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ABSTRACT: 
 
This paper presents a robust phase correlation based sub-pixel feature matching technique and its application in motion flow 
estimation, pixel-to-pixel image-co-registration and DEM generation. We propose to use a phase fringe filter and a highly robust 
technique in the direct Fourier-based phase correlation algorithm for translational shift estimation in sub-pixel accuracy. Noting the 
problem that local phase correlation based feature matching may fail in areas either featureless or with significant spectral 
differences between an image pair, a direct frequency based motion estimation assessment technique and a novel motion flow 
refinement scheme are designed to improve the unreliable local motion estimates around these areas. With the robust phase 
correlation based local matching algorithm, we are able to derive accurate pixel-to-pixel image co-registration and disparity mapping 
for DEM generation in most synthetic and real images from different sensor platforms or different spectral bands.  
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1. INTRODUCTION 

Image registration and feature matching is a crucial step in the 
analysis and fusion of information among similar images. 
Numerous methods and techniques [Zitova and Flusser, 2003] 
have been proposed for different applications in remote sensing, 
medical imaging and computer vision. In recent years, phase 
correlation feature matching method has been a popular choice 
in the global or local image registration due to its remarkable 
accuracy and its robustness to uniform variations of 
illumination and signal noise in images [Foroosh et al., 2002]. 
 
The original phase correlation method [Kuglin, and Hines, 
1975] is known to identify integer pixel displacement between 
image pairs. However, most practical tasks require sub-pixel 
image registration. Several Fourier domain methods [Stone et 
al., 2001; Hoge, 2003; Liu and Yan, 2006] and closely related 
spatial domain variations [Foroosh et al., 2002] have been 
proposed for estimating the translational shift with sub-pixel 
accuracy. Stone et al. [Stone et al., 2001] investigated the 
effects of aliasing on the shift estimation and proposed a direct 
Fourier-based algorithm for sub-pixel image registration, in 
which, the translational parameter is directly estimated in 
Fourier domain through a least-squares fitting (LSF) to a 2D 
phase difference data set. This direct Fourier-based method is 
much faster than traditional interpolation based techniques 
[Tian and Huhns, 1986] for sub-pixel registration. Foroosh et 
al. [Foroosh et al., 2002] claimed that Stone’s approach is 
rather inaccurate since it often requires unwrapping the noisy 
2D phase difference data and then fitting the unwrapped data. 
Alternatively, they extended the original phase correlation 
method [Kuglin, and Hines, 1975] to sub-pixel accuracy 
through analytic expressions for the phase correlation of down-
sampled images. Hoge [Hoge, 2003] demonstrated that the 
translational shift between two images can be obtained by 
finding the rank-one approximation of the phase correlation 
matrix through the singular value decomposition (SVD) 
method. Then, the sub-pixel estimates of vertical and horizontal 
shifts can be derived independently from the left and right 

singular vectors. The accuracy of the translational shift 
estimation through the SVD based rank-one approximation of 
phase correlation matrix is much higher than Foroosh et al.’s 
method [Foroosh et al., 2002]. However, the computation 
complexity of the SVD operation of a large size matrix is very 
high.   
 
Motivated by the strengths and limitations of these existing 
phase correlation methods for sub-pixel translational motion 
estimation and registration, this paper presents a robust phase 
correlation technique achieving reliable sub-pixel image feature 
matching and registration at frequency domain. We propose to 
use a phase fringe filter [Wang et al. 2001] and Quick 
Maximum Density Power Estimator (QMDPE) robust 
techniques [Wang and Suter, 2004] in the direct Fourier-based 
phase correlation algorithm. We first apply the phase fringe 
filter to reduce the noise in the phase correlation difference 
matrix, and thus make the 2D unwrapping reliable. We then use 
the highly robust QMDPE technique to obtain the best fitting 
estimation of 2D unwrapped phase plane. The bench mark tests 
indicate that robust phase correlation technique has very good 
performance for sub-pixel feature matching in different window 
size or across different spectral bands. 
 
