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ABSTRACT: 
 
Forest ecosystem could significantly sequestrate some atmospheric CO2 and, therefore, partly mitigate current pressure on global 
warming. The carbon sequestration capacity of forest ecosystem is determined by both the NPP increase trend and turnover time. In 
order to estimate the capability of forest C sequestration in China, a carbon turnover model, which bases on NPP increase trend 
monitored by remote sensing and carbon turnover time derived from forest observed data, was designed. Modelled results illustrated 
that China forest is an apparent carbon sink with a magnitude of 0.052 PgC a-1, in which about 0.034 PgC a-1 in plant tissues and 
the other of 0.018 PgC a-1 in soil. The further analysis on carbon sequestration efficiency (CSE) indicated that the CSE value is 
controlled by carbon turnover time. 
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1. INTRODUCTION 

Since industry revolution, burning of fossil fuel and landuse 
change have released a lot of greenhouse gas CO2, which results 
in global warming and a series of environmental problems
（Solomon et al,2007） How to mitigate the increasing rate of 
CO2 effectively is not only a science problem, but also a 
political and economical problem(Young., 2003).Because of the 
regrowth of forest can absorb CO2 effectively, much attention 
has be paid to forest fixed C (Fang et a,2007). It is an effective 
measurement for alleviating global warming 
(Andrasko,1990;Brown et al,1996). With the sign of Kyoto 
Protocol and the implement of policy to reply global warming, 
research and application of forest C sink has been given a lot of 
attention (Cannell et al,1999;Dai et al,2004) . 
Forest ecosystem exchange C with atmosphere by 
photosynthesis and respiration. If C absorbed is larger than 
released, forest ecosystem can be called carbon sink, otherwise, 
it is carbon source.   
 
There are many factors influenced ecosystem C sink, such as 
climate change(Dai et al,1993), CO2 fertilization(Cramer et 
al,2001), N sedimentation(Holland et al,1997)and landuse 
change(Houghton et al,1999).Because there is a large spatial 
heterogeneity of ecosystem and the difference of affection 
factors, a lot of uncertainties of ecosystem C sink research 
exist(Denman et al,2007).Results showed that no matter the 
simulation method based on progress model(Cao et 
al,2003;Wang et al,2007) or on forest checked data(Liu et 
al,2000;Fang et al,2007) ,there are a lot of differences for 
carbon sink estimation. 
 
Two major factors determined the capacity of C sink of forest 
ecosystem: increase trend of NPP and C turnover time(Luo et 
al,2003).Forest growth and regrowth lead to more and more C 
enter the ecosystem, so it is a external driven factor for C 

sequence. While the carbon sink efficiency is determined by 
carbon turnover time(Luo et al,2003). With the same NPP 
increase trend, the longer of the carbon turnover time, the 
higher of the forest carbon sequence and carbon sink efficiency 
is. This paper based on NPP increase trend driven forest 
ecosystem carbon turnover model, simulates the annual change 
of forest carbon sink from 1982~1999, estimates the capability 
of sequence C by vegetation and soil, and discuses the 
efficiency of carbon turnover time to forest carbon sink 
efficiency . 
 
 

2. METHOD AND DATA 

2.1 Model structure 

The structure of carbon turnover model based on NPP increase 
trend is as figure 1.For each kind of forest, there are 3 layers: 

arbor, shrub and herb. NPP after revise（ ） is 
distributed to arbor, shrub and herb pool based on distribution 

ratio （

)( *
amNPP ε

tα 、 shα
 hα

） . NPP entered arbor is further 

distributed to stem, leaf and root according to ratio （ sα
、

lα 、 rα
）. Carbon entered ecosystem, part is form biomass

（ 、 、 、 、 、 ） , and the other is 
deviate from the carbon pool, the rate of which is determined by 

turnover time （

tq shq hq sq lq rq

tτ 、 shτ
、 hτ 、 sτ 、 lτ 、

rτ ）.Vegetation litter fall entered litter and soil organic matter

（ ）, part is form soil carbon sink , the other is released to socq
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atmosphere by heterotrophic respiration.Its rate is based on soil 

carbon turnover time（ socτ
）. 

