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ABSTRACT: 
 
The extraction of the third dimension from stereoscopic image pairs is a well known technique. Since in a number of countries aerial 
images and laser scanner data are unavailable, expensive or classified, high resolution optical satellite images provide a viable 
alternative to generate digital surface and digital terrain models. Especially the automatic extraction of highly accurate 3D surface 
models in urban areas is still a very complicated task due to occlusions, large differences in height and the variety of objects and 
surface types. 
In this paper we present an analysis and a comparison of three different matching methods for generating urban DSMs based on very 
high resolution satellite images: least squares matching (LSM; Förstner 1982) in a region growing fashion, dynamic programming 
(DP) according to Birchfield, Tomasi (1999), and semiglobal matching (SGM; Hirschmüller, 2008). We empirically study the 
effects of the three methods as applied to three different IKONOS stereo pairs with a ground sampling distance of 1.0m.  
It comes as no surprise and can be clearly seen in our results that in the LSM result the shape of the buildings is considerably 
smoothed. While in the DP results the building shape is sharper, only little detail is visible on the roof. With SGM more details are 
visible, but the result seems to contain some artefacts. As far as geometric accuracy is concerned we found based on independent 
manual checks, that for all three methods the height accuracy is in the range of the ground resolution of 1.0m, corresponding to 0.6 
pixels x-parallax given a h/b ratio of 1.7. This value includes not only the matching accuracy, but also the accuracy of manual 
measurement. Thus, the accuracy of the automatic matching is better than 1.0m in height. 
 

1. INTRODUCTION 
 

Digital surface models (DSMs) of urban areas are becoming 
increasingly important for many applications, e. g.  tele-
communication (Renouard et al., 1999), urban planning (Kux et 
al., 2006), map updating (Caetano, 2001) and monitoring urban 
growth which occurs very fast especially in second or third 
world cities. Stereo pairs from very high resolution satellites 
such as IKONOS, QuickBird, WorldView and GeoEye-1 led 
the way into a new era of generating urban DSMs, not limited 
by restrictions for the access to aerial images and laser data.  
Manual data acquisition is often too time consuming and thus 
too expensive. As a consequence an automatic procedure for the 
generation of DSMs including building shapes based on image 
matching techniques is highly desirable. Several methods were 
suggested in the literature and have given satisfactory results 
based on high resolution satellite imagery (e. g. Krauss et al., 
2008, 2005; Büyüksalih, Jacobsen, 2007; Poon et al., 2007; 
Jacobsen, 2006; Zhang, Grün, 2006, 2004). Nevertheless, the 
extraction of accurate urban DSMs is still an unsolved problem, 
partly due to occluded areas, sudden changes in height and the 
large variety of objects and surface types. As a consequence in 
particular near building boundaries difficulties and limitations 
still exist. 
In this paper we present an analysis and a comparison of three 
different matching methods for generating urban DSMs based 
on very high resolution satellite images: 
 least squares matching (LSM; Förstner, 1982) in a region 

growing fashion (Otto, Chau, 1989; Heipke et al., 1996), a local 
area based method which compares the intensity values within a 
template to those in a search window; 

 dynamic programming (DP) according to Birchfield, 
Tomasi (1999), a global method which determines pixel 
disparities in epipolar lines by searching for a best path through 
the related cost matrix based on individual pixel intensity 
values as input for a dissimilarity measure; 
 semiglobal matching (SGM; Hirschmüller, 2008), which 

computes conjugate points along multiple conjugate lines 
hierarchically by using mutual information instead of intensity 
value differences as dissimilarity measure. 
Section 2 of this paper presents the characteristics of the input 
data used for our study. The three matching algorithms are 
shortly reviewed and results are presented in section 3. Section 
4 is dedicated to an accuracy analysis of the three matching 
methods. Finally, the paper is concluded with section 5. 
 

2. STUDY AREA AND USED TEST DATA 
 
Three study areas were examined, located in the cities of Maras 
and Istanbul in Turkey and San Diego, USA. The study areas 
are located in rolling terrain, containing densely built up parts 
and some single buildings with heights up to 65m.  
For each area a panchromatic IKONOS GEO stereo model with 
a ground sampling distance (GSD) of 1m was available. The 
height-to-base (h/b) ratio for Maras is about 7.5 (angle of 
convergence 7.5°), reducing occlusions, while the h/b value is 
1.6 for Istanbul (angle of convergence 35°) and 1.7 for San 
Diego (angle of convergence 32°), enlarging the disparities and 
causing some additional matching problems due to the different 
perspective (see Figure 1). The sun elevation is 50.8° for Maras, 
65.5° for Istanbul and 34.2° for San Diego. 