Phase correlation method has been applied locally for motion 
flow estimation, pixel-to-pixel image co-registration and 
disparity mapping for stereo matching [Fleet, 1994; Balci and 
Foroosh, 2005]. However, its degraded performance around 
featureless and low correlation areas is well recognised, which 
is also the challenge to most of the existing motion estimation 
methods. Noting this problem, we first propose to use robust 
statics based inliers scale estimation for a quality assessment on 
the phase correlation based motion estimation directly in 
Fourier domain, and a newly proposed median shift propagation 
(MSP) technique [Liu and Yan 2008] is then exploited to refine 
the low quality motion estimates around image areas either 
featureless or subject to significant spectral changes where 
phase correlation fails. With the robust phase correlation local 
feature matching and motion flow refinement, we are able to 
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achieve pixel-to-pixel image co-registration and disparity 
estimation for DEM (Digital Elevation Model) generation at 
sub-pixel accuracy.  
 
2. ROBUST PHASE CORRELATION BASED GLOBAL 

FEATURE MATCHING 

2.1 Basics of Phase Correlation 

Phase correlation provides straight-forward estimation of rigid 
translational motion between two images, which is based on the 
well-known Fourier shift property: a shift in the spatial domain 
of two images results in a linear phase difference in the 
frequency domain of the Fourier Transforms (FT). Given two 
2D functions g(x,y) and h(x,y) representing two images related 
by a simple translational shift a in horizontal and b in vertical 
directions, and the corresponding Fourier Transforms are 
denoted G(u,v) and H(u,v). Thus, 

)}(exp{),(),( bvauivuGvuH +−=                   (1) 
The phase correlation is defined as the normalised cross power 
spectrum between G and H, which is a matrix: 
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If G(u,v) and H(u,v) are continuous functions, then the inversed 
Fourier Transform (IFT) of Q(u,v) is a delta function. The 
function peak identifies the integer magnitude of the shift 
between the pair of images [Kuglin, and Hines, 1975]. To 
achieve the translation estimation at sub-pixel accuracy based 
on the delta function of the IFT of phase correlation matrix 
Q(u,v), a common approach is to oversample images g(x,y) and 
h(x,y) to sub-pixel level before the FT of phase correlation 
operations. This however will increase the computing load 
dramatically. Recognised the drawback, many researchers 
looked for a direct solution in frequency domain based on the 
phase correlation matrix defined in (2). As the magnitude of 
Q(u,v) is normalised to 1, the only variable in (2) is the phase 
difference defined by au+bv, where a and b are the horizontal 
and vertical magnitudes of the image shift between g(x,y) and 
h(x,y). If we can solve a and b accurately based on the phase 
correlation matrix Q(u,v), then the non-integer translation 
estimation at sub-pixel accuracy can be achieved without 
applying IFT. Such direct frequency domain approaches [Stone 
et al., 2001; Hoge, 2003] has been proved more accurate and 
faster than that based on the delta function method. 
 
The phase difference angle c= au+bv in (2) is simply a planar 
surface through the origin in u-v coordinates defined by 
coefficients a and b. Thus a complicated problem of complex 
numbers in frequency domain becomes a simple issue of 
finding the best 2D fitting of the phase difference angle data in 
Q(u,v) to a plane of phase difference in the coordinates of u and 
v. The phase shift angle c is 2π wrapped in the direction defined 
by a and b. Any 2D fitting technique for c is not possible 
without a 2D unwrapping. However, 2D unwrapping on the 
phase angle data in the Q(u,v) is often unreliable and results in 
failure of finding a and b correctly [Foroosh et al., 2002; Hoge, 
2003]. This is largely because of the noisier data of Q(u,v). To 
improve the 2D fitting method, the key issues are: to reduce the 
data noise before unwrapping and to refine the fitting technique. 
 

2.2 Robust Method for Sub-pixel Shift Estimation 

As the phase angle data in the Q(u,v) is 2π wrapped, ordinary 
smoothing filters cannot be applied directly to reduce the noise 

of such discontinuous periodical data. We implemented a phase 
fringe filtering technique [5] into the 2D fitting method as 
below: 

1. Denote θ(u,v) as the phase angle at position u,v in the 
phase correlation matrix Q(u,v). 

2. The sinθ and cosθ are continuous functions of θ(u,v), 
a smoothing filter can therefore be applied to these 
functions. 