 
 

 
 

Fig.1 The forest ecosystem carbon turnover model driven by 
NPP increasing trend 

 
Since the late 1970s, Chinese government has implemented 
several large forest ecological programs(Shen,2000) .At the 
same time , Fang(Fang et al,2001)have showed that Chinese 
forest carbon sink increase from 1980s. This paper supposing 
that 1982 is a balance point, simulates the annual change and 
accumulation of forest carbon sink from 1982 to 1999 based on 
formula 1~6. 
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2.2 Parameter determination 

NPP increase trend and intensity is the external driven factor of 
ecosystem. Determining the quantity and trend of NPP is the 
key for ecosystem carbon sink stimulation. CASA model based 
on remote sensing data is used in different spatial scale. It can 
stimulate both the spatial distribution and change of local scale 
NPP very well(Potter et al,1993;Piao et al,2005;Zhu et al,2006). 
In CASA model, NPP is the function of APAR, maximum light-

use efficiency variable , light-use efficiency stressed 

temperature  and moisture . 

*ε
εT εW

 
 

εεε WTPARfAPARNPP ⋅⋅⋅⋅= *                        (7) 
 
 

Where… = the absorbed ratio of PAR by vegetation, 
and it is calculated by remote sensing data NDVI. 

fAPAR

 

In CASA model,  is the most important parameter for the 
precision of CASA estimated NPP(Peng et al,2000). It usually 
change with vegetation kind (Ruimy et al,1999;Zhu et al,2006). 

It is very important to determine  of different vegetation 
kinds for the absolute amount of annual NPP increase trend 
estimation. However, the annual change of vegetation kind is 
small in spatial distribution, so the relative trend of NPP will 
not change (Piao et al,2005). Piao (Piao et al,2005) stimulated 
NPP increase trend of different ecosystem from 1982 to 1999 in 

China by CASA model whose  is a constant（  = 0.405 
gC MJ-1）.  

*ε

*ε

*ε *ε

Because the driven factor of forest carbon sink is NPP increase 
trend, here we combine the NPP increase trend of Piao(2005) 
with NPP observed data from 1266 forest sample plots of Luo 

(Luo et al,1996), revise  of CASA model（ ）, attain 

revised NPP （ ）and its annual change to drive 
carbon turnover model, such as figure1 

*ε
*
aε

)( *
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o
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Where…  =the maximum light-use efficiency variable
（0.405 gC MJ-1）， 

*ε

0NPP
=the observed NPP in sample plot， 

)( *εmNPP
= the stimulated perennial annual NPP 

by . 
*ε
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In this research, carbon distributed ratio and turnover time are 
attained by observed data, in which carbon distributed ratio is 
attained by plot observed data of Luo, and turnover time of each 
pool is estimated by carbon storage and flux data of vegetation 
and soil by Luo(1996) and Wang(2003). 
 
 

3. RESULTS AND DISCUSSION 

3.1 Maximum light-use efficiency variable  
*ε

*ε  after revising (Tabel.1) indicates that, for different forests, 

 has a lot of discrepancies. of EBF and DBF is largest, 
reach to 0.896 and 0.853 respectively. It is consistent with 
Zhu’s result(Zhu et al,2006) and nearer to Peng’s result(Peng et 

al,2000) which shows that  in Guangdong is get to 1.25gC 

MJ-1, larger than  of CASA. It illustrates that revised  
can reduce the differences of the stimulated NPP and observed 
NPP. At the same time, NPP increase trend is consistent with 
Piao’s result(Piao et al,2005). 

*ε *ε

*ε
*ε *ε

 
 

Code Forest kind number *ε  
*
aε  

1 EBF 260 0.405 0.896 
2 DBF 301 0.405 0.853 
3 ENF 613 0.405 0.846 
4 DNF 48 0.405 0.695 
5 BNMF 22 0.405 0.639 

 
Table 1 The maximum light-use efficiency of major forest 

ecosystem in China 
 
EBF, evergreen broadleaf forests; DBF, deciduous broadleaf 
forests; BNMF, broadleaf and needleleaf mixed forests; ENF, 
evergreen needleleaf forests; DNF, deciduous needleleaf forests 
 
3.2 Forest carbon sink and annual change 

The stimulated result of ecosystem carbon sink in China forest 
indicates that NPP increase trend is corresponded closely with 
forest carbon sink. NPP monitored by remote sensing increases 
obviously (Figure2a), which makes the accumulated NPP enter 
the ecosystem increase markedly (Figure2b). It leads to the 
annual(Figure2c) and accumulated(Figure2d) change of forest 
ecosystem carbon sink. So NPP incensement is the essential 
factor driven China forest carbon sink. In different forests, the 
carbon sink of ENF and EBF is largest for its largest area and 
increase trend, while DNF and BNMF is smallest. 
 

