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ABSTRACT: 
 
Coastal change analysis, particularly of the variation in shorelines and blufflines, is critical for coastal disaster mitigation, 
environmental protection, resource management, and coastal development decision making. As data from a variety of sources has 
become more easily available, it is highly desirable to investigate a strategy for the integration of multi-dimensional geospatial data 
for coastal mapping and change analysis. This paper summarizes an investigation of techniques for integrating satellite images, aerial 
images, and LiDAR data for high precision coastal mapping. The integration of IKONOS and QuickBird satellite stereo image pairs 
with aerial images for shoreline mapping and the integration of LiDAR data and aerial orthoimages for coastal bluffline extraction 
are both examined. Experiments using data collected at Tampa Bay, Florida, and Lake Erie, Ohio, have shown that sub-meter 
measurement accuracy can be achieved through these integration strategies. Using improved mapping products based on these new 
techniques, bluffline erosion analysis was conducted at Lake Erie near Painesville, Ohio, and correlations between bluffline 
recessions and various geological and meteorological factors were examined. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The coast is an area of intensive interactions between land, sea, 
and air. More than 80 percent of the U.S. population lives 
within 50 miles of the coast (Mayer et al., 2004). Coastal 
change analysis has been listed as one of several priority issues 
in coastal management in the U.S. Accurate geospatial 
information about coastal environments and processes, both 
onshore and offshore, will help coastal managers to understand 
the effects of complex natural and anthropogenic forces in the 
coastal zone and to facilitate their decision-making processes 
for controlling coastal erosion, for example. Recent advances in 
geospatial technologies such as remote sensing, global 
positioning, data handling along with new computing 
technologies have dramatically changed the density, accuracy, 
timeliness, and inherent nature of coastal mapping data and 
related data products. Huge amounts of coastal information 
have been gathered by public agencies, academic institutions, 
and private companies. Advanced methods for integrating and 
applying these multi-source data, along with their associated 
levels of accuracy, could significantly improve coastal 
management, especially erosion control. 
 
This paper will describe accurate coastal mapping techniques 
that have been developed using the integration of multi-
dimensional geospatial data including satellite imagery, aerial 
imagery, and LiDAR data to produce such coastal mapping 
products as shorelines and blufflines with sub-meter level of 
accuracy. The resulting sub-meter level mapping products were 
used to analyze the influence different geological and 
meteorological factors on coastal changes.  
 

2. INTEGRATION STRATEGIES FOR ACCURATE 
COASTAL MAPPING 

2.1 Integration of satellite and aerial images for shoreline 
extraction 

For our study, in the southern region of Tampa Bay, Florida, 24 
aerial images, a pair of IKONOS and QuickBird stereo images 
are available that cover the same local area (Figure 1 and Table 
1). It is of great importance to study the geopositioning 
accuracy attainable by different combinations of imagery from 
different sources. This section first investigates the integration 
of IKONOS, QuickBird, and aerial images using the data 
collected at Tampa Bay. Based on the results of this analysis, 
shoreline extraction was performed using these IKONOS and 
QuickBird satellite images and was compared with the water-
level data from the closest gauge station. 
 
Figure 1 shows the IKONOS and QuickBird stereo pairs and 
aerial images that cover the research test area. Eleven GPS 
ground control points were used in the present study for the 
aerial images. Block bundle adjustment was performed using 
GPS control points, five of which were used as ground control 
points (GCPs) and the remaining six points as check points 
(CKPs). These are illustrated as triangles (GCPs) and circles 
(CKPs) in Figure 1. Rational polynomial coefficients (RPCs) 
for the aerial images were acquired using virtual control points 
(VCPs) (Di et al., 2003), which were generated using the 
interior and exterior orientation parameters along with the 
image plane coordinates of the aerial images by assuming a 
suitable value for the Z-coordinates in the object space. For the 
satellite images, the vendor-provided RPCs are usually 
computed without using GCPs, which results in lower accuracy 
of the ground coordinates. Hence, an affine transformation was 
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employed to refine the image coordinates of the satellite images 
as follows. 
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where, (i, j) and (i′, j′) represent the measured and calculated 
image coordinates of the GCPs, respectively. Affine 
transformation parameters were represented by a0 to a2 and b0 
to b2. Then, the measured image coordinates of CKPs were 
refined using the computed affine transformation parameters. 
Correction was not applied to image coordinates of CKPs from 
aerial images as RPCs for the aerial images were obtained using 
VCPs thus considered more accurate. Finally, the aerial image 
coordinates and refined satellite image coordinates of the CKPs 
were used to calculate the ground coordinates of CKPs using 
the RPCs. The performance of various image integration 
schemes was then evaluated by comparing the computed 
ground coordinates of the CKPs with those obtained from aerial 
triangulation.  
 
