 8’ and 9 (light and dark purple). 
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KHARIF Bichkunda Birkoor Jukkal Kotagir Madnoor Pitlam Total(ha)
Irrig.Rice 3,255 6,919 793 7,325 1,282 3,200 22,774
Sorghum 718 4 2,305 1 371 564 3,963

Maize 12 27 52 7 0 384 482
Pulses 5,986 93 6,609 1,312 9,268 5,853 29,122

Sugarcane 230 372 4 951 64 774 2,395
Cotton 628 11 2,524 313 2,910 474 6,860

Other Crops 218 16 518 151 150 50 1,103
Total(ha) 11,047 7,442 12,805 10,060 14045 11,299 66,699

 
RABI Bichkunda Birkoor Jukkal Kotagir Madnoor Pitlam Total(ha)

Irrig.Rice 651 3,995 247 4,153 335 2,100 11,481
Sorghum 2,462 16 3,035 1,181 6,987 1,773 15,454

Millet 0 4 0 34 0 0 38
Maize 6 10 0 0 0 61 77
Pulses 885 4 368 243 1,001 323 2,823

Sugarcane 245 244 0 803 0 668 1,960
Groundnut 657 820 469 1,205 658 2,133 5,942

Other Crops 1,153 187 1,771 337 1,966 433 5,847
Total(ha) 6,059 5,280 5,890 7,956 10,947 7,490 43,622

 
NDVI-Profile 

Class* Bichkunda Birkoor Jukkal Kotagir Madnoor Pitlam Total(km2)
1,2  0 1 0 1 0 0 2 
11  16 18 2 16 28 2 81 

3,4,5,6  33 0 91 0 10 3 136 
19,20  4 34 9 3 0 0 50 

16  3 8 6 3 0 15 34 
10,12,14  71 2 17 3 1 140 234 

7,8  112 0 105 13 173 4 407 
9  8 1 5 6 10 0 29 

13,15  7 15 1 30 0 38 91 
17  0 109 0 102 0 1 212 
18  0 12 0 28 0 0 40 

Total (km2) 254 200 237 204 222 202 1,318 
  

* Product of the image classification step discussed under ‘methods’. 
 

Table 1.   Crop statistics for 6 Mandals; three-year averages (1998/99-2000/01; ha), and total area of  
NDVI-profile classes in each Mandal (km2) 

 
 

  NDVI-profile Class Groups 
  Area B: Area C: Area A:
KHARIF Adj.R2 3,4,5,6 10,12,14 ‘7,8’,9 ‘13,15’,17,18 Area (ha) 

Irrig.Rice 88%      49.6% 22,774  
Sorghum 95% 25.2%       3,963 

Maize 78%   2.2%     482 
Pulses 95%   34.0% 46.6%   29,122 

Sugarcane 89%   3.9%   4.6% 2,395 
Cotton 82%     14.8%   6,860 

Other crops 89% 5.9%       1,103 
      

RABI Adj.R2 3,4,5,6 10,12,14 ‘7,8’,9 ‘13,15’,17,18 Area (ha) 
Irrig.Rice 95%       28.4% 11,481 
Sorghum 89%     32.2%   15,454 

Pulses 87%     5.6%   2,823 
Sugarcane 85%   3.6%   3.6% 1,960 

Groundnut 88%   12.6%  6.7% 5,942 
Other crops 92%     11.7%   5,847 

Area (km2) 136 234 436 343
  

Note: the Adjusted R2, when regression through the origin is forced, cannot 
 be compared to R2s for models that include an intercept. 

 
Table 2.   Results of the multiple stepwise linear regression analysis. Reported cropped areas are estimated by the extent 

of NDVI-profile classes. Coefficients are reported as percentages that are confined to the 0-100% range (0 to 1); 
each was significance at 5% 
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Figure 12.   Monitoring land-use modifications: Monthly 
rainfall (plus seasonal totals) is compared to NDVI-profiles of 

irrigated areas where during Rabi the dominant crop is rice. 
 
4.6 Andalucía, Spain: Generating Crop Maps 
 
Like in paragraph 4.5, step-wise multiple regression is used to 
convert published crop area statistics to a land unit map. This 
exercise is included (i) to focus on optimizing the number of 
classes generated through the unsupervised ISODATA 
clustering method of Erdas, and (ii) to evaluate the product on 
the basis of extensive fieldwork data generated by the 
Andalucían Government. 
 
Figure 13 shows both the location of Andalucía in Spain as the 
location of agricultural areas within Andalucía. The latter 
product was generated from the Corine 2000 land cover map. 
Using the ISODATA clustering method of Erdas, 9 years of 
stacked NDVI images were classified to a range of pre-set 
classes (10 to 100; Figure 14). Using the generated statistics by 
classification run, divergence statistics were extracted expressed 
in ‘separability values’. The minimum separability denotes the 
similarity between the two most similar classes, and the average 
separability denotes the similarity amongst all classes; both 
should be as high as possible while the number of classes 
should remain limited. Figure 14 is used to evaluate for which 
pre-set number of classes a natural balance is established, i.e. it 
helps decide on the number of meaningful classes that can be 
differentiated for the studied dataset on the basis of information 
hidden in it. The figure reveals clearly the reason why the 
choice was made for the 45 classes map. Figure 15 shows the 45 
classes map for agricultural areas only (ref. figure 13). 
 
