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ABSTRACT: 
 
Sub-pixel matching is one of the key components for image registration and image fusion.  Ideally, image matching should allow for 
offsets in the target image, and for scaling and rotation.  Offsets allow for sub-pixel shifts in the two images, while scaling is 
necessary when matching images from different sensors or images taken from different distances using the same camera.  Rotation 
allows for the matching between rectified and un-rectified images or images taken from different viewpoints. 
 
This paper presents a novel matching method called gradient cross correlation, which has been derived from the well-known 
normalised cross correlation coefficient formulation.  In experimental evaluations, the method has been applied to image matching 
from various satellites (Landsat MSS and TM, QuickBird and other sensors).  For comparison, an alternative method for estimating 
sub-pixel shifts and scaling and orientation parameters was applied – the least squares matching method.  The mathematical details 
of the gradient cross correlation method, the experimental results, and some aspects of how to implement the approach in practice 
will be described and discussed in this paper. 
 
Various models of the gradient cross correlation have been derived from the relationships between the affine transformation 
parameters.  A hierarchy of relationships between the affine transformation parameters can be specified in practice as follows: 
Model-I: different scale, different rotation; IIA: different scale, common rotation; IIB: common scale, different rotation; III: common 
scale, common rotation; and IV: fixed scale, fixed rotation. 
 
These models lead to a more natural interpretation of the resulting parameters, especially when matching images which have 
considerable scaling and rotation differences.  The particular formulation of the affine transformation adopted leads to useful insights 
into the image matching.  The experiments showed that Model-IV is the worst model for matching all kind of points.  It is essential 
to choose an appropriate geometric transformation depending on different image characteristics and types of points. 
 
The gradient cross correlation method and the least squares matching method with an offset and gain are equivalent from a 
theoretical point of view.  Both methods can achieve sub-pixel matching accuracy and, when appropriate models are chosen, they 
give very similar results.  However, from an implementation point of view, the gradient cross correlation method is superior to the 
least squares matching method because radiometric correction and geometric correction can be achieved using only scaling and 
rotation parameters.  Furthermore, incorporating a line search strategy with either the gradient cross correlation method or the least 
squares matching method shows that improved cross correlation coefficients may be achieved within a few extra iterations. 
 
Experiments were conducted to compare methods applied to a range of images.  The matching correlation results from the gradient 
cross correlation are nearly identical (both the matching results and the number of iterations) to that of the least squares matching.  
However, the gradient cross correlation method combines radiometric correction and geometric correction into a single step, which 
makes its parameter estimation and practical computation implementation simple.  Both the gradient cross correlation method and 
the least squares matching method require good initial approximations or a small pull-in range in order to find the minimisation 
points (1 to 2 pixels in average from our experience). 
 
For the matching of raw to rectified TM images, the scaling is about 0.83 (25m/30m) and is the same for line and pixel, while the 
angle of rotation is common for line and pixel, at around 10°.  For the matching of raw MSS to rectified TM images, the angle of 
rotation is common for line and pixel, again at around 10°, while the scaling is different for line and pixel, agreeing closely with the 
expected values of 0.44 (25m/57m) and 0.32 (25m/79m), respectively.  Reasonably good results were also obtained when points 
were matched from QuickBird to SPOT and to TM, given the huge pixel resolution change (more than 40 times between QuickBird 
and TM).   For matching of a stereo pair of high-resolution images, the flexibility of varying the scaling and/or orientation gives a 
better matching correlation.  It could be valuable to use bootstrap procedures to establish the typical range of variation for the 
matching correlation for Model-I against which to judge the adequacy of the simpler models. 
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Limited experience of experimental DEM generation using the gradient cross correlation with line search suggests that incorporating 
a quadratic line search with Model-I often improves the convergence and leads to a higher matching correlation, but requires some 
additional computing time.  Given that editing a DEM requires considerable operator intervention, it may be desirable to ensure the 
best possible matching, at the expense of increased computing time. 
 
 

1. INTRODUCTION 

Matching pixels in two images is a fundamental operation in 
image rectification and DEM generation. 
 
The standard approach for area matching for two images to the 
nearest pixel maximises the cross-correlation coefficient when 
the second image is shifted systematically relative to the first 
over a regular grid (Ackermann, 1984). 
 
Ideally, the matching should allow for offsets in the target 
image, and scaling and rotation.  Offsets allow for sub-pixel 
shifts in the two images, while scaling is necessary when 
matching images from different sensors (e.g. Landsat TM, 
Landsat MSS) and rotation allows the matching between 
rectified and un-rectified images. 
 