 

 
 

Figure 1. Distribution of GCPs and CKPs on IKONOS, 
QuickBird, and aerial images 

 
Two types of combinations of satellite images and aerial images 
were examined. In the first type, Two pairs of IKONOS and 
QuickBird stereo images and 24 aerial images were considered 
to form seven various image networks and to study the effect of 
geopositioning by integrating different sets of images. Four 
evenly distributed GPS control points were used as GCPs, and 
27 points determined by aerial triangulation were used as CKPs, 
which were present in the common area of the satellite and the 
aerial images. The 3-D geopositioning accuracies for each 
combination were calculated (Table 2). In the second type, the 
same two pairs of IKONOS and QuickBird images were 
integrated with only one aerial image or one pair of aerial 
images. The same four GPS control points were used as GCPs, 
and ten CKPs in the common area of the aerial stereo image 
pair and the satellite images were used for accuracy assessment. 
The results are listed in Table 3. 
 
 
 
 

QuickBird  Forward  Backward  
Acquisition date  2003-09-12 2003-09-12
Acquisition time (GMT) 15:58:08 15:59:17 
Image resolution 0.767 m 0.751 m 

Image size (row x column) 25776 × 
27552 

24620 × 
27552 

Collection azimuth (θ) 17.7° 184.5° 
Collection elevation (α) 58.7 ° 59.2° 
 IKONOS 
Acquisition date 2004-07-08  2004-07-08 
Acquisition time (GMT) 16:17:17 16:18:08 
Image resolution 1 m 1 m 

Image size (row x column) 8484 × 
12160 

8484 × 
12160 

Collection azimuth (θ) 40.8° 120.1° 
Collection elevation (α) 60.8° 74.1° 

 
Table 1. Parameters of satellite stereo images 

 
 

3-D Geopositioning 
Accuracy (RMSE: m) Combinations 
σx σy σz 

IK (S) 0.770 1.241 1.058 
QB (S) 0.919 0.538 0.753 
IK (S) + QB (S) 0.825 0.674 0.611 
AI + IK (S) 0.132 0.172 0.385 
AI + QB (S) 0.248 0.125 0.346 
AI + IK (S) + QB (S) 0.272 0.191 0.359 
AI 0.108 0.100 0.330 
Note: S: stereo; QB: QuickBird; IK: IKONOS; AI: Aerial images 

 
Table 2. Geopositioning accuracy of the integration of satellite 

images and all 24 aerial images 
 
Based on the results shown in Table 2, it was observed that the 
accuracy obtained by the QuikBird stereo pair is overall better 
than that obtained by the IKONOS stereo pair. Furthermore, 
accuracy obtained by the integration of the two satellite stereo 
pairs with the aerial images is better than that obtained by the 
satellite stereo pairs individually, but is not better than the 
accuracy obtained by the aerial images only. This demonstrates 
that the image network of the aerial images is strong enough. 
By adding the weaker (resolution and small convergence angle) 
components of satellite images, the geopositioning accuracy 
cannot be improved. On the other hand, as shown in Table 3, it 
was found that by adding one aerial image to the satellite image 
network, the accuracy obtained in the X and Y directions is 
better than that obtained from the satellite images alone. In 
addition, by adding a stereo pair of aerial images (in the along 
track or Y direction) to the satellite image network, the 
accuracy obtained is further increased in the Y direction 
significantly, as well as in the Z direction.  
 
