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ABSTRACT:

Since remote sensing field provides new sensors and techniques to accumulate data on urban region, three-dimensional representation
of these regions gained much interest for various applications. Three-dimensional urban region representation can be used for detailed
urban monitoring, change and damage detection purposes. In order to obtain three-dimensional representation, one of the easiest
and cheapest way is to use Digital Elevation Models (DEMs) which are generated from very high resolution stereo satellite images
using stereovision techniques. Unfortunately after applying the DEM generation process, we can not directly obtain three-dimensional
urban region representation. In the DEM which is generated using only one stereo image pairs, generally noise, matching errors,
and uncertainty on building wall locations are very high. These undesirable effects increase the complexity in the three-dimensional
representation. Therefore, automatic DEM enhancement is an open and challenging problem.
In order to enhance DEM, herein we propose an approach based on building shape detection. We use DEM and orthorectified panchro-
matic Ikonos images of München to explain our method. After applying pre-processing to both DEM and Ikonos image, we apply local
thresholding to DEM to detect approximate locations of high urban objects like buildings. In order to detect complex building shapes,
we develop our previous rectangular shape detection (box-fitting) algorithm. Unfortunately, building shapes are very complex in our
study region. We assume that shapes of these complex buildings can be detected by fitting small rectangles like a chain. Therefore,
we divide detected buildings into elongated subparts. Then, we apply our previous rectangular shape detection algorithm to these
subparts. In shape detection, we consider Canny edges of Ikonos image to fit rectangular boxes. After merging all detected rectangles,
we detect shapes of even very complex building structures. Finally, using detected building shapes, we refine building edges in the
DEM and smooth the noise on building rooftops. We believe that the implemented enhancement will not only provide better visual
three-dimensional urban region representation, but also will lead to detailed change and damage investigations.

1 INTRODUCTION

Detection and three-dimensional reconstruction of buildings from
remotely sensed images has been popular research topic in the re-
cent years. Especially urban monitoring, damage assessment, dis-
aster monitoring fields need to achieve realistic three-dimensional
urban models. A rather new technology in this context is the Dig-
ital Elevation Model (DEM) generation based on stereo image
matching principle using satellite data. Unfortunately, there are
several problems in generated DEM. First, in most of the cases
only two stereo satellite images are available. Regions which are
occluded in one of these stereo images have no height value in
DEM data. Interpolation techniques, which are used to fill these
non-value regions, lead to lose sharpness in building edges. Gen-
erated DEM have limited resolution and raw DEM data may not
represent buildings correctly. Generally these deficiencies are im-
proved and three-dimensional buildings are reconstructed manu-
ally. For automation, some advanced processes are required to
enhance the DEM. Therefore we believe that, intelligent fusion of
computer vision techniques with photogrammetry can give better
results in three-dimensional city interpretation.

In the previous work there is a wide variety of study on build-
ing detection and shape extraction from two-dimensional single
satellite or aerial images. The earliest studies in this field gen-
erally depend on edge and line extraction (Krishnamachari and
Chellappa, 1996, Irvin and McKeown, 1989, Davis, 1982). Un-
fortunately, these methods generally fail to detect buildings which
have textured rooftops or which appear in complex environments.
In order to cope with this problem, Saeedi and Zwick (Saeedi

and Zwick, 2008) combined edge information with graph based
segmentation result of the region. To generalize building detec-
tion algorithm for different kind of environments, Sirmacek and
Unsalan (Sirmacek and Unsalan, 2010, Sirmacek and Unsalan,
2009) developed local feature based robust, fast, and automatic
approaches.

Many researchers developed more advanced methods to extract
shapes of the detected buildings (Karantzalos and Paragios, 2009,
Cui et al., 2008, Benedek et al., 2009). Sirmacek and Unsalan
(Sirmacek and Unsalan, 2008) developed a novel and fast method
to detect shapes of rectangular buildings. Unfortunately, they
could not detect other building shapes. In this study, we devel-
ope the same approach to detect shapes of very complex building
structures.