The need to carry out the correlation matching to sub-pixel 
accuracy lead to a number of authors considering so-called least 
squares matching, including Forstner, 1982; Ackermann, 1984; 
Gruen, 1985; Rosenholm; 1987; Norvelle, 1992 and Zhaltov 
and Sibiryakov, 1997. 
 
The essence of least squares matching is to determine offset, 
scaling and rotation parameters to produce interpolated grey-
level values for the second image which match as closely as 
possible the grey-level values for the first image.  This is 
achieved by choosing the parameters to minimise the sum of 
squared differences between the grey-level values for the first 
image and the interpolated grey-level values for the second 
image.  The parameters are estimated by iterative least squares 
after linearising by a standard Taylor expansion (Gruen, 1985).  
An affine transformation is usually adopted to determine the 
predicted line and pixel coordinates for the second image 
(Gruen, 1985; Rosenholm, 1987).  Rosenholm has also 
suggested including parameters to compensate for differences in 
the grey-level contrast between the two images. 
 
This paper gives details of an implementation of sub-pixel 
matching using the normalised cross-correlation coefficient 
formation as the objective function, and allowing for offsets, 
scaling and rotation.  The adoption of cross-correlation as the 
objective function automatically allows for a possible linear 
radiometric transformation between the two images.  The 
implementation uses first and second derivatives to estimate 
these parameters efficiently. 
  
Section 2 presents the details of the proposed gradient cross 
correlation method, including the gradient vector and the matrix 
of second derivatives.  Section 2 also outlines the calculation of 
the interpolated grey-level values for the second image and how 
to estimate parameters.  Section 3 shows the equivalence of 
least squares matching and gradient cross correlation.  Sections 
4 and 5 discuss the implementation and present some results.  
Finally Section 6 gives some conclusions and discussions and 
future work. 
 
For the sake of convenience, the following abbreviations are 
used to represent the different matching methods: GCC for 

gradient cross correlation and LSM for least squares cross 
matching. 
 
 

2. GRADIENT CROSS CORRELATION (GCC) 

The formulation of the cross correlation coefficient is as: 

2211

12

2

22

2

11

2211

)()(

))((

CC

C

gggg

gggg
R =

−−

−−
=

∑∑
∑    

where 
21,gg  denote the left and right image intensity values, 

21,gg  denote the left and right image average intensity values 

within the left and right patches, 
122211 ,, CCC  denote the left and 

right image variances and covariance, respectively. 
 
An affine transformation to calculate the line and pixel in the 
second image as a function of six parameters can be written as: 
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where 
00, yx  denote the pixel and line coordinates for the best 

whole-pixel match on the second image;  ba,  denote the pixel 

and line offset or shift;  SySx,  denote the pixel and line 

scaling;  RyRx,  denote the pixel and line rotation angles. 
 
The full model in (1) involves six parameters, which are usually 
re-parameterised as: 
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The formulation in (1) is adopted here, as it leads to a more 
natural interpretation of the resulting parameters, especially 
when matching un-rectified and rectified satellite images. 
 
In the approach adopted here, bilinear interpolation is used to 
calculate the grey values of the second image at the predicted 
line and pixel coordinates: 
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The first-order derivatives of the grey-level valueg with respect 
to image coordinates ( yx, ) and the gradients are given as 
follows: 
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The first-order derivatives of the grey-level valueg with respect 

to RySybRxSxa ,,,,,  are given as follows: 
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The second-order derivatives of yx,  with respect to 

RySybRxSxa ,,,,,  are given as follows: 
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The matrix of second-order (partial) derivatives of the grey-
level value g  with respect to RySybRxSxa ,,,,,  can be 
explicitly expressed as follows: 
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Assuming

iα represents one of parameters ( RySybRxSxa ,,,,, ) 

which need to be solved, the first-order and second-order 
derivatives of the cross correlation coefficient R  with respect 
to each parameter 

iα  are given as follows: 

M

NR
i

i

2=
∂
∂
α

 

where  







−=
=

∑∑ ∂
∂

∂
∂ )()( 22

21112122112

22112211

ii

gg

i
gCCgCCN

CCCCM

αα

 

 
The second-order derivatives of cross correlation coefficient R  
with respect to each parameter 

iα  are given as follows: 
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A full Newton-Raphson implementation (Chambers, 1977; 
Adby and Dempster, 1974) using first and second derivatives 
was implemented: 
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where H  is the Hessian matrix and G  is the Jacobian gradient. 
 