 

From the IKONOS stereo pairs quasi-epipolar images have 
been generated as required for DP and SGM. 
A number of sub-areas with different characteristics have been 
selected based on building shapes and density. Identical sub-
areas were used for the investigations of the three matching 
methods. Forest areas and water surfaces were not included in 
the sub-areas. 
 

  
 

Figure 1:  imaging geometry for the three test sites; from left to 
right: Maras, Istanbul, San Diego 

 
 

3. DESCRIPTION OF MATCHING METHODS 
 

3.1 Least squares matching with region growing 
 
This local area based method (Förstner, 1982) uses the intensity 
values to estimate the disparity for the centre pixel of a template 
window. An affine transformation allows for geometric 
distortions of the template before comparing the intensity 
values with those of the second image. Based on the principle 
of least squares the sum of the squared differences of the 
corresponding normalized intensity values is then minimized, 
the affine parameters serve as unknowns; see eq. (1) and (2). 
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where: 
x,y: coordinates of template window 
x´,y´: coordinates of second image 
g(x,y): intensity values of template window 
g´(x´,y´): intensity values of the second image 
r0, r1: parameters for intensity value normalisation 
a0,a1,a2,b0,b1,b2: affine transformation parameters  
v(x,y): residuals of normalized intensity value 

differences 
 
The region growing strategy, published by (Otto, Chau, 1989; 
Heipke et al., 1996) requires a few seed points, which in our 
case were provided manually. The algorithm starts from a seed 
point, and then matches the four neighbouring points at a pre-
defined step size, subsequently continuing with the point with 
highest correlation coefficient. To be accepted, the correlation 
coefficient had to be larger than 0.8 for Maras and San Diego, 

and larger than 0.6 for Istanbul. These thresholds are based on 
intensive tests (Jacobsen, 2006; Alobeid, Jacobsen, 2008). 
Due to occlusions, the region growing strategy may stop in 
areas that contain large height differences (large x-parallaxes) 
caused e. g. by buildings. Also, due to the use of a window of 
constant shape (a plane in 3D space), the algorithm is not able 
to track building outlines, leading to smoothed building forms 
because some pixels in the template may be located on top of 
the building and others on the ground or a wall. In particular for 
larger window sizes, adjacent buildings may also be merged 
and appear as a common blob.  
We found empirically that the optimal size of the matching 
window in our test areas was 10 by 10 pixels. While smaller 
windows are influenced by noise, although they may give a 
more precise building shape, larger windows smooth the DSM 
significantly. In the case of a small angle of convergence, as is 
the case in Maras with only 7.5° convergence angle, the images 
of a stereo scene are rather similar, resulting in very high 
correlation coefficients and a good success rate of matching.  
Figures 2, 3 and 4 show digital surface models calculated by 
least squares matching with region growing for Maras, Istanbul 
and San Diego.  
For Maras between 89% and 94% of all possible points could 
be successfully matched. Moreover, between 86% and 93% of 
the points had a correlation coefficient exceeding 0.95. Due to 
the low image quality and a smaller h/b ratio of 1.6 (35° angle 
of convergence) in Istanbul, between 56% and 76% of all 
possible points could be successfully matched. Between 62% 
and 71% of the points had a correlation coefficient exceeding 
0.60. The better image quality for San Diego led to a success 
rate of between 72% and 83%. Between 65% and 78% of the 
points had a correlation coefficient exceeding 0.8. 
Obviously, these values must be seen relative to the number and 
distribution of manually provided seed points. 
 

 
 
Figure 2: DSM generated by LSM, Maras test site (window size 
540x465 pixels) 
 
When visually inspecting the obtained results, the impression is 
that least square matching usually provides a dense and 
accurate disparity map with only few blunders. However, the 
fixed template shape is not able to faithfully extract building 
outlines. Instead, the buildings indeed appear as low path 
filtered blobs, as discussed above. 
 