As remote sensing technology and methods are developing, they
provide new three-dimensional data such as DEM and LIDAR,
and many researchers pay attention to building detection from
this data. Haala et al. (Haala and Brenner, 1999) proposed a
method to reconstruct building rooftops using surface normals ex-
tracted from DEM data. They assumed that building boundaries
are detected previously. In a following study (Haala et al., 1998),
they detected building boundaries automatically by classifying
DEM and corresponding color image before applying their auto-
matic rooftop reconstruction method. Brunn and Weidner (Brunn
and Weidner, 1997) used surface normals on DEM to discrim-
inate buildings and vegetation. After detecting buildings, they
measured geometry of rooftops using surface normals and they
interpolated polyhedral building descriptions to these structures.
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Fradkin et al. (Fradkin et al., 1999) proposed segmentation based
method to reconstruct three-dimensional models of dense urban
areas. To this end, they used very high resolution color aerial im-
ages and DEM data. Canu et al. (Canu et al., 1996) used high res-
olution DEM to reconstruct three-dimensional buildings. First,
they segmented DEM into homogeneous regions. Then, they in-
terpolated flat surfaces on these regions. Ortner et al. (Ortner et
al., 2002) used point process to model urban areas. They rep-
resented urban areas as interacting particles where each particle
stands for an urban object. Preknowledge about building shapes
is used to model these particles. Arefi et al. (Arefi et al., 2008)
extracted above-ground objects from LIDAR data. Then, three-
dimensional buildings are reconstructed by hierarchical fitting
of minimum boundary rectangles (MBR) and RANSAC based
straight line fitting algorithm. Tournaire et al. (Tournaire et al.,
2010), developed a stochastic geometry based algorithm to de-
tect building footprints from DEM data which has less than 1m
resolution. They tried to fit rectangles on the buildings using an
energy function and prior knowledge about buildings. To min-
imize the energy function, they used a Reversible Jump Monte
Carlo Markov Chain (RJMCMC) sampler coupled with a simu-
lated annealing algorithm which leads to an optimal configuration
of objects. In these studies, good results are achieved generally
using very high resolution (more than 1 m. spatial resolution)
DEMs which are generated from airborne data sets. However, en-
hancement of buildings in very low resolution urban DEM data
which is generated from satellite images is still an open research
problem.

In the literature, very few number of researchers worked on DEM
enhancement. A considerable amount of these studies has been
published on reducing errors in DEMs which belong to rural re-
gions (Skarlatos and Georgopoulos, 2004, Ostrowski and He, 1989).
For urban DEM enhancement Krauss and Reinartz (Reinartz and
Krauss, 2010) developed image segmentation based algorithm.
They obtained successful results in recovering occlusion errors in
DEM generation. In a previous study, we have proposed an ob-
ject detection based urban DEM enhancement system (Sirmacek
et al., 2010). For this purpose, first we extracted possible build-
ing segments by thresholding DEM. Then we used Sirmacek and
Unsalan’s rectangular shape detection (box-fitting) algorithm to
detect building shapes (Sirmacek and Unsalan, 2008). Finally,
we used detected building shapes to sharpen building walls in
DEM, and we also smoothed the noise in building rooftops. In
this previous study, we could only detect and enhance rectangu-
lar buildings. Unfortunately, in most of the regions, buildings are
in very complex shapes. In addition to that, all building shapes
are different from each other, so it is not possible to search for
a previously defined building shape. Therefore, more advanced
shape detection algorithm is needed to apply our object detec-
tion based DEM enhancement method. To overcome this prob-
lem, herein we develop box-fitting algorithm in order to detect
complex building shapes automatically. In Fig. 1, we represent
overview of proposed algorithm for better understanding. Dif-
ferent from our previous object detection based urban DEM en-
hancement method, here we divide complex buildings in to elon-
gated shapes and detect chain of rectangles to extract their shapes.
As a result, we can also enhance complex shaped buildings.

To test our method, and represent our results we use orthorectified
panchromatic Ikonos satellite image, and automatically generated
DEM of München city. Our DEMs are generated from single
satellite image couples (d’Angelo et al., 2009). In the following
sections, we explain algorithm steps in detail.

(a)

Figure 1: Overview of the proposed approach

2 PREPROCESS

Before starting to our building shape extraction and DEM en-
hancement processes, first we apply preprocessing to both panchro-
matic Ikonos image (I(x, y)) and DEM (D(x, y)).

In order to preprocess panchromatic data we benefit from bilat-
eral filter. Bilateral filter performs a non-linear smoothing with
preserving edge information (Tomasi and Manduci, 1998). In this
way, we can eliminate noise and redundant details from the im-
age without damaging edge information. Sirmacek and Unsalan
(Sirmacek and Unsalan, 2009) provide an extensive explanation
about usage of bilateral filter on panchromatic satellite images.
We call bilaterally filtered satellite image as Ib(x, y). In Fig. 2
(a), (b), and (c), we provide I(x, y) panchromatic Ikonos test im-
age, closer view of a sample building, and bilateral filtering result
of the same building respectively.