3. Derive the filtered phase angle ),( vuθ  from 

smoothing filtered sinθ and cosθ: 
θ
θθ

cos
sintan = . 

The window size of the smoothing filter used must be small in 
comparison to the half wavelength of sinθ and cosθ. For 
reducing the aliasing error and edge effects in the direct Fourier 
based method, high frequency components of the phase 
correlation matrix should be masked out, and only the lower 
frequency part is kept for the 2D fitting operation [Stone et al., 
2001; Hoge, 2003]. 
 
In stead of using LSF, a highly robust fitting technique QMDPE 
[Wang and Suter, 2004] is finally applied to find the best fitting 
estimates of the unwrapped phase angle data, which often is 
contaminated by the incorrectly unwrapped data and contain 
multi-structure mode. The benefit of using the QMDPE robust 
estimator is that the best estimate of the translational shifts a 
and b in (2) can be obtained from the noisy phase difference 
data set. 
 
We use a planar surface model through the origin in u-v 
coordinates, to fit the unwrapped phase angle data set. Let iϕ  
be the unwrapped phase angle at point ( ii vu , ). The residual of 
the fitted plane model of the point ( ii vu , ) can be written as 

)(),( iiiii bvauvux +−=ϕ .                                 (3) 
The translational shifts a and b are estimated using the robust 
estimator QMDPE, which can tolerate more than 80% of 
outliers. There are two assumptions when using QMDPE. The 
first one is the inliers have a Gaussian distribution. The second 
one is the inliers are a relative majority in the multi-structure 
data. This robust estimator employs the mean shift procedure 
[Comaniciu and Meer, 2002] to find the local maximum density 
power maxψ [Wang and Suter, 2004], i.e., J

J
ψmax , where J is 

the index of sub-samples. The density power is defined as: 
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where cX  is the position of the local maximum density 
)( cXf  in the signed residual space. The probability density 

can be estimated by: 
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where n is the number of the data points iX , h is the band-
width. 1-D Epanechnikov kernel [6] is employed: 
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A variable bandwidth method is used. The optimal bandwidth 
ĥ  can be chosen as: 
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ii xmeds 4826.1= . So, the bandwidth is variable with the 
different sub-sample, which is randomly chosen. 
 
Given a data set of n observations, the algorithm repeatedly 
draw m sub-samples (each with p different observations, and in 
a planar surface model p=3). For each sub-sample, indexed by 
J, mJ ≤≤1 , the translational shifts a and b are computed. 
Therefore, the signed residuals of all other observations are 
calculated, and the local maximum density in the signed 
residual space is determined through a mean shift procedure. 
The corresponding density power Jψ  defined in (4) is also 
computed. The maximum of Jψ is found and its corresponding 
translational motion parameters are the best estimates of the 
robust method. 
 
In order to improve the statistical efficiency, a weighted least-
squares procedure [Bab-Hadiashar and Suter, 1998] is used to 
obtain more accurate estimation of the translational shifts. A 
robust standard deviation σ  is computed as 

2),(med)51(4826.1 vux
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σ  is used to determine a weight ),( vuw  for each observation, 
where 
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T is a threshold of statistical inliers of the robust fitting 
estimation. The set of points with weight 1 is identified as 
inliers, while the set of points with weight 0 represents the 
outliers. The weighted least-squares method is then used to 
obtain the translational motion parameters like [Barron et al., 
1994] by minimising  

2))((),( iii
R

i bvauwvur +−=∑ ϕ ,                  (11) 

where ),( iii vuww =  is a weight at the point ( ii vu , ), and R  
denotes the whole set of the unwrapped phase angle data. 
 

2.3 Rotation and Scale Change 

As described in [Reddy and Chatterji, 1996], if the frequency 
domain is presented in polar co-ordinates, then the rotation will 
be a shift on the axis corresponding to the angle. Therefore, a 
rotation angle can be derived by phase correlation based shift 
estimation in polar co-ordinates. Similarly, a change in scale 
can be determined based on a phase shift in the frequency 
domain presented in logarithmic coordinate units. 
 