 
 



 

Figure 5: DSM generated by DP, Maras test site 
Left: Result after epipolar matching 
Right: Result after vertical median filtering 

 
 
Figure 3: DSM generated by LSM, Istanbul test site (window  
size 500x500 pixels) 
 

 
 
Figure 4: DSM generated by LSM, San Diego test site (window 
size 600x700 pixels) 
 
3.2 Dynamic programming 

The reported drawbacks in local area based methods prompted 
us to think about an alternative solution. As the first possibility 
a matching algorithm for epipolar images based on dynamic 
programming (Birchfield, Tomasi, 1999), has been chosen. No 
windows are required for matching, as intensity values of 
individual pixels are compared, combined with constraints to 
reward successful matches and to penalise occlusions. The 
algorithm focuses specifically on generating correct results at 
height discontinuities, sacrificing some accuracy in smooth 
areas. 
The matching problem is expressed as an optimisation problem 
for each corresponding epipolar line pair; based on a pre-
defined cost function. Each pixel in the left epipolar line is 
compared to all pixels of the conjugate epipolar line, and a 2D 
array of costs is constructed. The used cost function λ(x,y) has 
three components, see eq. (3): 
 

(3) 
 
 The first component is a sum of the dissimilarities d(xi,yi) 

between the matched pixels, it should dominate the cost 
function.  
 The second component (Nm*Kr) is a reward for correct 

matching, where Nm is the number of matched pixels and Kr is 
the match reward per pixel. 

 The third component (Nocc*Kocc) is a penalty for occlusions, 
where Nocc is the number of occlusions and Kocc is the occlusion 
penalty. 
The easiest dissimilarity function is the absolute value of 
difference in intensities. Instead, we compute the dissimilarities 
by using linearly interpolated intensities halfway between each 
pixel in each corresponding epipolar line and its neighbours 
according to Birchfield and Tomasi (1998a) to reach sub-pixel 
accuracy over all possible disparities. 
The algorithm then computes the sequence of all best 
corresponding pixel pairs according to minimal cost. For each 
path through the 2D array of costs, the total cost is calculated 
according to eq. (3). Then, the optimal path with minimal cost 
is determined using dynamic programming.  
Again, the parameters of the method have been determined 
empirically. We first impose a threshold for the maximum 
disparity; this value should exceed the maximum disparity in 
the scene.  
Kr and Kocc are the remaining values to be selected.  Kr is the 
maximum amount of pixel dissimilarity expected between two 
correctly matching pixels. Kr has been varied in the range [3 - 
12] with less then 3% of all pixels changing their disparity 
value. Kocc is the evidence to declare an occlusion and thus a 
change in disparity. We varied Kocc in the range [13 - 46], in 
these tests less then 9% of all pixels changed in disparity.  
In our study, we found empirically that optimal values for Kr 
and Kocc were 7 and 12 in Maras and 5 and 20 in Istanbul, 7 and 
35 in San Diego respectively based on visual inspection. 
The results for the test sites are shown in figures 5, 6 and 7. The 
results show the algorithm’s ability to provide a dense coverage 
of corresponding pixels and thus to compute an approximate 
disparity image, particularly at building outlines. As is 
generally known for matching epipolar lines independently and 
as can be clearly seen in the left part of figures 5, 6, and 7, a 
streaking effect appears in the epipolar direction, causing 
distortion of building borders. 
The results have been post-processed by median filtering in the 
vertical direction. With a 7x1 window the best improvement 
could be reached as judged from visual inspection. Based on 
this vertical median filter, the shape of buildings becomes 
clearer, see right part of figures 5, 6 and 7. 
In densely built-up areas, such as Istanbul, the buildings close 
to each other appear as building blocks where the hidden parts 
are not matched  
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Figure 6: DSM generated by DP, Istanbul test site 
Left: Result after epipolar matching 
Right: Result after vertical median filtering 
 

 
Figure 7: DSM generated by DP, San Diego test site 
Left:   Result after epipolar matching 
Right: Result after vertical median filtering 
 