Next, we prepare DEM for processing. DEM is a two-dimensional
image where intensity values correspond to height information.
It can be viewed as three-dimensional image, when intensity val-
ues are plotted as height information. Our DEM is unfortunately
noisy and resolution is not enough to represent sharp building
edges. In order to be able to detect building segments easily,
we try to increase height difference between buildings and the
ground surface. Histogram equalization method helps us to in-
crease this difference (Acharya and Ray, 2005). We call this en-
hanced DEM as De(x, y). In Fig. 2 (d) and (e), we provide
original DEM and enhanced DEM of the sample building.

3 COMPLEX BUILDING SHAPE DETECTION

In the following subsections, we describe our complex building
shape extraction algorithm step by step. Then, we will use these
shapes for DEM enhancement.
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3.1 Detecting Building Segments

Before extracting building shapes from panchromatic image, we
first detect approximate building locations from enhanced DEM.
If we had digital terrain model (DTM) of the region, we could
use it to calculate normalized digital elevation model (nDEM).
The difference between DEM and DTM gives nDEM (Sirmacek
et al., 2010). In nDEM, ground height is referenced to zero, there-
fore it only provides information about building heights indepen-
dent from the height of the terrain. If nDEM could be calculated,
we could simply use a constant threshold value to obtain high
objects in DEM which represents buildings. In our study, we seg-
ment high objects directly from DEM using local thresholding.
Therefore, algorithm can be also used for regions which does not
have DTM data.

We apply local thresholding to De(x, y) and we obtain a binary
image (BD(x, y)) where high objects are labeled with 1 value.
Since building edge quality in our DEM is not good, after apply-
ing local thresholding some of the close building segments can
be extracted as conjoint segment. Therefore, we apply erosion to
this binary image to separate connected building segments using
a disk shaped structure with 2 pixels radius. Then, we apply la-
beling to BD(x, y) and obtain its connected components (Sonka
et al., 1999). Here each connected component represents a build-
ing segment. If the size of a connected component is less than
500 pixels we discard it since these small regions generally cor-
respond to tree clusters. Unfortunately, in this step we can not
remove large tree clusters. We will work on discriminate vegeta-
tion in our future studies.

Boundaries of detected building segments do not directly indicate
real building edges. Therefore after detecting building segments,
in the next step we try to estimate real shapes of buildings using
more advanced shape detection algorithm.

3.2 Fitting Chain of Boxes to Extract Building Shape

In a previous study Sirmacek and Unsalan (Sirmacek and Un-
salan, 2008) proposed an automatic rectangular shape approxi-
mation approach (called box-fitting). After detecting a seed-point
(approximate building center) on building rooftop, they grew a
virtual box based on an energy criteria. In Fig. 3, a demonstration
of box-fitting algorithm. The first image shows Canny edges of
building the sub-image. In the second image, a virtual box is in-
serted to the approximate building center, and its edges are swept
outwards. In the last image, fitted box shape is represented. In
previous study, we used the same approach to detect rectangular
building shapes (Sirmacek et al., 2010) in panchromatic satellite
images. We used detected rectangular shapes to improve DEM.
Unfortunately, we could not detect complex building shapes.

(a)

Figure 3: Demonstration of box-fitting approach

In this study, we propose a new method to improve box-fitting
approach to detect complex building shapes. To this end, we first
divide detected building segments into elongated pieces. Then we
use our box-fitting algorithm to detect rectangular shape in this

region. After running box-fitting algorithm on each elongated
segment, we obtain complex building shapes as a chain of rect-
angles. We propose an easy method to divide building into elon-
gated pieces. First we extract skeleton of the building segment
using BD(x, y) (Sonka et al., 1999). Then, we detect junctions
of this skeleton. Junction is defined as one pixel which have more
than two pixels in the neighborhood. We divide skeleton into
pieces from junction locations. If Euclidean distance between
two junctions are larger than 20 pixels, we divide the skeleton
between these two junctions into 20 pixel length pieces. We as-
sume coordinates of mess centers of divided skeleton pieces as
our seed-point locations ((xs, ys)).

