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ABSTRACT: 
 
A new feature-level fusion is presented for modelling individual trees by applying watershed segmentation and subsequent 
classification, using tree heights and tree crown signatures derived from light detection and ranging (lidar) data and multispectral 
imagery. The study area is part of the Moira State Forest, New South Wales, Australia where the dominant tree species are native 
eucalypts. In this study, airborne lidar data and four band multispectral imagery were acquired. A digital surface model (DSM) was 
generated from the lidar first return data and a digital terrain model (DTM) was derived from the lidar last return data.  A tree crown 
model was computed as the difference between DSM and DTM using appropriate height thresholds. A marker-controlled watershed 
segmentation algorithm was used to extract individual tree crowns from the lidar data. The resulting crown polygons were overlaid 
on the four band multispectral imagery to extract the spectral signatures of the tree crowns. A principal components transformation 
was applied to the four-band dataset to replace the highly correlated original bands with those of reduced correlation. In addition, 
two lidar derived texture and height layers were included in the fusion procedure. The application of the maximum likelihood 
technique led to a high classification accuracy. An average classification accuracy of 86 percent was achieved and this procedure 
outperformed the original four-band maximum likelihood classification by 23 percent. The success of the tree crown extraction 
algorithm in old growth areas was higher than in more juvenile areas where the crowns were more scattered. It was also observed 
that large crowns were better delineated than small ones. The results indicate that this fusion modelling strategy may prove suitable 
for estimating and mapping the crown area, height and species of each tree. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Motivation 

Individual tree components (both in the horizontal and vertical 
plane) are important parameters for developing a better 
understanding of how forest ecosystems function. Lidar data 
provide accurate measurements of forest structure in the vertical 
plane; however, current lidar sensors have limited coverage in 
the horizontal plane. Conversely, high resolution multispectral 
imagery provides extensive coverage of forest structure in the 
horizontal plane, but is relatively insensitive to variation in the 
vertical plane. Therefore, it is desirable to synergistically use 
both sensors for mapping forest parameters at a fine scale. 
Delineating individual trees and extracting relevant tree 
structure information from fused remotely sensed data have 
significant implications in a variety of applications such as 
reducing fieldwork required for forest inventory (Gong et 
al.,1999), assessing forest damage (Kelly et al.,2004) and 
monitoring forest regeneration (Clark et al.,2004). 
 
1.2 Imagery and lidar data fusion 

There have been several attempts to fuse lidar and high spatial 
resolution imagery for individual tree attributes collection 
(Baltsavias,1999; Leckie et al.,2003). The strong argument of 
fusion is that the lidar measurements do not distribute 
homogeneously and usually have gaps between them. As a 

result, the three-dimensional structure of the objects might not 
be very well defined (Baltsavias,1999). It thus becomes fairly 
complex to obtain a good 3D model of the canopy architecture 
of each tree with a low density of lidar returns. The idea of 
exploiting the complementary properties of lidar and aerial 
imagery is to extract semantically meaningful information from 
the aggregated data for more complete surface description. 
Sua´reza et al.(2005) propose a data fusion analysis with lidar 
and aerial photography to estimate individual tree heights in 
forest stands. The tree canopy model is derived from lidar 
layers as the difference between the first pulse and last pulse 
return. Information about individual trees was obtained by 
object-oriented image segmentation and classification. This 
analysis provided a good method of estimating tree canopies 
and heights. However, the method of segmentation and 
classification are too image dependent. The classification 
parameters were not defined automatically and exhibit no clear 
relationship to allometry factor. Instead, they were defined 
empirically following a trial-error process. Leckie et al.(2003) 
applied the valley following approach in to both lidar and 
multispectral imagery and found that the lidar can easily 
eliminate most of the commission errors that occur in the open 
stands while the optical imagery performs better for isolating 
trees in Douglas-fir plots. 
 
This study attempts to use a new feature-level fusion 
methodology for modelling individual trees. The method 
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incorporates the watershed segmentation algorithm and 
subsequent classification using tree heights and tree crown 
signatures derived from both lidar data and multispectral 
imagery. 
 
 

2. STUDY AREA AND DATASETS 

The study area is part of the Moira State Forest, New South 
Wales, Australia where the dominant tree species are native 
eucalypts. River Red Gum (Eucalyptus camaldulensis ssp. 
obtusa Dehnh), Black Box (Eucalyptus largiflorens), and Grey 
Box (Eucalyptus microcarpa) are common tree species found in 
the Moira State Forest. 
 