Geopositioning accuracy, particularly in elevation, using a 
stereo pair can be significantly affected by its formed 
convergence angle (Li et al., 2007; Niu et al., 2005). In this 
study, weak geometry is often formed by a pair of backward (or 
forward) -looking satellite images from the two orbits. This is 
demonstrated in Table 3 in the rows of “IK (B) – QB (B)” and 
“IK (S)” where the convergence angles are 27 degrees and 30 
degrees, respectively.  
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3-D accuracy after 
addition of one 
aerial image 
(RMSE: m) 

3-D accuracy 
after addition of 
one pair of stereo 
aerial image 
(RMSE: m) 

Combinations 

σx σy σz σx σy σz 
QB (S) – IK (S) 0.952 0.915 0.797 0.952 0.915 0.797
IK (B) – QB (B) 0.692 0.819 1.588 0.645 0.192 1.032
IK (F) – QB (F) 0.382 0.364 0.537 0.356 0.265 0.517
IK (S) 0.327 0.763 1.014 0.341 0.423 0.708
QB (S) 0.532 0.425 0.800 0.528 0.259 0.748
IK (B) - QB (F) 0.491 0.443 0.782 0.476 0.276 0.724
IK (F) - QB (B) 0.450 0.622 0.885 0.478 0.348 0.761
Note: S: stereo; F: forward; B: backward; QB: QuickBird; IK: IKONOS 
 
Table 3. Geopositioning accuracy of the integration of satellite 

images with one or one pair of aerial images 
 
 
Based on the above analysis of image integration strategies, 3-D 
shorelines were derived from IKONOS stereo images and 
QuickBird stereo images. Points along the shoreline on the 
satellite image pairs were manually identified, and their 
corresponding 3-D coordinates were calculated based on the 
RPCs and the refined measured image coordinates. The 
elevations of the derived shorelines were compared to gauge 
stations’ water level observations. As only predicted water level 
at the imaging time of IKONOS images was available at the 
closest gauge station, real observations from two other nearest 
gauge stations were also used in this comparison to ensure the 
quality of the comparison. It was found that the QuickBird 
shoreline was on average 0.2 m lower and the IKONOS 
shoreline was on average 0.5 m higher. Both resulting 
differences are within the vertical accuracies of the QuickBird 
and IKONOS stereo images.  
 
2.2 Integration of LiDAR data and aerial orthoimages for 
bluffline extraction 

In addition to satellite imagery and aerial photographs, LiDAR 
data has been widely used recently for coastal resource 
management. Despite its high vertical accuracy (centimetre 
level), its lower horizontal accuracy limits its usefulness for 
mapping shorelines, which requires highly accurate position 
information. To improve the accuracy of shoreline mapping, a 
new method for coastal bluffline extraction has been developed 
using the integration of LiDAR data with high-resolution 
orthoimages.  
 
This study looked at an area located in Painesville, Ohio along 
the southern shore of Lake Erie (Figure 3a) that has been 
identified as highly vulnerable to severe erosion (Zuzek et al., 
2003; Srivastava et al., 2005). Two bluff regions, Region 1 and 
Region 2 (extending 670 m and 2 km, respectively) were used 
in this research for bluffline extraction (Figure 3a). The LiDAR 
data was collected in December, 1998 using a LiDAR sensor of 
the ATM (Airborne Topographic Mapper). Accuracy was 15 
cm and 0.8 m in the vertical and horizontal directions, 
respectively. The nominal ground spacing was 3 m. The aerial 
orthoimages were collected in April, 2000. The ground 
resolution of the orthoimages was 0.15 m.  In this area, 
historical blufflines are also available. 
 
 

  
 (a) (b) 
 

Figure 3. (a) Orthoimages showing the shaded study regions 
along the Ohio shoreline of Lake Erie and (b) orthoimage for 
Region 1 showing the initial blufflines extracted from LiDAR 

data, historical bluff top line, and transects perpendicular to the 
historical bluff top line 

 
 
In this research, a bluffline from start point A1 to end point An+1 
(represented as A1An+1) was divided into a finite number (n) of 
segments A1A2, A2A3, ..., AnAn+1 that were defined by their 
start and end points A1 (x1, y1, z1), A2 (x2, y2, z2), ..., An (xn, yn, 
zn), and An+1(xn+1, yn+1, zn+1). These segments of sufficiently 
short distances can be approximated as bluffline. The blufflines 
thus extracted from the images and LiDAR data will be a 
sequence of detected bluff top or toe points separated by short 
distance. 
 