To fit rectangular shapes into each (xs, ys) location, we locate a
[w × w] size window on this building center. We assume w as
equal to two times of skeleton piece length. Then we grow the
virtual box on each (xs, ys) location until the virtual box best fits
to the Canny edges of the building. Box-fitting method discards
edges out of window to deal only with candidate building edges
and to decrease the number of unnecessary edges. After our vir-
tual box stops growing, we calculate the energy Eθ . The energy
of the detected box shape is defined as the sum of minimum dis-
tance between virtual building edge pixels and real building edge
pixels in perpendicular direction as given below;

Eθ =

n∑
i=1

min(sqrt((xv(i)−xe(j))
2−(yv(i)−ye(j))

2)) (1)

Here, Eθ is the calculated energy in θ direction. (xv(i), yv(i))
represent coordinates for ith pixel on the edges of the virtual box
shape. (xe(j), ye(j)) represents the jth pixel on the real build-
ing edges. For same seed-point, we put an initial virtual box and
start growing again for all θ ∈ [0, π/6, π/3, π/2, 2π/3, ..., 2π]
angles. As we increase step sizes here, we can obtain more ac-
curate approximations, however we need more computation time.
After calculating Eθ for θ ∈ [0, π/6, π/3, π/2, 2π/3, ..., 2π] an-
gles, we pick the estimated box which has smallest Eθ energy as
detected building shape. Since buildings are generally in rect-
angular shapes, it makes sense to extract rectangular shapes on
buildings. Main advantage of using box-fitting approach is that
approximate building shape still can be found even the building
edges are not well-determined, or even if there is not a closed
shape. However, other region growing algorithms fail to extract
an object shape in these cases.

In Fig. 2 (f), we represent detected boxes for our sample building.
Next, we describe how to detect building shape from chain of
boxes.

3.3 Shape Refinement

After detecting chain of boxes using Canny edges of panchro-
matic satellite image, we apply a boundary refinement step to fit
into building edges better, and also to smooth the discontinuity
of connected boxes. First, we fill inside of detected boxes with 1
value. We apply dilation and erosion respectively to the detected
boxes, using a disk shaped structure with radius 2. After this
operation all detected boxes can be fused, but discontinuity be-
tween adjacent box corners can not be corrected. After merging
boxes, obtained building shape can be seen in Fig. 2 (g). Discon-
tinuity between adjacent boxes cause fluctuations on some parts
of the detected shape. To correct building shape, we apply line
fitting. First, we choose an arbitrary point on building border.
Then, in clockwise direction we divide this border into 20 pixel
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: (a) Orthorectified panchromatic Ikonos test image of the study region (sample building is labeled with red borders), (b)
Closer view of sample building, (c) Bilaterally filtered result, (d) Original DEM data of sample building, (e) DEM data after applying
pre-processing, (f) Detected chain of boxes, (g) Merged boxes, (h) Refined building shape.

length pieces. We find the best fitting line into these pieces. Af-
ter merging detected lines, we obtain more clear building shape.
Detected shape for our sample building can be seen in Fig. 2 (h).
In the next step, we use this shape to insert sharp building edges
to DEM data.

4 DEM ENHANCEMENT

In DEM data we should enhance both building shapes and their
height information. To visualize our enhancement process, we
take a slice of our sample building in Fig. 4. In Fig. 4 (a),
slide is given with red line. In Fig. 4 (b), three-dimensional view
of DEM (D(x, y)) is given. For better visualization, we set the
region into zero value which has also zero value in BD(x, y).
Therefore, we can only see height information that belongs to
building segment. Unsharp building shape and noisy rooftop can
be seen in this three-dimensional view. In Fig. 4, we plot the
values of D(x, y) on taken slide. Diffused building walls, and
noisy height information can be seen better on this plot.

In order to enhance D(x, y), first we insert sharp edges on the
locations where building borders are detected. After that, we an-
alyze the rooftop for enhancing height information. To do that,
we only smooth D(x, y) with median filter. For now, we do
not reconstruct detailed rooftop, but we use intelligent method
to choose size of median filter. We analyze discontinuities in
D(x, y) by checking gradient magnitudes. To find gradient mag-
nitudes, we use smoothed gradient filters in x and y directions as
below,

gx(x, y) =
−x

2π
exp(−x2 + y2

2σ2
) (2)

gy(x, y) =
−y

2π
exp(−x2 + y2

2σ2
) (3)

where σ is the smoothing parameter and equal to 0.5. Although
method is fairly robust to this parameter, one may need to adjust
it according to the resolution of DEM. We calculate the smoothed
gradients for D(x, y) as,

dx(x, y) = gx(x, y) ∗D(x, y) (4)

dy(x, y) = gy(x, y) ∗D(x, y) (5)

where ∗ stands for a two-dimensional convolution operation. We
calculate gradient magnitudes of image as,

G(x, y) =
√

dx(x, y)2 + dy(x, y)2 (6)

If a pixel in G(x, y) has a higher value than td, we assume there is
a significant discontinuity. Here, td threshold value is obtained by
Otsu’s automatic thresholding approach (Otsu, 1979). We control
if there is a significant discontinuity on detected building rooftop.
If there is a significant discontinuity, we assume that, there can be
an object on building rooftop. In order to not smooth this object,
we choose a smaller median filter window size as 3 × 3. Other-
wise, we use 9 × 9 size window, to remove noise and redundant
information on building rooftop. In Fig. 4 (d) and (e), recon-
structed three-dimensional building and its profile on the same
slice are given. Improvement on building shape is significant.
We will work on more detailed rooftop reconstruction in our fu-
ture studies.