2.1 Lidar data 

The lidar data used for this project was acquired by 
AAMGeoScan (now AAMHatch) in May,2001. The lidar 
system used was the ALTM 1225, which operates with a 
sampling intensity of 11000 Hz at a wavelength of 1.047 μm. 
The approximate flying height of this sensor was 1100m and 
the laser swath width was 800m. Vertical accuracy was 0.15m 
(1σ), the internal precision was 0.05m, and the original laser 
footprint was 22cm in diameter. The original lidar dataset was 
processed by AAMHatch and provided to the Victorian 
Department of Sustainability and Environment (DSE). The 
provided data were two separate files representing the first and 
last return point clouds. The original lidar data had point 
spacing in the order of 16 points per m2 and was resampled to a 
1m grid. 
 
2.2 Multi-spectral imagery 

The multi-spectral imagery was captured over the study area 
using an Ultracam-D with a calibrated focal length of 
101.400mm.  Three colour (red, green and blue) and one 
infrared (IR) band images were collected with a 28.125μm pixel 
size. The radiometric resolution of the images was 16-bit. This 
increased radiometric range captures more detailed information 
of the land cover features. As a result, in extreme bright and 
dark areas we still mange to get redundant information, which is 
beyond what is visible in images with lower radiometric 
resolution (Leberl and Gruber, 2005). 
 
 

3. METHODOLOGY 

The proposed scheme includes five parts: (1) data pre-
processing, (2) watershed segmentation, (3) data processing, (4) 
supervised classification and (5) accuracy assessment. The 
flowchart in Figure 1, illustrates the major steps, which are 
performed through this data fusion project. 
 
3.1 Data pre-processing 

The data pre-processing stage consists of two major steps: (1) 
normalised digital surface model (nDSM) generation from lidar 
data and (2) geometric correction of multispectral imagery. The 
lidar first and last return height data were used to generate the 
nDSM for the tree crowns. The last return of the lidar normally 
represents the digital terrain model (DTM) and the first return 
as the digital surface model (DSM). A height difference 
between the DSM and DTM represents the absolute height of 
the trees. A height threshold was applied to remove low-lying 
vegetation (<1.5m) close to the terrain surface. This nDSM 

along with lidar 1st return intensity and multispectral images 
was used in the data fusion process. 
 
Using the exterior orientation parameters (X, Y, Z, ω, φ, κ) 
derived from onboard GPS and INS sensors and ground control 
points the geometric correction of the multispectral imagery 
was accomplished. The exterior orientation parameters for each 
aerial photograph were supplied with the camera calibration 
certificate, which were used for the orthorectification of the 
aerial photographs. An optimal number of ground control points 
were derived using differential GPS to increase the geometric 
corrections of the multispectral imagery. 
 

 
 

Figure 1. Flowchart of tree type classification using lidar and 
multispectral imagery. 

 
Some temporal effects were expected in the data fusion process, 
due to the differences in acquisition time of the lidar (in 2001) 
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and the multispectral imagery (in 2004). These were the only 
available images for this research project; therefore we had to 
compromise on this issue. The study area is a slow growing 
forest and within this time frame it had not seen any abrupt 
changes such as tree damage by bush fire or logging. However, 
some temporal effects were found, due mainly to the natural 
growth of trees, which is always a challenge to address in high 
resolution data fusion. 
 
3.2 Watershed segmentation 

The lidar derived nDSM represents the tree canopies of the 
forest. Single and disjoint tree canopies can easily be delineated 
in this process. However, a segmentation procedure is needed to 
isolate trees which are grouped. This study uses marker-
controlled watershed segmentation for tree canopy isolation. 
Watershed segmentation, first proposed by Beucher and 
Lantuejoul (1979), is a well known image segmentation method 
that incorporates region growing and edge detection techniques 
(Soille,2003). To avoid the over segmentation problem, Meyer 
and Beucher (1990) introduced marker-controlled watershed 
segmentation. The idea is to perform watershed segmentation 
around user-specific markers rather than the local maxima in 
the input image.      
 
In the watershed segmentation of the nDSM data, the tree 
crown model was treated as a 3D surface, with lateral 
dimensions representing the image plane, and the vertical 
dimension representing the grey values (Figure 2a). Internal 
markers were used to locate the local minima, which were 
associated with high grey values (i.e. selected tree crowns) and 
external markers were pointed to the local maxima, which were 
associated with the background. Through flooding from the 
local minima, the watershed segmentation was performed: 
neighbouring watersheds were merged unless boundaries were 
built to isolate individual tree features (Figure 2c). The process 
of merging regions and building boundaries continued until no 
more region growing could take place. 
 