It was found that in the 3.2 km length of shoreline examined in 
this experiment the bluff height ranged from 6 m to 24.3 m. 
Spikes exist in the raw LiDAR data. Median filter was used to 
filter the noises and to minimize the spikes. After filtering, the 
orthoimages were superimposed on the filtered data and a 
comparison was made to ensure that topographic features were 
not removed. A historical bluffline (bluff top) was used as a 
reference line to create a series of perpendicular transects 
(Figure 3b). The average distance between the transects was 30 
m. Three-dimensional elevation profiles were then generated 
along transects from the LiDAR digital surface model (DSM) 
and the bluff top and bluff toe were defined as shown in Figure 
4a. The bluff top and toe was determined by analyzing the 
elevation information from the LiDAR data set along the profile 
using the following unique characteristics: the variation of the 
slope along the elevation profile is generally greater at these 
two positions than anywhere else. The elevation profiles 
consisted of a sequence of linearly interpolated points from the 
LiDAR data with a uniform spacing d. Backward slope at Point 
i (i = 1, 2, …, n, increasing from water toward land) at m 
different scales based on a backward difference was computed 
as:  
 
 

 dj
HH

BSlope jiij
i ⋅

−
= +−+ 11

 (2) 
 
where, Hi is the elevation at Point i, j is the point index interval 
from Point i toward the water, and j = 1, 2, 3, …, m. For 
example, when j = 1,  and when j = 2, 

. 
dHHBSlope iii /1

1 −= +

)2/(11
2 dHHBSlope iii ⋅−= −+
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(a) 
 

 
 

(b) 
 
Figure 4. Elevation profile along a transect and slope variation: 
(a) typical 3-D elevation profile along a transect and influence 

caused by objects near the bluff top, and (b) slope profile 
 
 
It should be noted that sometimes vertical structures (such as 
trees) can be found near the bluff top that create a large change 
in slope yet do not represent the bluff top. Therefore, these 
vertical features need to be identified and excluded. For the 
elimination of such vertical features from the slope profile, it 
was assumed that these vertical features were symmetrical 
about their peak points based on the observation that in the 
slope profile such a vertical feature shows a large slope increase 
and also a more significant slope decrease due to symmetry. By 
scanning the slope profile (Figure 4b) from land to water, a 
point with a local minimum slope was identified. Theoretically, 
the central slope of the peak point B should be equal to zero. 
Based on the definition of slope, however, Point B was the next 
peak point adjacent to Point A. Because of the assumption of 
symmetry of the vertical feature, the horizontal distance 
between Points B and A along the transect should be equal to 
half of the bottom width of the feature. Once Points A and B are 
identified, Point C that was symmetric about Point B was 
identified. In practice, there could be multiple vertical features 
on the top of the bluff. These features were detected from the 
slope profile by examining the slope values. Considering the 
elevation profile spacing where d = 0.5 m, a BSlopei

10 a value 
of -0.4 can be obtained from a feature two meters above a 
relatively flat ground. For this research site, features taller than 
this height were identified by the following criterion. If the 
minimum slope along the elevation profile (BSlopemin) was 
lower than -0.4, all the points below the threshold BSlopemin/2 
were considered to be vertical feature candidates. The vertical 
features thus identified were excluded in the process of bluff 
top determination. 

After the backward slopes at the points along the transect have 
been calculated using Equation 2, a slope constraint (SC) was 
then defined as SC = BSlopemax/4. The bluff top candidates 
along the slope profile were determined as those points that had 
slope value . Since there was no significant 
slope increase beyond the bluff top point, the numbers of the 
candidates identified above were then reduced by checking each 
point to satisfy the criteria . The above 
two steps identified multiple bluff top candidates. The point 
with maximum elevation was identified as the bluff top. A 
similar procedure was adopted on an inverted profile of the 
transects to obtain the bluff toe point. The algorithm described 
above was repeated for all elevation profiles. The identified 3-D 
bluff top and toe points were then connected across the profiles 
to form the initial blufflines (top and toe).  

