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ABSTRACT: 
 
The integrated application of multi-source and multi-temporal remote sensing data is the trend of remote sensing application 
research, and it is also the practical need to solve the inversion problem of remote sensing. In this paper, a method is developed to 
retrieve canopy biophysical variables using multi-temporal remote sensing data. The inherent change rules of biophysical variables 
are introduced into the retrieval methods by coupling the radiative transfer model with land process model to simulate time series 
surface reflectances. A cost function is constructed to compare the reflectances simulated by the coupled model with time series 
reflectances measured by sensors and the canopy biophysical variables with the available prior information. And an optimization 
method is used to minimize the cost function by adjusting the values of input canopy biophysical variables such as the temporal 
behaviour of the reflectances simulated reaches the best agreement with the multi-temporal reflectances measured. Retrieval of leaf 
area index from MODIS surface reflectance data (MOD09) at the Bondville site was performed to validate this method. The 
experimental results shows that the use of multi-temporal remote sensing data can significantly improve estimation of canopy 
biophysical variables. 
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1. INTRODUCTION 

Remote sensing data have been widely used to estimate the 
canopy biophysical variables which are applied to large area 
water and carbon cycle simulation, climatic modelling and 
global change research. Therefore, it is very important to 
precisely estimate these variables from remote sensing data at 
the regional or global scale. Currently, there are many methods 
to estimate biophysical variables from remote sensing data 
(Liang, 2004; Weiss, 1999). And they can be roughly divided 
into following classes: by statistical relationship between LAI 
and spectral vegetation indices, by physical model inversion 
and by other nonparametric methods. These methods have their 
own advantage and disadvantage. Since the model inversion 
methods is physically based and can adjust to a wide range of 
situation, radiative transfer models are more and more used in 
the inverse mode to estimate the canopy biophysical variables 
(Kuusk, 1991; Jacquemoud, 1993). 
 
It is well known that the inverse problem is by nature an ill-
posed problem mainly because of the not unique solution and 
the measurement and model uncertainties (Combal, 2003). 
Currently, there are two sorts of ways to solve the ill-posed 
problem. One is dependent on some kinds of hypothetical 
condition, which may reduce the accuracy of remote sensing 
data products retrieved by radiative transfer model, and the 
other is to use the prior information of biophysical variables in 
model inversion. 
 
With the development of remote sensing technique, many new 
types of sensors have been developed, and there are large 
numbers of remote sensing data with different temporal, spatial 

and spectral resolution obtained from space-borne or air-borne 
sensors. The integrated application of multi-source, multi- 
temporal remote sensing data is the trend of remote sensing 
application research, and it is also the practical need to solve the 
inversion problem of remote sensing. Noted that most of the 
biophysical variables, such as LAI, are time-dependent and 
possess inherent change rules along with time which are often 
represented by process models such as crop growth models, it is 
an important way for us to introduce the inherent change rules 
of biophysical variables into the retrieval methods to add the 
amount of information needed to retrieve biophysical variables 
and improve the accuracy of remote sensing products. In this 
paper, we will present our research on the issue of integrating 
multi-temporal remote sensing data to retrieve biophysical 
variables. 
 
Radiative transfer model are coupled with land process model 
to simulate time series surface reflectances. And a cost function 
is constructed, according to the posterior probability formula 
defined by Tarantola, to compare the reflectances simulated by 
the coupled model with time series reflectances measured by 
sensors. And an optimization method is used to minimize the 
cost function by adjusting the values of input canopy 
biophysical variables such as the temporal behaviour of the 
reflectances simulated reaches the best agreement with the 
multi-temporal reflectances measured. By introducing the 
physical constraints from the land surface model, the method 
can integrate multi-temporal remote sensing data to retrieve 
biophysical variables. 
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To validate this method, we used double logistic model to 
describe the temporal LAI profile of agriculture crops, and 
Kuusk model are coupled with the empirical statistical model to 
simulate the surface reflectance. The experimental results show 
that the use of multi-temporal remote sensing data can 
significantly improve estimation of canopy biophysical 
variables. 
 
 

2. DATA 

Retrieval of leaf area index from MODIS surface reflectance 
data (MOD09) at the Bondville site was performed to validate 
this method. The Bondville site, located at (40.0061000, -
88.291867), is an agricultural site in the Mid-western part of the 
United States, near Champaign, Illinois. The site is part of the 
network of eddy covariance flux towers associated with 
AmeriFlux and the network of Core Validation Sites associated 
with the MODIS Land Team. It was established in 1996, with 
the long-term goal of obtaining the necessary in situ 
information to test and improve the representation of land-
surface processes in soil-vegetative-atmosphere transfer (SVAT) 
models. The field was continuous no-till with alternating years 
of soybean and maize crops (Meyers, 2004). In 2001, the crop 
was maize with the maximum leaf area of 4.38 and an 
associated height of 2.4m. And there are time series of field 
measurements of LAI, which can be used to compare with the 
retrieved LAI. 
 