It should be pointed out that the proposed robust 2D fitting 
phase correlation technique has some limitation in the 
estimation of large shift, rotation and scale change duo to the 
fringe filtering operation used in the technique. Generally 
speaking, the robust phase correlation technique is able to 
achieve sub-pixel frame registration with rotation angle less 10 
degree. 
 

2.4 Bench Mark Test 

An example in Figure 1 shows the effectiveness of the robust 
phase correlation based translational shift estimation for sub-
pixel image registration across different spectral bands. A 
image pair (512×512) of two different spectral bands, bands 1 
(blue) and 5 (short wave infrared), extracted from a 30 m 
resolution Landsat-7 ETM+ scene is shown in Figure 1(a) and 
(b) respectively. The correlation between the two bands is 0.69. 
One of the images is artificially shifted horizontally by 13.33 
pixels to the right and vertically by 10.00 pixels up in relation 
to the other. As shown in Figure 1(c), the phase correlation 
matrix data become quite noisy because of the low correlation 
between the two images. Both of the Least-Square Fitting (LSF) 
and QMDPE algorithms failed in the first attempt without 
filtering the noise phase angle data. Then the phase fringe filter 
with filter size 5×5 pixels was applied, which has improved the 
phase correlation data significantly as illustrated in Figure 1(d). 
Figure 1(e) is the 3D view of the central part of the filtered 
phase difference matrix. Although some errors exist in the 
corresponding unwrapped phase angle data shown in Figure 
1(f), QMDPE robust fitting method obtained very good shift 
estimates. However, LSF cannot find the good fitting estimates 
in this case. The experimental results are shown in Table1, 
which indicate that the QMDPE 2D fitting algorithm is able to 
achieve the sub-pixel image registration across different 
spectral bands. 
 
Another example is for testing the accuracy of the robust phase 
correlation based feature matching in different window size. We 
artificially shift the image shown in Figure 1(a) by 0.25 pixels 
(left) in horizontal and 0.75 pixels (up) in vertical directions to 
generate the other one for the test. The robust phase correlation 
based technique is applied to central part of the image pair with 
different window size (from 512 to 16). The results of the 
translational shift estimation with different window size are 
shown in Table 2. These results indicate that the robust phase 
correlation technique is reliable for sub-pixel feature matching 
in different window size, even in a window size as small as 32× 
32. The best accuracy of feature matching is (x: 0.00051, y: 
0.00015) pixel at window size 512×512, and the worst one is (x: 
0.06251, y: 0.20104) pixel at window size 16×16. Generally 
speaking, the accuracy of phase correlation based feature 
matching will drop if it is applied locally within a small 
window compared with that in global feature matching.  
 

True Shift LSF QMDPE 
x: 13.3333 13.2466 13.2420 
y: -10.00 - 9.3308 - 9.9346 

 
Table 1.  Translational shift estimates with fringe filter size 

5×5. 
 

Window Size x y 
512×512 -0.24949 -0.74985 
256×256 -0.25202 -0.74722 
128×128 -0.25235 -0.74636 
64×64 -0.25473 -0.73862 
32×32 -0.26009 -0.67830 
16×16 -0.31251 -0.54896 
True Shift -0.25 -0.75 

 
Table 2.  Translational shift estimates through robust QMDPE 

based technique with different window size. 
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Figure 1:  (a) Landsat-7 ETM+ bands 1 image, and (b) Landsat-
7 ETM+ bands 5 image. (c) The phase difference matrix. (d) 
The filtered phase difference matrix (filter size=5). (e) 3D view 
of the central part of the wrapped phase difference matrix. (f) 
3D view of the central part of the unwrapped phase difference 
matrix.  
 