 
Fig.2 The annual variety and accumulation of carbon sink in 

forest ecosystem  

From 1982 to 1999, accumulated forest carbon sink is 0.876 
PgC, annual average is 0.052 PgC. Besides, carbon sink of 
vegetation is 0.034 PgC, of soil is 0.018 PgC. For vegetation, 
the carbon sink of arbor is largest（0.032 PgC a-1）, next is 
shrub（0.002 PgC a-1）, the herb is smallest(0.0002 PgC a-1). 
Because the turnover time is short, carbon distributed to herb 
put into the soil carbon pool quickly (Figure3a). For different 
tissue of arbor, carbon sink of stem is largest（0.023PgC a-1）, 
account for 72% of the total. Next is root（0.006 PgC a-1）, 
which is 19% of the total. The carbon sink of leaf is smallest
（0.003 PgC a-1）, only 9%(Figure 3b). The carbon sink of 
arbor root is smaller than of stem. It is consistent with the fact 
that NPP distributed to stem is larger than to the root(Luo,1996). 
 

 
Fig.3 The cumulative carbon sequestration of forest（a）

vegetation (b) organ of arbor 
 

Table 2 is the comparation of stimulated vegetation carbon sink 
with the results of other researchers. The estimated value of this 
research is higher tan Fang(2001), Liu(2000) and Piao’s(2005) 
results based on forest observed data, which is between 
0.019~0.029 PgC a-1, but lower than Fang’s (2007)result
（0.075 PgC a-1）. The canopy density of forest changes from 
30% to 20% may lead to the carbon sink estimation on the high 
side(Fang et al,2007). Compare  with forest carbon sink 
estimated by other models, this result is consistent with 
Wang’s(2007), which estimates China forest carbon sink by 
InTEC model. The change scale of it is 0.011~0.055 PgC a-1. 
 
 

Researcher Vegetation carbon sink（PgC a-1） 
Author 0.034 

Liu
（2000） 

0.027 

Fang
（2001） 

0.021 

Piao (2005) 0.019 
Fang

（2007） 
0.075 

Cao  (2003) 0.07 
Wang 
(2007) 

0.011~0.055 

 
Table 2 The comparison of forest vegetation carbon sink  
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For total forest ecosystem of China, carbon sink is major in root, 
stem and leaf of vegetation. The carbon sink of soil is only half 
of the vegetation（53.8%）. But in the USA, carbon sink in 
soil is 2/3 of the sink in vegetation(Wang et al,2007). In Europe, 
soil carbon sink is 30% (Janssens et al,2003) .The soil carbon 
sink in China forest is similar to in the USA. Huang et al(2006). 
research the change trend of organic carbon in cropland of 
China, results showed that, in the last 20 years, the soil organic 
carbon in the cropland increase 0.31~0.40 PgC, annual average 
is 0.016 to 0.02 PgC a-1, which is equivalent to the carbon 
sequenced in forest soil. Given the area of cropland（166.73×
106ha ） is larger than forest （ 124.29 × 106ha ） , carbon 
sequenced in forest soil is about 1.2 ~1.6 times of the cropland 
in unit area.  

 
3.3 Forest carbon sequestration efficiency 

Besides NPP increase trend, carbon turnover time is another 
significant reference for carbon sink(Luo et al,2003) .For forest 
ecosystem, carbon sequestration efficiency (CSE )means the 
carbon sink produced by unit NPP. 
Results showed that, the CSE of EF is larger than of DF, the 
largest is in ENF and the smallest is in DNF. From large to 
small, the CSE is ENF > BNMF > EBF > DBF > DNF. The 
further analysis indicates that, CSE of forest is controlled by 
carbon turnover time obviously. There is a markedly linear 
relationship between them（R2＝0.91）. That is the longer of 
the carbon turnover time, the higher of the vegetation 
CSE(Figure 4). 

 

 
 

Fig. 4 The relationship between carbon sink efficiency and 
carbon turnover time of forest vegetation 

 
 

4. RESULTS 

This paper use monitored forest ecosystem NPP increase trend 
based on remote sensing and carbon turnover time model driven 
by NPP increase trend, estimate average carbon sink and annual 
change of China forest ecosystem. Results indicate that, NPP 
increase trend is corresponded with forest carbon sink closely. 
NPP increase is the essential factor driven forest carbon sink in 
China. Form 1982 to 1999, the annual average carbon sink of 
forest ecosystem in China is 0.052 PgC a-1, of which, carbon 
sink in vegetation is 0.074 PgC a-1, in soil is 0.018 PgC a-1.In 
different forests, the attribution of ENF and EBF is largest, 
while the smallest is in DNF and BNMF. CSE analysis shows 
that, CSE of forest vegetation is controlled by carbon turnover 
time, from largest to smallest, the CSE is ENF > BNMF > EBF 
> DBF > DNF. That is to say, when NPP increase trend is 
unchanged, the carbon sink of ENF is largest, of DNF is 
smallest.  
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