 

 
Figure 2. An illustration of watershed segmentation. (a) A 

canopy model derived from nDSM, (b) 3D view of 
the canopies, and (c) Segmentation results with 

dams (in red) built at the divide line. 
 
3.3 Data processing  

After segmentation, the resulting crown polygons were overlaid 
on the lidar and multispectral imagery to extract the spectral 
signatures and texture information of the tree crowns for tree 
species discrimination. Firstly, the extracted signatures from 
four of the original multispectral bands were processed with a 
directional convolution filter using a 3x3 window. This filtering 
procedure allowed the suppression of shadow effects within the 
sunlit area of the tree crown. The weighting factors and the 
dimensionality of the filter are primarily dependent on the solar 
direction at the time of over flight, the tree size, and the 
illumination conditions within the tree crown.  
 

Secondly, image enhancement by principal components 
transformation was applied to the filtered four-band data set. 
The objective being the replacement of the highly correlated 
original bands with those of reduced correlation. The 
transformation resulted in four new components: the brightness, 
the redness, the greenness, and the blue-yellowness, for each of 
the tree types.  
 
In addition, two more lidar derived layers were included in the 
fusion procure. A ninth layer was generated by a texture 
analysis of the first return lidar intensity and the tenth layer 
from lidar derived nDSM layer.  
 
3.4 Supervised classification 

A supervised classification of the 10 layer datasets into three 
different categories as listed in Table 1 was carried out. Much 
of the success of the maximum likelihood classifiers depends on 
the choice of training areas. Extensive field survey 
measurements were conducted to collect the training data. The 
processed datasets were also used to redefine the training area 
in order to maximize the classification results. These datasets 
allowed a much better class-specific delineation of the training 
areas involving a reduced sample size for the different tree 
categories. However, the selected training areas still met the 
minimal requirement of 5 x k (no. of layers) pixels from a 
statistical point of view (Kalayeh and Landgrebe,1983). 
 
 

Class Tree type Description 
1 Black Box Rough bark  
2 Grey Box Fine, pale, fibrous bark  
3 River Red Gums Smooth bark 

 
Table 1. Selected tree classes and associated degree of disease 

 
3.4.1 Filling the tree polygon:  In high spatial resolution 
data fusion, the class variability within tree crown is caused 
mainly by the variability in crown structure (shadow effects), 
crown density (background material) and different tree 
components (bark, needles/leaves) (see figure 3a). In addition, 
the class variability is also affected by the categorisation of the 
tree types with respect to the leave and bark patterns (Table 1).  
 
 

 
Figure 3. Refining the tree classification; (a) the classified tree 

crowns; (b) Filling the tree crown area with majority 
species. 

 
In order to increase the significance of the classification results, 
the entire tree polygon was filled with the most frequent class 
(Figure 3a). In this way, only one class occupied the entire 

(a) (b) (c)

(a) (b) 
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polygon despite the classification of only a fraction of a tree 
crown (Figure 3b).  
 
3.5 Accuracy assessment        

To evaluate accuracy, ground truth tree types and crown maps 
for six plots (Appendix A), each with an area of 50m by 50m, 
were acquired in the field. Existing aerial photography was used 
to design the sample plots and tree information was collected by 
the field survey. There are a total of 61 trees in the six plots. An 
error matrix was generated from the field sample data 
corresponding to the fused results. 
 
 

4. RESULTS AND DISCUSSION 

Figure 4 illustrates the close correspondence (r2 = 0.87, 95% 
Confidence level, standard error = 0.67m) between tree mean 
heights derived from both field measurements and lidar data 
was observed. The comparison suggested, however, that the 
mean height was more reliably estimated for trees with large 
and relatively flat crown areas than those were small and 
pointed crowns.      
 
 

 
Figure 4. Relationship between individual tree mean heights as 

estimated in the field and from lidar. 
 
Results from previous studies have shown that isolating 
deciduous tree species in lidar data is difficult due to their 
complex structure (Chen et al.,2006). However, the use of the 
marker-controlled watershed segmentation algorithm with the 
lidar data achieved a satisfactory result for eucalypt trees. The 
success of the tree crown extraction algorithm in old growth 
areas was higher than in more juvenile areas where the crowns 
are more scattered. It was also observed that large crowns were 
better delineated than small ones.  
 