SCBSlopei ≥10

10
1

10
+≥ ii BSlopeBSlope

 
 

Digitized bluffline 
vs. LiDAR 
bluffline (m) 

Digitized bluffline 
vs. refined 
bluffline (m) 

 

X Y Z X Y Z 
Region 1: 
bluff top 1.41 3.90 0.51 0.63 1.23 0.17

Region 2: 
bluff top 1.08 2.20 0.88 0.52 0.89 0.40

Combine: 
bluff top 1.18 2.69 0.77 0.55 0.99 0.34

Region 1: 
bluff toe 0.54 1.72 0.38 0.19 0.51 0.07

Region 2: 
bluff toe 1.13 2.35 0.65 0.39 0.86 0.21

Combined 
bluff toe 0.96 2.17 0.57 0.33 0.76 0.17

 
Table 4. Comparison of blufflines derived from different 

sources. 
 
The initial blufflines derived from LiDAR data were 
superimposed on the orthoimage. In most locations these initial 
blufflines were very close to the corresponding features seen on 
the orthoimage. However, at some positions the lines deviate 
significantly from the orthoimage positions. Therefore, the 
initial blufflines were refined through the following steps. First, 
mean-shift segmentation (Comaniciu and Meer, 2002) followed 
by a surface reconstruction method (Kovesi, 2003) was applied 
to the orthoimages to enhance image edge features. Second, an 
edge detection technique was used to extract the blufflines from 
the surface-reconstructed image. Third, Iterative Closest Point 
(ICP) algorithm (Besl and McKay, 1992; Nikolaidis and Pitas, 
2001) was applied to refine the planimetric positions of the 
blufflines extracted from the LiDAR data using the edges 
detected from the orthoimages. Finally, the Z-coordinates of the 
refined blufflines were interpolated from LiDAR data at the 
refined point positions. 
Both blufflines extracted from LiDAR data and the blufflines 
resulting from refinement using orthoimages were compared 
with blufflines manually digitized from the orthoimages. 
Averages of the absolute differences between the two lines in 3-
D coordinates (X: east; Y: north; and Z: elevation) were 
calculated at points where the transects intersect the 
corresponding blufflines. The results, summarized in Table 4, 
show that, the refined blufflines using orthoimages are better 
horizontally than the blufflines directly extracted from LiDAR 
data, the refined bluff top and bluff toe lines are closer to the 
manually digitized blufflines.  
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3. COASTAL EROSION ANALYSIS 

To further understand the mechanism of coastal erosion and to 
facilitate the analysis of factors that cause changes along the 
coast, coastal change information was derived based on the 
above accurate coastal mapping products and historical coastal 
geospatial information. To study this technique, coastal change 
analysis was conducted along the southern coast of Lake Erie in 
the Painesville area in Ohio. In this area, coastal erosion has 
been a major cause of significant loss of property over the past 
decades, with an annual erosion rate above 1.03 m per year over 
the period from 1973 to 2000. The data collected and used in 
this research includes measured blufflines, elevation and slopes 
of blufflines, wind speed and direction, wave height and 
direction, water level, storm events, precipitation, soil type, and 
land use. 
 
The blufflines were measured in 1973, 1990, 1994, 2000, and 
2004 from the integration of multi-source data. Wind and wave 
information for the period 1973 to 1987 were acquired from the 
WISWAVE model created by the NOAA Great Lakes 
Environmental Research Laboratory (GLERL). Wind and wave 
data for the period 1988-2004 were acquired from Lake Erie 
Buoy No. 45005 (near Cleveland), which is approximately 60 
miles from Painesville. Data on water levels was extracted from 
the Cleveland gauge station managed by the NOAA Center for 
Operational Oceanographic Products and Services (CO-OPS). 
This gauge station is approximately 30 miles from Painesville. 
Data on storm events for the area near Painesville for the period 
1973-2004 was gathered from the NOAA National Climatic 
Data Center (NCDC). Data on precipitation for the period 1973-
2004 was acquired for the Painesville area from the NOAA 
National Weather Service. Two different sources for land cover 
and land use data were used: the Ohio Department of Natural 
Resources (ODNR), and the NOAA Coastal Service Center 
(CSC). Elevation and slope data for the bluffline were gathered 
from the collected digital elevation models (DEMs). The only 
DEMs available at the time of this analysis were for 2000 and 
2004. 
 