 

3. THE EQUIVALENCE OF LSM AND GCC 

Least squares matching assumes that the left and right image 
grey-level values should be identical between two small patches 
surrounding the left and right points: 

),(),( 21 yxgyxg =  

 
A radiometric correction and a geometric correction for the 
right images are applied: 
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where 
21,nn  are the left and right image random noises, 10 ,cc  

are the radiometric correction coefficients and 
2020, yx  are the 

starting image locations for the right point. 
 
The least squares observation equation after linearisation (2) is: 
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Of course, the radiometric correction can be treated as either in 
a separate prior step or estimated with other affine parameters 
simultaneously. 
 
The matrix version of least squares matching (2) is: 

VAXL −=  
where X  is the unknown vector, L  is the observation vector  
and A  is the design matrix.  The least squares normal equation 
and its solution are: 

LAAXA TT =  
LANLAAX TT 11][ −− ==  

 
In order to show the equivalence of least squares matching and 
gradient cross correlation, firstly, that the correlation coefficient 
R  is invariant with respect to a linear radiometric correction. 
 
Assume after applying a linear radiometric correction, that the 
right image value is: 

2102' gccg +=  

 
The formulation of the new cross correlation coefficient 'R  is: 
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Replacing 

2'g  with 
210 gcc +  in (4) and after a series of steps 

can be reduced to: 
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Secondly, the following shows that the least squares matching 
and gradient cross correlation use the same criterion to estimate 
the unknowns. 
 
Least squares techniques minimise the sum of squares of 
observation errors or image intensity differences (3): 

min=∑vv  

 
Assuming 

1g  and 
2g  are normalised, then the linear 

radiometric correction coefficients can be obtained: 
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∑vv  can then be expanded using (3) and (5): 
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The relationship between ∑vv  and R  can be described using 

the following equation: 
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(6) means that finding the minimisation of the sum of squares of 
intensity differences between the left and right image patches is 
equivalent to maximising the cross correlation coefficient 
between the two patches. 
 
 

4. IMPLEMENTATION 

A hierarchy of relationships between the affine transformation 
parameters can be specified in practice: 
 
• Model-I: different scale, different rotation (6 unknowns: 

two offsets, two scales, two rotations) 
• Model-IIA: different scale, common rotation (5 unknowns: 

two offsets, two scales, one rotation) 
• Model-IIB: common scale, different rotation (5 unknowns: 

two offsets, one scale, two rotations) 
• Model-III: common scale, common rotation (4 unknowns: 

two offsets, one scale, one rotation) 
• Model-IV: fixed scale, fixed rotation (2 unknowns: two 

offsets) 
 
In order to investigate the behavior of different models for 
various images, the above models were also implemented within 
two matching methods (GCC and LSM).  Further, a quadratic 
line search strategy (Adby and Dempster, 1974) is applied to 

both GCC and LSM matching.  The further line search suggests 
improved cross correlation coefficients may be achieved with a 
few extra iterations.  The duration of computation time is 
recorded for comparison purposes.  The experiments were 
conducted on a DELL Pentium III personal computer with CPU 
clock speed of 1.70GHz and memory of 512MB. 
 
 

5. EXPERIMENT RESULTS 

The performance of the algorithm is examined for three pairs of 
images.  The first pair (Figure 1) relates to the registration of a 
Landsat TM image from February 1992 (the middle image in 
Figure 1) to a rectified Landsat TM image from March 1995 
(the left image in Figure 1).  The original TM image pixel size 
is 30m, and the rotation of the original image is about 9° from 
true north.  The rectified Landsat TM image is in AMG 
(Australian Map Grid) zone 50, and the pixel size is 25m. 

The second pair relates to the registration of a Landsat MSS 
image from January 1987 (the right image in Figure 1) to the 
1995 Landsat TM image (the left image in Figure 1).  The 
original MSS image pixel size is 57m×79m, and the rotation is 
again about 9°. 
 
Three control points were chosen around the large patch of bush 
in the rectified TM images: Point 1 is at the top right of the 
patch, Point 2 is at the bottom right of the patch and Point 3 is 
at the top left of the patch.  Their corresponding points in the 
raw TM and MSS images were roughly located as the initial 
start points for registration.  The correlation window size used 
is 41 pixels by 41 pixels. 
 