To test the new methods, the input data include multi-year 
MODIS LAI product (MOD15A2) and time series of MODIS 
reflectance product (MOD09A1) in 2001. All these products are 
from Collection 4. And a 49km2 region around the tower or 
field site is extracted, so there are 7×7 subsets from MODIS 
LAI product with the spatial resolution of 1km, 14×14 subsets 
from MODIS reflectance product with the spatial resolution of 
500m. 
 
 

3. METHOD 

3.1 Retrieval method using multi-temporal data 

The problem of parameter estimation from remote sensing data 
is underestimated, and Tarantola gives the theory to resolve it 
(Tarantola, 2004). Let  be the model space, and D  the data 
space. Tarantola defined the posterior probability density in the 
space of  as follows. 
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where  is a normalization constant,  and  are vectors 
in model space and data space respectively,  is the 
prior probability density in the space of , which 
represents the prior information of observation variables and 
model parameters,  is the theoretical probability 
density which constructs the physical correlations between the 
observation variables and model parameters, and 
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, μ d m  is the homogeneous probability density of 

observation variables and model parameters. Then, the 

posteriori information in the model space is given by the 
marginal probability density 
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Suppose the prior information of observation variables and 
model parameters is independent, equation (2) is then 
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Further assume that model parameters, observation variables 
and the a priori information on the model parameters are 
Gaussian, then we can get the cost function shown in equation 
(4) that has been widely used in the parameter retrieval from 
remote sensing data. 
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where  is the forward model,  is the covariance 
matrix representing the measurement uncertainties and model 
uncertainties,  is the covariance matrix representing the 
uncertainties of a priori information on the model parameters. 
The retrieval of canopy biophysical variables from remote 
sensing date is to minimize the equation (4) to find the model 
parameters , which possess the maximum a posterior 
probability. However, the equation is constructed just using the 
individual pixel measurement and a priori information on the 
model parameters. 
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Noted that most of the biophysical variables, such as LAI, are 
time-dependent and possess inherent change rules along with 
time which are often represented by process models such as 
crop growth models, we made an attempt to retrieve canopy 
biophysical variables using the multi-temporal remote sensing 
data by introducing the inherent change rules of biophysical 
variables into the retrieval methods. 
The observational information of pixel  
( , )i j  at times t+1 and t can be integrated to estimate canopy 
biophysical variables of pixel ( ,  at time t. Thus, the data 
space is extended as D D , in which each vector 

is
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in the model space can be expressed as follow. 
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Assume the observational data of pixel  at times t+1 and t 
are independent each other. Then, equation (5) can be extended 
as 

( , )i j

 

1000



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

 

 
,

,
,

1
,

1
, 1

,

, , ,D
, , ,

,D

1 1
, , ,D1

, 1
,D

( ) ( | )
( ) ( )

( )

( ) ( | )
                                  

( )

t
i j

t
i j t

i j

t
i j

t
i j t

i j

t t t
i j i j i jt t t

i j i j i j t
i j

t t t
i j i j i jt

i j t
i j

k d

d

ρ θ
σ ρ

μ

ρ θ

μ

+

+

+

+ +

+
+

= ∫

∫

M M D

D

d d m
m m d

d

d d m
d

d

   (6) 

 
 
where the first integral term, similar to the integral term in 
equation (3), represents the parameter retrieval constraint from 
the observational data at time t, and the second integral terms 
represent parameter retrieval constraints from the observational 
data at time t+1. 
Assume that model parameters, observation variables and the a 
priori information on the model parameters are Gaussian, then, 
the first integral term in equation (6) can be written analogously 
as follow. 
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And the second integral term is 
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where  is a transition probability that the 
parameter is 1  at time t+1 given the parameter was  at 
time t and is related to process models which describe the 
relationship between  and . 
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Apply logarithm to both sides of the equation (9), then 
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Equation (10) is the cost function to retrieve the canopy 
biophysical variables at pixel ( ,  using the observational 
information at time t and time t+1. Similar method can be 
applied to derive the cost function to retrieve the canopy 

biophysical variables at time t using the observational 
information at times t-N, … , t-1, t , t+1,…, t+N together. 