3. ROBUST PHASED CORRELATION BASED LOCAL 

FEATURE MATCHING  

Phase correlation feature matching techniques are often applied 
locally for motion flow estimation in a similar image pair. 
Accurate motion flow estimation is most important step for high 
quality of pixel-to-to-pixel image co-registration and DEM 
generation. If the raster scan is applied on a rectified stereo 
image pair, in which the local motion is mainly along image 
scan lines, a motion flow field or disparity map of stereo 
matching can then be derived. Here, the scanning window size 
is crucial for the quality of phase correlation based local feature 
matching. If the window size is too small, then the number of 
data points will be insufficient to achieve accurate measurement 
of the extracted feature shift. If the scanning window size is too 
large it may include multiple motions, especially around depth 
discontinuity areas for stereo matching. Our tests indicate that 
the scanning window size with 32×32 generally achieves best 
performance in the small motion cases (less than 6 pixels), 
while the window size with 64×64 is best tradeoff in most large 
motion cases. 
 

3.1 Phase Correlation Pixel-to-Pixel Image Co-
registration 

Obviously, if we know the relative shift of every pixel between 
two similar images, we can thus co-register the two images 
pixel by pixel based on the computed motion flow field. This 
pixel-to-pixel image co-registration that is fundamentally 
different from those “rubber warping” image co-registration 
techniques. To the best, the warping co-registration techniques 

assure the accuracy only at the grid of the image deformation 
model. In addition, the registration is not achieved at pixel-to-
pixel level. The registration error within a scene can vary from 
place to place depending on the relative deformation between 
the images. While the robust phase correlation based pixel-to-
pixel co-registration can achieve sub-pixel registration accuracy 
at every image point. Figure 2 illustrates the basic scheme of 
robust phase correlation based pixel-to-pixel image co-
registration method. It should be noted that the Input image 
should first be roughly oriented to the Reference image by 
standard routines of image shift, rotation and scale change 
before the robust phase correlation based motion flow 
estimation and image co-registration. The image rotation and 
minor scale change may introduce geometric errors as the 
results of interpolation and re-sampling. However, this type of 
errors will be largely eliminated by the later steps of the pixel-
to-pixel image co-registration based on the precise 
measurements of the shift between every corresponding pixel. 
In the last step, a bilinear interpolation backwards 
reconstruction technique is used for pixel-to-pixel co-
registration duo to its good performance in computing 
efficiency and accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Basic scheme of robust phase correlation based pixel-
to-pixel image co-registration. 
 

3.2 Quality Assessment of Robust Motion Estimation and 
Refinement in Featureless and Low Correlation Areas 

Local phase correlation based motion estimation may fail in 
featureless areas or in areas with significant spectral differences 
between the image pair duo to very low correlation. Here, we 
propose to use a ratio of outliers to inliers derived from the 
robust QMDPE 2D fitting in frequency domain for quality 
assessment on the phase correlation based local motion 
estimates. This direct frequency domain based phase correlation 
quality assessment method is more efficient than our previous 
NCC based method for quality assessment on motion estimates 
and its corresponding image co-registration in image domain 
[Liu and Yan, 2008]. The inliers and outliers of the robust 
fitting estimation can be derived from Equation (9) and (10). In 
each window, the robust fitting technique QMDPE is applied to 
find the best fitting estimates of the unwrapped phase angle 
data. If the ratio of the outliers to the inliers of the best fitting 
estimation of the plane model exceeds a certain threshold, the 
corresponding motion estimate is supposed to be unreliable.  
 
It is very common to mask off the unreliable estimates in 
motion flow estimation techniques (Barron et al., 1994). 
However, for image co-registration, the task is to build an 
Output image from the Input image data based on the Reference 
image geometry. There should not be any gaps left in the co-
registered Output image. In order to find the right sample 
positions in the Input image so as to generate a correctly co-

Input 
image 

Reference 
image 

Frame 
orientation

Robust 
phase 

correlation 
scan

xV

yV

Output 
image 
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registered Output image, we must fill the gaps in the estimated 
motion flow field with some reasonable shift data.  
 