The third pair (Figure 2) relates to the matching of two 
QuickBird high-resolution satellite images, which were flown 
on June 19, 2003; the rotation between two raw images is about 
13°.  Figure 2 shows a small isolated forest patch and the 
surrounding shadows.  One point was selected on the treetops 
among the forest patch at the middle of the image and another 
point was selected at the shadow edges on the bare ground.  The 
correlation window size used is 21 pixels by 21 pixels. 
 
Table 1 summarises the results for all models for the Landsat 
TM registration.  For this example, Model-III (common pixel 
scaling and common rotation angle) should be appropriate.  
This is confirmed in Table 1, where the matching correlation 
coefficient for each control point for Model-III is similar to that 
for Model-I, Model-IIA and Model-IIB.  Model-IV gives the 
worst matches.  The results also indicate that GCC and LSM 
give similar results. 
 
Table 2 summarises the results for the Landsat MSS 
registration.  For this example, Model-IIA (different pixel 
scaling, common rotation) should be appropriate.  This is 
confirmed in Table 2, where the matching correlation 
coefficient for each control point for Model-IIA is similar to 
that for Model-I.  Model-IV gives the worst matches.  Again, 
GCC and LSM give similar results for the appropriate model.  
The estimated line and pixel scaling are roughly consistent with 
the expected values: the line scaling should be about 25/57 = 
0.44, while the observed values in Table 2 are 0.40, 0.44 and 
0.45; and the pixel scaling should be about 25/79 = 0.32, while 
the observed values in Table 2 are 0.27, 0.30 and 0.30. 
 
Table 3 summarises the results for the QuickBird image 
matching.  For both points (Points 1 and 2 in Table 3), the best 
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matches are always given by Model-I for all three matching 
methods, and Model-IIB gives the second best matches.  
Model-IV is the worst model for matching treetop point 1 and 
ground point 2.  The correlation coefficients also show that the 
treetop point is more difficult to be matched in comparison with 
the ground point.  The reason may be due to the mixed texture 
and complicated geometry at the treetop. 
 
More QuickBird matching experiments (not presented in this 
paper) also confirm that, due to the view angle changes of 
QuickBird sensors and the changing angle between an object 
and its shadow (in particular between tree shadow and tree), 
high-resolution satellite imagery such as QuickBird requires a 
well-defined geometric model for their image registration and 
matching; in this case, Model-I seems the appropriate choice. 
 
Incorporating a quadratic line search with GCC or LSM 
matching often improves the convergence and leads to a higher 
matching correlation.  From both GCC and LSM line search 
results, it shows a very slight improvement of matching (cross 
correlation coefficient) within a few extra iterations.  
 
The function maximisation procedures require a tolerance 
which indicates when successive function values are sufficiently 
similar.  Tables 1−3 also list the number of iterations (maximum 
is 50).  This very limited comparison suggests that a tolerance 
of 0.002 gives similar results to those obtained from a more 
stringent convergence tolerance, in about one third of the 
number of iterations. 
 

   
Figure 1: Segments of Landsat scenes (path 111, row 84).  Left 
image: segment of the rectified TM scene for Band 3, March 
1995 (map grid: AMG, pixel size: 25m).  Middle image: 
segment of the raw TM scene for Band 3, February 1992 (pixel 
size: 30m×30m).  Right image: segment of the raw MSS scene 
for Band 2, January 1987 (pixel size: 57m×79m). 
 

   
Figure 2: Left and right images are two segments from a raw 
QuickBird stereo pair for multiple-spectral band 4, June 2003 
(pixel size: approximately 3m×3m). 
 
  GCC LSM 
Point Model Corr. Score Iter. Corr. Score Iter. 

Model-I 0.87377 50 0.87377 11 
Model-IIA 0.87245 11 0.87245 11 

 
 
1 Model-IIB 0.86975 10 0.86975 11 

Model-III 0.86961 12 0.86961 50 
Model-IV 0.86844 10 0.86844 11 
Model-I 0.89668 14 0.89669 13 
Model-IIA 0.89618 12 0.89618 12 
Model-IIB 0.89665 16 0.89665 14 
Model-III 0.89609 13 0.89609 15 

 
 
2 

Model-IV 0.89367 10 0.89367 11 
Model-I 0.97144 11 0.97144 11 
Model-IIA 0.97139 11 0.97139 11 
Model-IIB 0.97034 9 0.97034 9 
Model-III 0.97041 12 0.97030 8 
Model-IV 0.96727 10 0.96727 10 

 
 
3 

Model-IV 0.74198 3 0.74198 2 
Table 1: GCC and LSM sub-pixel matching a raw Landsat TM 
image from February 1992 (centre image in Figure 1) to a 
rectified and resampled TM image March 1995 (left image in 
Figure 1) for three ground control points (average computing 
time is 0.03 second per point). 
 