Using published crop-statistics by municipality (in ha; for 2397 
municipalities) and the area of each NDVI-class per 
municipality (also in ha), the following equation was estimated 
through step-wise multiple regression for rainfed wheat:  
 
[Cropped Area by Municip.(ha) = f (Area NDVI-Class by Municip.(ha))] 

 
No constant was used and regression coefficients were 
constraint to the 0 to 1 range.  
 
Table 3 reports the established equation. It states by NDVI-class 
the fraction per sq-km cropped to rainfed wheat. 8 NDVI-
classes represented > 10% rainfed wheat per sq-km (upto 47%) 
and 7 NDVI-classes represented < 10% rainfed wheat per sq-km. 
All derived coefficients were highly significant and the 
explained variability was 98.8% (Adjusted-R2). 
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Figure 13.   Agricultural Areas in Andalucía, Spain, according 

to the Corine Land Cover 2000 map. 
 
 

 
 

Figure 14.   Divergence Statistics (Avg. and Min.) to identify 
the optimal number of classes (=45) to run an unsupervised 

ISODATA stratification of 9 years decadal SPOT-Vegetation 
NDVI images (April’98-06; 324 stacked layers). 
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Figure 15.   45 SPOT-Vegetation NDVI Classes of the 

Agricultural Areas of Andalucía, Spain 
 
Using the regression equation and the NDVI-classes map, a 
rainfed wheat map is made (Figure 16). The mono-thematic 
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map shows within the agricultural areas of Andalucía, 
independent of municipality boundaries, where rainfed wheat is 
grown, as fractions of 1 sq-km areas. Figure 17 shows the 
NDVI-profiles of NDVI-classes that represent > 10% rainfed 
wheat per sq-km. Especially profiles ‘18,19’ and 16 relate to 
wheat, the other three profiles include other land cover types as 
can be seen by their relatively high NDVI-values during the 
January-March period. Besides these differences, the vigor of 
the class ’19,20’ is better than class 16, while both represent 
about the same fractions of rainfed wheat per sq-km (47 and 
42%); this points to a difference in performance at field-level. 
 
Figure 18 shows the location of 1451 700x700m segments of 
which about half are annually visited by the Government of 
Andalucía to survey by field the type of crop grown. From the 
2001-05 dataset, by year, the actual fraction cropped to rainfed 
wheat within each segment could be extracted. After linking the 
centroids of each segment (with their attribute data) to the 
NDVI map, validation and variability data could be generated. 
The count of segments by NDVI-class was used as a weight 
factor to complete the validation process. The regression 
equation was forced through the origin. 
 
 

NDVI Class No Coefficients t Sig.
18 0.468 55.1 0.000
19 0.466 25.2 0.000
16 0.420 58.1 0.000
23 0.335 53.7 0.000
20 0.287 23.1 0.000
36 0.268 8.7 0.000
9 0.266 24.0 0.000
31 0.118 6.4 0.000
7 0.093 8.0 0.000
24 0.084 2.9 0.004
5 0.081 13.2 0.000
35 0.079 5.7 0.000
22 0.070 5.3 0.000
27 0.064 4.9 0.000
10 0.024 3.6 0.000  

 
Table 3.   Results of Step-Wise Forward Multiple Regression to 

Estimate Fractions of Rainfed Wheat per Sq-km 
(Ad justed-R2 of 0.988) 
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Figure 16.   Crop-map with a 50km grid for Rainfed Wheat in 

fractions per sq-km as located within Agricultural Areas of 
Andalucia, Spain. 

60

80

100

120

140

160

180

Ja
n

M
ar

M
ay

Ju
ly

S
ep

D
N

 V
al

ue
 o

f N
D

VI

Class 18,19     = 47%
Class 16          = 42%
Class 23          = 33%
Class 9,20,36 = 28%
Class 31          = 12%

 
 

Figure 17.   SPOT-Vegetation NDVI Profiles for Classes having 
> 10% Rainfed Wheat. 

 

 
 

Figure 18.   Location of the Validation Data Set consisting of 
700x700m segments surveyed from 2001-05. 

 
Figure 19 shows that the validation explained 45% of the total 
variability and the regression line is close to the 1:1 ratio line. 
The variability between segments of a single NDVI-class 
remained high (see box-whiskers), indicating that the map of 
Figure 16 still has a considerable amount of generalisation. 
Variability between units seems optimized though still 
considerable variability remains within units. 
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Figure 19.   Validation of the NDVI-based Rainfed Wheat Map 
using the Fractions of Rainfed Wheat of 3272 Segments (2001-
05 dataset). Presented are box-whiskers by NDVI-Class and a 

2nd polynomial regression line. 
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