A simple and effective solution, the median shift propagation 
(MSP) filter, was proposed for improving the quality of motion 
flow estimation around featureless or low correlation areas in 
our previous work [Liu and Yan, 2008]. The main idea of MSP 
is to fill the small gaps of the computed motion flow field with 
the median of the velocities of the pixels with reliable motion 
estimation in a scanning window. The key difference between 
the MSP and the ordinary median filtering is that instead of 
always applying the median filter to the original flow field, the 
filter is applied to the velocity data that are modified by the last 
filtering action. In such a way, the motion flow field are 
updated continuously during the filtering process, and the 
feature shifts are thus self-propagate from high quality data to 
fill the velocity gaps represented as unreliable motion estimates. 
It is worth mentioning that the filled data tend to become 
constant if the gap is large or the propagation distance is long, 
but these are much better estimations than the random 
variations of low correlation motion flow data.  
 

4. EXPERIMENTAL RESULTS 

Based on the robust phase correlation techniques presented in 
this paper, we have developed a standalone C++ software 
package PCIAS with a friendly graphic user interface (GUI) 
and powerful image fusion and analysis functions such as 
global image registration, motion flow estimation, pixel-to-
pixel image registration, and disparity mapping for DEM 
generation with sub-pixel accuracy. A series of images from 
different sensor platforms or with different spectral bands have 
been exploited to examine the accuracy and robustness of the 
proposed phase correlation based techniques. An example of the 
experimental results is presented here.  
 
Figure 3 (a) and 3(b) are the small sub-scenes (700×700) of a 
large stereo pair of SPOT-5 PAN images (12014×12019) with 5 
m resolution, which is taken on different dates (9 September 
2003 and 26 June 2004) from adjacent orbital path with view 
angles of 1.978° and 1.572° respectively from nadir tilting in 
opposite directions. This stereo pair has been chosen for the 
tests of pixel-to-pixel image co-registration and disparity map 
estimation for DEM generation. 
 
Through the robust phase correlation global image registration, 
the Input image (Figure 3 (b)) was roughly registered to the 
Reference one (Figure 3(a)) with frame rotation 0.6529 ° 
(clockwise), and frame shift with 6.1748 (to right) and 0.8025 
(down) pixels. The robust phase correlation scan is then carried 
out to generate the motion flow field (disparity map) after 
image orientation operations. The initial result of motion flow 
estimation without the MSP refinement is shown in Figure 3(c) 
with some small messy areas in the scene, in which the robust 
phase correlation method failed to get good fitting estimates. 
Figure 3(d) shows the low quality motion flow data in Figure 
3(c) are masked off with the proposed robust inliers scale 
estimation method, and then refilled with the MSP. The refined 
result shown in Figure 3(e) presents a smooth motion flow field, 
and the corresponding disparity map is shown in Figure 3(f). 
The RGB colour combination of the Input and the co-registered 
Output image is shown in Figure 3(h). For comparison, the 
RGB colour combination of the Input and Reference images 
before pixel-to-pixel co-registration is shown in Figure 3(g). 
The crystal sharpness of Figure 3(h) indicates very high quality 
of co-registration in every part of the image while the colour 

patches reveal the differences between the two images, which 
prove up the capacity of the method for change detection. 
Finally, a 3D perspective view of the Reference image 
reconstructed from the estimated disparity map (DEM) is 
shown in Figure 3(i). It demonstrates that fine details and depth 
discontinuity can be quite effectively recovered with the robust 
phase correlation based techniques.  
 

 

 
 
Figure 3: (a) Reference: SPOT-5 HRG-2 PAN image taken on 9 
September 2003. (b) Input: SPOT-5 HRG-1 PAN image taken 
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on 26 June 2004. (c) Initial motion flow. (d) The low quality 
motion estimates have been masked off. (e) Refined motion 
flow field via the MSP. (f) The disparity map corresponding to 
(e). (g) RGB colour combination of the Input and Reference 
images before pixel-to-pixel co-registration. (h) RGB colour 
combination of the Input and the pixel-to-pixel co-registered 
Output image. (i) DEM from the estimated disparity map. 
 
Using the developed PCIAS software in windows XP system, 
the disparity map estimation and pixel-to-pixel co-registration 
from this 700×700 image pair with 32×32 scanning window 
was accomplished around 17 minutes on a Dell desktop with 
2.38 MHz Core 2 processor and 4 GB RAM. 
 