5 EXPERIMENTAL RESULTS

To test the performance of our method, we study on München city
which includes very complex building structures. We use DEM
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(a) (b) (c) (d) (e)

Figure 4: (a) Sample building and taken slice(b) Original DEM values of extracted building region (c) Values of the original DEM
along the slice, (d) Enhanced DEM (e) Values of the enhanced DEM along the slice

which is generated from stereo Ikonos images using the DEM
generation method of d’Angelo et al. (Reinartz and Krauss,
2010). We also use orthorectified panchromatic Ikonos image
of the corresponding region.

We presented our shape detection and DEM enhancement results
on Fig. 2(h) , and Fig. 4(d) respectively. In Fig. 5, we repre-
sent result of our complex shape detection algorithm on different
building structures. Next, we analyze performance of our pro-
posed method on sample building to give a sight to possible read-
ers.

(a) (b)

(c) (d)

Figure 5: Examples for extracted comlex building shapes

We pick our test building (given in Fig. 2 (b)) to evaluate per-
formance of our complex shape detection method. To analyze
performance we consider two measures; shape accuracy (p1) and
height accuracy (p2). First, we start with measuring shape accu-
racy of the shape approximation (box-fitting) approach. We use
the method used by Ruether et al. (Ruether et al., 2002) to mea-
sure the shape accuracy. For a [m × n] size test image shape
accuracy performance (p1) is calculated as follows,

p1 = (

∑m

x=1

∑n

y=1
|Bf (x, y)−Bgth(x, y)|∑m

x=1

∑n

y=1
Bgth(x, y)

)× 100 (7)

in this equation Bf (x, y) is the binary image which is obtained by
assigning value 1 to detected rooftop region. Bgth is the binary
groundtruth shape mask that we labeled buildings as ’1’ and other
regions as ’0’ manually. We calculate p1 value as 85, 06% for
sample complex building structure.

We finally analyze computation time needed for our method. We
use our sample complex building to calculate computation times.
We obtain timings using an Intel Core2Quad 2.66GHz PC and

Matlab coding environment. Segmenting building regions from
DEM data requires only 0.30 seconds. The longest computation
time is needed for shape detection step. For sample building,
shape detection step requires 152 seconds.

In this step, timing directly depends on the complexity and size
of the building. As the complexity and size of the building in-
crease, the shape detection method needs more computation time.
However, this module can run faster if it is coded in C. Finally,
enhancing building shapes in DEM requires 12.52 seconds. Con-
sequently, running our proposed DEM enhancement method on
complex building requires 164.82 seconds. The computation time
of the proposed DEM enhancement method is better than previ-
ous systems in the literature.

6 CONCLUSIONS

Automatic generation of three-dimensional urban regions can be
an innovative way for providing geometric data for varieties of
applications such as disaster management, military situations, and
urban planning. Therefore, reliable and consistent generation
of three-dimensional urban maps is crucial. Developing remote
sensing technology and methods offer new and cheap approaches
such as DEM generation based on stereo satellite image matching
principle. Unfortunate, DEM is not directly suitable for three-
dimensional representation. DEM generation errors, noise, and
smooth building walls as a result of occlusion effect make raw
DEM useless for three-dimensional visualization. Advanced meth-
ods are needed to improve this DEM.

Herein, we introduced a novel method for automatic DEM en-
hancement based on building shape extraction. First, we found
the building segments by applying local thresholding the DEM.
Then, we used Canny edges of corresponding panchromatic im-
age for shape extraction. We developed rectangular shape de-
tection (box-fitting) algorithm to detect very complex building
structures. Extracted building shapes helped us to sharpen build-
ing edges, and to smooth rooftop noise in the DEM. After tests on
München city data which includes very complex building struc-
tures. Comparing with studies presented in the literature, we can
conclude that our proposed urban DEM enhancement method is
fast and reliable even in complex urban regions. The proposed
automatic method will decrease operator work-loads in three-
dimensional reconstruction of urban areas. In addition to that,
we believe that the proposed method will be of use for detailed
urban monitoring, damage and change detection systems. In our
future study, we will try to add detailed rooftop reconstruction to
building models.
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