In our analysis, recession rate was used to estimate bluffline 
erosion. The recession rate at Lake Erie in the Painesville area 
was calculated based on recession distances measured between 
blufflines from five different years: 1973, 1990, 1994, 2000, 
and 2004. A reference line connecting the extreme end points of 
the 1973 bluffline was formed and perpendicular transects 
linking each point on the bluffline were produced. The transects 
were extended to intersect other blufflines. Each point where 
the transect lines intersected other bluffline polylines were 
selected as a new node. The distance along the transect line 
between different blufflines was then calculated using the new 
nodes and the points on the 1973 bluffline. This difference was 
the recession distance for each measured point over the period 
between the two blufflines. Recession rates were calculated 
based on the calculated recession distances and the number of 
years relevant to each individual analysis. The analysis was 
performed at both regional and local scales as follows (Li et al., 
2008). 
 
3.1 Analysis at the regional scale  

The goal of analysis of erosion factors at the regional scale was 
to find out which factor(s) were linked directly to the recession 
rate. Five factors (wind speed, wave height, precipitation, water 
level, and storm events) were employed in this regional analysis. 

These factors were related to shoreline change (Hanson and 
Kraus, 1989) and thus could also be factors in bluffline change.  
 
Relationships between factor pairs were first analyzed before 
considering recession rate. It was found that annual mean wind 
speed and annual mean wave height were highly correlated. 
Similarly, it was found that there was a positive correlation 
between precipitation and wind speed (0.45 correlation 
coefficient). The relationship between precipitation and wave 
height also showed a positive correlation between the two 
factors (0.47 correlation coefficient). Other factors did not show 
significant correlation. 
 
Comparisons of recession rate to wind speed, wave height, 
regular daily wind speed, and wave action did show correlation. 
A strong correlation (0.94) between recession and wind speed 
in storm events was found. Similarly, a strong correlation (0.9) 
was found between recession rate and average hourly water 
level 
 
3.2 Analysis at the local scale 

In the local analysis, the influence on recession rate of factors 
such as: bluff top elevation, slope of the bluff top, curvature of 
the bluffline, and the soil type and land use type of the bluff top 
were analyzed. It was observed that average recession is larger 
wherever elevation was lower and smaller wherever elevation 
was higher. Further, it was found that higher slope at the bluff 
top would produce a higher recession rate. Curvature was 
calculated using three consecutive nodes along the bluffline. 
Positive curvature represents a bay, and negative curvature 
represents the location where the land stretches into the water. 
It was found that larger the curvature, the larger the recession, 
making negative curvature an important factor in bluffline 
erosion. 
 
In the comparison between land use and land cover (LULC) 
along with soil type and recession rate, it was found that 
Swanton fine sandy loam and Painesville fine sandy loam soil 
types had more erosion than other soil types in the region under 
similar LULC conditions. It was also found that significant 
erosion happened in urban areas where the soil type was 
Swanton fine sand loam. In was noted that among all the soil 
types represented in the test area, the two soil types with the 
largest recession have the smallest K factors (soil erodibility 
factor), which may relate to the erosion pattern in this region. 
 
 
 

4. CONCLUSIONS 

This paper represents methods to integrate geospatial data sets 
from multiple sensors to increase mapping accuracy and their 
application to coastal management and coastal change analysis. 
Based on the analysis and experiments, it can be concluded that: 
1) Geopositioning accuracy of satellite images can be 

enhanced by adding higher resolution aerial images (even 
just a stereo pair). However, it was found that the 
improved accuracy would not be better than that of aerial 
images that form a strong network. Further, the extracted 
shorelines from the integrated satellite images have a 
vertical accuracy of ±0.2 m to 0.5 m compared to the 
gauge station data, which is within the elevation 
uncertainty of the satellite images. 