  GCC LSM 
Point Model Corr. Score Iter. Corr. Score Iter. 

Model-I 0.88635 20 0.88635 18 
Model-IIA 0.88634 20 0.88634 18 
Model-IIB 0.84573 31 0.84575 31 
Model-III 0.84558 28 0.84558 19 

 
 
1 

Model-IV 0.75940 22 0.75940 22 
Model-I 0.84540 44 0.84540 23 
Model-IIA 0.84542 21 0.84542 20 
Model-IIB 0.82646 21 0.82647 23 
Model-III 0.82466 40 0.82467 29 

 
 
2 

Model-IV 0.75606 32 0.75604 31 
Model-I 0.93416 15 0.93416 15 
Model-IIA 0.93360 15 0.93360 15 
Model-IIB 0.88439 16 0.88439 16 
Model-III 0.88151 17 0.88149 16 

 
 
3 

Model-IV 0.85979 19 0.85979 19 
Table 2: GCC and LSM sub-pixel matching an original Landsat 
MSS image from January 1987 (right image in Figure 1) to a 
rectified and resampled TM image March 1995 (left image in 
Figure 1) for three ground control points (average computing 
time is 0.04 second per point). 
 
  GCC LSM 
Point Model Corr. Score Iter. Corr. Score Iter. 

Model-I 0.75367 9 0.75367 13 
Model-IIA 0.63904 50 0.63933 50 
Model-IIB 0.67154 7 0.67205 50 
Model-III 0.58464 50 0.58461 13 

 
 
1 

Model-IV 0.48116 5 0.48116 4 
Model-I 0.93372 22 0.92689 14 
Model-IIA 0.92933 50 0.92693 50 
Model-IIB 0.92534 50 0.92358 50 
Model-III 0.92357 50 0.92320 50 

 
 
2 

Model-IV 0.89629 4 0.89629 5 
Table 3: GCC and LSM sub-pixel matching of two QuickBird 
bush images for treetop point 1 and ground point 2 (average 
computing time is 0.03 second per point). 
 
 

6. CONCLUSION AND DISCUSSION 

The correlation results from the gradient cross correlation are 
nearly identical (both the matching results and iterations) to 
those of the least square matching.  However, the gradient cross 
correlation method combines radiometric correction and 
geometric correction into a single step, which makes its 
parameter estimation and practical computation implementation 
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simple.  Both the gradient cross correlation method and the least 
squares matching method require good approximation or small 
pull-in range in order to find the minimisation points (1 to 2 
pixels in average from our experience). 
 
The particular formulation of the affine transformation in 
Equation 2-2 leads to useful insights into the image matching.  
Model-IV (shift only, not allowing scaling and rotation) is the 
worst model for matching all kind of point, which means that it 
is essential to choose an appropriate geometric transformation 
for certain kind of sub-pixel matching. 
 
For the matching of TM images, the scaling is about 0.83 
(25m/30m) and is the same for line and pixel, while the angle of 
rotation is common for line and pixel, at around 10°. 

For the matching of TM and MSS images, the angle of rotation 
is common for line and pixel, again at around 10°, while the 
scalings are different for line and pixel, agreeing closely with 
the expected values of 0.44 (25m/57m) and 0.32 (25m/79m), 
respectively. 
 
For matching of a stereo pair of high-resolution images, the 
flexibility of varying the scaling and/or orientation gives a 
better matching correlation.  It could be valuable to use 
bootstrap procedures (Efron and Gong, 1983; Efron and 
Tibshirani, 1993) to establish the typical range of variation for 
the matching correlation for Model-I (i.e. confidence limits) 
against which to judge the adequacy of the simpler models. 
 
Limited experience of experimental DEM generation using the 
gradient cross correlation with line search suggests that 
incorporating a quadratic line search with Model-I often 
improves the convergence and leads to a higher matching 
correlation, but requires some additional computing time.  
Given that editing a DEM requires more operator intervention, 
it may be desirable to ensure the best possible match, at the 
expense of increased computing time. 
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