To study the correlation between tree height and crown size, 
tree height and crown size were measured from the crown 
segments. Crown size is the average crown diameter and was 
derived from the shape file generated area and algorithm for the 
relationship of the crown area and radius. From the tabular 
dataset, the trees were randomly sampled over the whole study 
area and the sample size was 100 trees. It was found that crown 
size has larger variability when a tree height is higher, which 
will contradict the assumption of homoscadasticity if a linear 
model is fitted. To avoid this issue, a parameterised non-linear 
model was fitted: 
 
 

0.1906( )12.080 25.43 TreeHeightCrownSize e−= −               (1) 
 
 
Using Equation (1) a fitted line was generated through the 
scatter plot as illustrated in Figure 5. In the regression analysis, 
the relationship between crown size and tree height followed a 
non-linear curve and mean squared error is 0.52, implied a low 
level correlation. 
 

 
 
Figure 5. The relationship between crown size and tree height. 

 
The application of the maximum likelihood classification 
technique involving the original four-band data set led to low 
classification accuracy. The main reason was the confusion 
within classes due to the noise effects such as shadows, 
background vegetation and lack of information. An 
improvement of the classification was achieved with the 
integration of lidar derived height and intensity data. 
Additionally, eight new layers generated from multispectral 
data substantially reduced interclass confusion compared to the 
original four-band data. The class separability was also 
improved for particular tree species by increasing the gap 
between the class means and reducing the class variability. The 
use of the tree polygons derived from watershed segmentation 
markedly improved the classification results through the 
assignment of the most frequent pixel to the particular tree 
polygon as shown in Figure 3b. In this way, only one class 
occupied the entire polygon despite the classification of only a 
fraction of a tree crown. 
 
The results of the accuracy assessment are summarised in Table 
2. The accuracy was assessed by comparing the classified tree 
crown with the true tree information derived from field survey. 
An average classification accuracy of 86 percent was achieved 
and this procedure outperformed on average the original four-
band maximum likelihood classification by 23 percent. The 
separation between the classes Black Box and Grey Box was 
improved with the fused 10 layer datasets. This is mainly due to 
the incorporation of the lidar data and the four principal 
components of the mutispectral imagery, into the classification. 
 
 

Classification types Classification accuracy (%)
Only multi spectral (4 layer)  63 
Fused multi spectral and lidar 
data (10 layer) 

86 

 
Table 2 Comparative accuracy assessments.  
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The classification accuracies achieved are comparable to those 
produced by visual interpretation. Map scatter plots of lidar 
return combined with multispectral imagery and field data 
enabled, in some cases, visual discrimination at the individual 
tree level between Black Box and Grey Box. While a clear 
distinction between these two species was not always visually 
obvious at the individual tree level, due to other extraneous 
sources of variation in the dataset, the observation was 
supported in general at the site level. Sites dominated by Black 
Box generally exhibited a lower proportion of singular lidar 
returns compared to sites dominated by Grey Box. River Red 
Gums can easily be distinguished from others by their unique 
spatial distribution. This species is largely populated throughout 
the forest surrounding the Riverine wetlands that are subject to 
periodic inundation (see Appendix A). 
 
The fusion procedure proposed in this study demonstrates the 
usefulness of the five main processing steps to cope with the 
classification of very hight spatial resolution lidar and 
multispectral imagery. This approach can be used in principle 
for species classification of high spatial resolution data. 
However, sensor-specific modifications to these different 
processing steps have to be made in order to maximise the 
fusion results.  
 
 

5. CONCLUSIONS 

The investigation presented in this paper has been conducted to 
establish an automated procedure for forest species 
identification at the tree level from high spatial resolution 
imagery and lidar data. For this purpose, four-band 
multispectral imagery and lidar data were used to develop a 
feature-level fusion approach. This technique consists of five 
steps: the preprocessing of the lidar and multispectral data; tree 
crown polygon extraction using marker-control watershed 
segmentation; masking of spectral, height and textural 
information using the crown polygons; classification of the 
polygon data; and, the accuracy assessment. 
 
In contrast to the original four-band multispectral data sets, the 
average classification accuracy was considerably improved 
through the generation of additional features using the principal 
component transformation, filtering techniques, and texture 
analysis. Principal component transformation of the 
multispectral imagery added more layers to separate different 
tree species. The addition of the height and texture features 
derived from lidar data resulted in an improved discrimination 
of the tree classes.  
 
The superposition of the watershed derived crown polygon on 
to the images was essential for achieving good classification 
results and for a more standardised classification. The proposed 
procedure can be used as a model for fusing high spatial 
resolution multispectral imagery and lidar data for assessing 
forest attributes at the tree level. In addition, this fusion 
procedure has the potential to minimise human interaction in 
the interpretation of forest attributes. 
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APPENDIX A. Tree Species Map of Moira state forest, nsw 
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