2) The blufflines derived from the integration of airborne 
LiDAR data and orthoimages are closer to the manually 
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digitized blufflines and demonstrated that such an 
integration enhanced the overall shoreline quality 
compared to those extracted from either one of the data 
sources. 

3) In the analysis of bluffline recession in the Painesville area, 
it was found that water level and wind speed in storm 
events are the major factors associated with bluffline 
recession. Other factors that affected bluffline recession 
were elevation and slope of the bluff and curvature of the 
bluffline. It was also found that significant erosion happens 
in urban areas where the soil type is Swanton fine sand 
loam. 
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	  (2)
	where, Hi is the elevation at Point i, j is the point index interval from Point i toward the water, and j = 1, 2, 3, …, m. For example, when j = 1,  and when j = 2, .
	It should be noted that sometimes vertical structures (such as trees) can be found near the bluff top that create a large change in slope yet do not represent the bluff top. Therefore, these vertical features need to be identified and excluded. For the elimination of such vertical features from the slope profile, it was assumed that these vertical features were symmetrical about their peak points based on the observation that in the slope profile such a vertical feature shows a large slope increase and also a more significant slope decrease due to symmetry. By scanning the slope profile (Figure 4b) from land to water, a point with a local minimum slope was identified. Theoretically, the central slope of the peak point B should be equal to zero. Based on the definition of slope, however, Point B was the next peak point adjacent to Point A. Because of the assumption of symmetry of the vertical feature, the horizontal distance between Points B and A along the transect should be equal to half of the bottom width of the feature. Once Points A and B are identified, Point C that was symmetric about Point B was identified. In practice, there could be multiple vertical features on the top of the bluff. These features were detected from the slope profile by examining the slope values. Considering the elevation profile spacing where d = 0.5 m, a BSlopei10 a value of -0.4 can be obtained from a feature two meters above a relatively flat ground. For this research site, features taller than this height were identified by the following criterion. If the minimum slope along the elevation profile (BSlopemin) was lower than -0.4, all the points below the threshold BSlopemin/2 were considered to be vertical feature candidates. The vertical features thus identified were excluded in the process of bluff top determination.
	After the backward slopes at the points along the transect have been calculated using Equation 2, a slope constraint (SC) was then defined as SC = BSlopemax/4. The bluff top candidates along the slope profile were determined as those points that had slope value . Since there was no significant slope increase beyond the bluff top point, the numbers of the candidates identified above were then reduced by checking each point to satisfy the criteria. The above two steps identified multiple bluff top candidates. The point with maximum elevation was identified as the bluff top. A similar procedure was adopted on an inverted profile of the transects to obtain the bluff toe point. The algorithm described above was repeated for all elevation profiles. The identified 3-D bluff top and toe points were then connected across the profiles to form the initial blufflines (top and toe). 
	The initial blufflines derived from LiDAR data were superimposed on the orthoimage. In most locations these initial blufflines were very close to the corresponding features seen on the orthoimage. However, at some positions the lines deviate significantly from the orthoimage positions. Therefore, the initial blufflines were refined through the following steps. First, mean-shift segmentation (Comaniciu and Meer, 2002) followed by a surface reconstruction method (Kovesi, 2003) was applied to the orthoimages to enhance image edge features. Second, an edge detection technique was used to extract the blufflines from the surface-reconstructed image. Third, Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; Nikolaidis and Pitas, 2001) was applied to refine the planimetric positions of the blufflines extracted from the LiDAR data using the edges detected from the orthoimages. Finally, the Z-coordinates of the refined blufflines were interpolated from LiDAR data at the refined point positions.
	Both blufflines extracted from LiDAR data and the blufflines resulting from refinement using orthoimages were compared with blufflines manually digitized from the orthoimages. Averages of the absolute differences between the two lines in 3-D coordinates (X: east; Y: north; and Z: elevation) were calculated at points where the transects intersect the corresponding blufflines. The results, summarized in Table 4, show that, the refined blufflines using orthoimages are better horizontally than the blufflines directly extracted from LiDAR data, the refined bluff top and bluff toe lines are closer to the manually digitized blufflines. 
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