5. CONCLUSIONS 

This paper presented a robust phase correlation based sub-pixel 
feature matching technique and its application in motion flow 
estimation, pixel-to-pixel image co-registration, and DEM 
generation. In particular, a median shift propagation (MSP) 
technique has been introduced to refine the unreliable motion 
estimation in image areas either featureless or subject to 
significant spectral changes. 
 
Our experimental results have demonstrated that the robust 
phase correlation based technique is able to achieve sub-pixel 
accuracy and good performance in global and local feature 
matching, motion flow estimation and disparity mapping for 
DEM generation on most synthetic and real images from 
different sensor platforms or different spectral bands. The 
strengths of the proposed techniques are its algorithm 
simplicity, its robustness to illumination change and its good 
performance in featureless or low correlation areas. 
 

6. ACKNOWLEDGEMENT 

The work reported in this paper was funded by the Systems 
Engineering for Autonomous Systems (SEAS) Defence 
Technology Centre established by the UK Ministry of Defence. 
 
 

7. REFERENCES 

Bab-Hadiashar, A. and Suter, D., 1998. Robust optic flow 
computation. Int. J. Comp. Vision. vol. 29, No. 1, pp. 59-77. 

Balci, M. and Foroosh, H., 2005. Inferring motion from the 
rank constraint of the phase matrix. IEEE ICASSP 2005 Proc., 
Vol. II, pp. 925-928. 

Barron, J. L., Fleet, D. J., and Beauchemin, S. S., 1994. 
Performance of optical flow techniques. International Journal 
of Computer Vision, vol. 12, no. 1, pp. 43-77. 

Comaniciu, D. and Meer, P., 2002. Mean shift: a robust 
approach toward feature space analysis. IEEE Trans. Pattern 
Anal. Machine Intell.. vol. 24, no. 5, pp. 603-619. 

Fleet, D. J., 1994. Disparity from local weighted phase-
correlation. IEEE International Conference on Systems, Man 
and Cybernetics, pp. 48-56. 

Foroosh, H., Zerubia J. B., and Berthod, M., 2002. Extension of 
phase correlation to subpixel registration. IEEE Trans. Image 
Processing, vol. 11, no. 3, pp. 188-200. 

Hoge, H. S., 2003. Subspace identification extension to the 
phase correlation method, IEEE Trans. Medical Imaging, vol. 
22, no. 2, pp. 277-280. 

Kuglin, C. D. and Hines, D. C., 1975. The phase correlation 
image alignment method. Proceeding of IEEE International 
Conference on Cybernetics and Society, pp. 163-165, New 
York, NY, USA. 

Liu, J. G. and Yan, H., 2006. Robust phase correlation methods 
for sub-pixel feature matching. Proceeding of 1st Annual 
Conference of Systems Engineering for Autonomous Systems, 
Defence Technology Centre, A13, Edinburgh, UK. 

Liu, J. G. and Yan, H., 2008. Phase correlation pixel-to-pixel 
image co-registration based on optical flow and median shift 
propagation. International Journal of Remote Sensing, to 
appear. 

Reddy, B. S. and Chatterji, B. N., 1996. An FFT-based 
technique for translation, rotation, and scale-invariant image 
registration. IEEE Trans. on Image Processing, 5, no. 8, pp. 
1266-1271. 

Stone, H. S., Orchard, M. T., Chang, E.-C., and Martucci, S. A., 
2001. A fast direct Fourier-based algorithm for subpixel 
registration of image, IEEE Transactions on Geoscience and 
Remote Sensing, vol. 39, no. 10, pp. 2235-2243. 

Tian, Q. and Huhns, M. N., 1986. Algorithms for subpixel 
registration. CVGIP, vol. 35, pp. 220-223. 

Wang, F., Prinet, V., and Ma, S., 2001. A vector filtering 
technique for SAR interferometric phase image, 
http://kepler.ia.ac.cn/publications/2001/Wangfeng 

Wang, H. and Suter, H., 2004. A very robust estimator for 
modelling fitting and range image segmentation. International 
Journal and Computer Vision, vol.59, no. 2, pp. 139-166. 

Zitova, B. and Flusser, J., 2003. Image registration method: a 
survey. Image and Vision Computing, vol. 21, pp. 977-1000. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

 

1756