)i j

 
3.2 Radiative transfer model 

Radiative transfer models describe the relationship between 
canopy characteristics and reflectance, and many of them have 
been developed to obtain land surface biophysical parameters 
(Kuusk, 1994; Jacquemoud, 1992; Liang, 1993). In our 
parameter retrieval, the Markov chain reflectance model 
(MCRM) developed by Kuusk (Kuusk, 1995; Kuusk, 2001) is 
chosen as the forward model to simulate the canopy reflectance. 
This model incorporates the Markov properties of stand 
geometry into an analytical multispectral canopy reflectance 
model, which makes the model more flexible and more 
applicable. The MCRM can calculate the angular distribution of 
the canopy reflectance for a given solar direction from 400 to 
2500 nm. The inputs of the forward MCRM are summarized in 
Table 1. 
 
 

Parameters Value range Unit 
Solar zenith angle 0~90 Degree
Relative azimuth angle 0~180 Degree
Viewing zenith angle 0~90 Degree
Angstrom turbidity factor 0.1~0.5  
Ratio of leaf dimension and canopy 
height 

0.02~0.4  

*Markov parameter 0.4~1.0  
Factor for refraction index 0.7~1.2  
Eccentricity of the leaf angle 
distribution 

0.0~4.5 Degree

Mean leaf angle of the elliptical 
LAD 

0.0~90.0 Degree

Leaf specific weight 100 g/m2 
Chlorophyll AB content 0.3~0.8 % of 

SLW 
Leaf water content 100~200 % of 

SLW 
Leaf dry matter content 95~100 % of 

SLW 
Leaf structure parameter 1.0~3.0  
*Weight of the first Price function 0.05~0.4  
*Weight of the second Price 
function 

-0.1~0.1  

Weight of the third Price function -0.05~0.05  
Weight of the forth Price function -0.05~0.05  
*Leaf area index 0~10 m2/m2 

  * free parameters 
 

Table 1.  The parameters needed to run the MCRM 
 
3.3 Process model 

Fisher (Fisher, 1994(a); Fisher, 1994(b)) used an empirical 
statistical model to describe the temporal NDVI profile of 
agriculture crops. The model is a double logistic function to 
describe the NDVI profile. In our study, the double logistic 
model, shown in formula (11), is used to describe the seasonal 
LAI trajectory. 
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where t is the time variable representing the day of the year, and 
January 1 is set zero, av is related to the asymptotic value of 
LAI, c and d denote the slopes at the first and second inflection 
points, p and q are the date of these two points, and vb and ve 
are the LAI values at the beginning and the end of the growing 
season 
. 
The averages of MODIS LAI within the site area are fit to 
determine the parameters of double logistic function which is 
used as the process model in our method to retrieve LAI using 
multi-temporal remote sensing data. Figure 2 shows the 
averages of MODIS LAI at the Bondville site within a 49km2 
region around the tower or field site. On days 169 and 177, 
there are no LAI values over the region due to instrument 
problems. And the fitted double logistic model is also shown in 
Figure 1. Obviously, the double logistic function can effectively 
describe the LAI profiles for these vegetation types. 
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Figure 1.  The averages of MODIS LAI at the Bondville site 
together with the fitted double logistic model 

 
 

4. EXPERIMENTAL RESULTS 

In order to test the above algorithm, the MODIS surface 
reflectance data (MOD09) at the Bondville site are used to 
retrieve LAI. The results are also compared with LAI retrieved 
the basic method which just uses the individual pixel 
measurement. Figure 2 demonstrates the retrieved LAI time 
series for crops. The LAI time series retrieved by the basic 
method are shown in Figure 2(a). And Figure 2(b), 2(c) and 2(d) 
demonstrate the LAI time series retrieved by the new method 
by integrating three, five and seven continuous MODIS surface 
reflectance data respectively. It is clear that the LAI values at 
this flux site have markedly underestimated the field 
measurements in the crop growing season. And there are 
fluctuations, especially in the crop growing season, because it is 
difficult to acquire cloud-free image due to the high amount of 
moisture content in the atmosphere during the growing season. 
By comparison, the temporally integrated inversion method can 
remove noise shown as abrupt rises or drops, especially when 
more MODIS surface reflectance data are integrated. Moreover, 
the accuracy of the LAI by the new method has been 
significantly improved over the LAI retrieved by the basic 
method compared to the field measured LAI data. 
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Figure 2.  Retrieved LAI time series using multi-temporal 
remote sensing data 

 
 

5. CONCLUSION 

A method to retrieve LAI using multi-temporal remote sensing 
data was designed to produce spatially and temporally 
continuous LAI products with relatively higher quality. The 
algorithm integrates the inherent change rules of biophysical 
variables into the retrieval methods to improve the temporal 
consistency of the retrieved LAI by coupling the radiative 
transfer model with the empirical statistical model. Results as 
described in this paper have shown that the new algorithm is 
able to produce more continuous LAI product, and the 
validation of the retrieved LAI against the field measurements 
shows that the use of multi-temporal remote sensing data can 
significantly improve the accuracy of the parameter retrieval. 
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