3.3 Semiglobal matching (SGM): 
 
Semiglobal matching (SGM; Hirschmüller, 2008)  is an 
extension of the previous method and incorporates a 
smoothness constraint that is usually expressed as a global cost 
function, for determining the disparities of several line pairs 
intersecting in one pixel simultaneously by applying energy 
minimization techniques.  
It is based on the two following ideas: First, the dissimilarity is 
expressed pixel per pixel by Mutual Information (MI). MI 
measures correspondence without assuming that conjugate 
points have similar intensity values. Instead, the joint 
probability distribution in the form of the joint intensity value 
histogram is used. MI has been shown to be rather robust with 
respect to radiometric differences. Good descriptions of MI can 
be found in Kim et al. (2003) and Egnal (2000).  
Second, a global 2D smoothness constraint across multiple 
intersecting lines is introduced. It is approximated by 
combining many 1D constraints. 
The first step for SGM is to obtain an initial disparity image 
that is required for warping one of the stereo images before MI 
can be calculated. In line with Hirschmüller (2008) we start 
with a random disparity image, and then continue in a 
hierarchical fashion. 
Subsequently, the joint histogram is derived over the whole 
images. It is stored as a 256×256 histogram and is smoothed 
using a Gaussian kernel. Then, the MI values are computed. 

The third step is to determine a disparity image that minimizes 
the energy function by pathwise optimization of several 1D-
paths toward the pixel under consideration. Thereafter, the costs 
are summed over all paths ending in this pixel, see eq. 4: 
 

(4) 
 
 
 
 
 
where: 
p:  image location of current pixel 
d:  disparity value  d ∈[dmin,dmax] 
S (p,d):  aggregated cost 
C (p,d):  pixelwise matching cost 
Lr (p,d):  cost paths toward the actual pixel 
P1: a small value penalising disparity changes 

between neighbouring pixels of one pixel. 
P2: a large value penalising disparity changes of 

more than one pixel between neighbouring 
pixels. 

r: number of accumulated paths (according to 
Hirschmüller, r should be 8 or 16).  

The first component is the pixel-wise matching cost from MI, 
while the remaining components in the equation add the lowest 
cost of the previous pixel of the path. In our study, we found 
empirically, again based on visual inspection, that optimal 
values for P1 and P2 were 4 and 8 in Maras and 5 and 9 in 
Istanbul, 6 and 11 in San Diego. 
The final disparity image is then computed according to eq. (5): 
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The SGM results with the same three test sites as for the other 
three methods are shown in Figures 8, 9 and 10. It can be seen 
very clearly that indeed streaking is much reduced as compared 
to the dynamic programming results. 

 
Figure 8: DSM generated by SGM, Maras test site 

 

 
Figure 9: DSM generated by SGM, Istanbul test site 
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Figure 11 shows a 3D view of part of the results of the San 
Diego test site. It can be seen that in LSM no clear building 
shape were generated and occlusions partly cause tilted facades. 
The DP result has to be post-processed, otherwise there is too 
much streaking. SGM reveals more detail than DP such as roof 
structure. The reason is that in SGM optimization is done for 
every pixel, whereas in DP the epipolar lines or at least parts of 
the epipolar lines are assigned constant disparity. As a 
consequence, SGM is able to reconstruct e. g. gable roofs, 
whereas DP cannot. 
 

  

  
 
Figure 11: 3D-view to DSMs, San Diego test site 
    Upper left: LSM                   Upper right: DP without filtering 
    Lower left: DP filtered          Lower right: SGM 
 
To study the behaviour of the three matching methods in more 
detail, we present the results of one building of the San Diego 
test site in an enlarged view, see Figure 12. 
It is very clear that in LSM result the outline of the building is 
considerably smoothed. While in the DP results the outline is 
sharper, only little detail is visible on the roof of the building. 
With SGM more details are visible, but the result seems to 
contain some artefacts. 
 
 

 

Figure 12: 3D-view to one building, San Diego test site 
       Upper left: LSM                           Upper right: real building 
       Lower left: DP filtered                  Lower right: SGM  
 

 
4. ACCURACY ANALYSIS 

 
In order to independently check the geometric accuracy of the 
obtained results, building heights and points on the ground have 
been measured manually in the San Diego stereo model. These 
measurements have been compared with the generated height 
models. Especially for the DSM from least squares matching, 
the discrepancies against the reference data depend on the point 
location in relation to the facades due to the discussed 
smoothing effect. To minimise these problems we selected 
points in the centre of the building tops and on the ground with 
a sufficient distance from the facades. 
The root mean square (RMS) difference between the manually 
measured heights and the LSM results turned out to be +/- 
1.0m, for DP the RMS difference was +/- 1.2m and for SGM 
+/- 0.7m. The variation of the RMS values are probably not 
significant, it depends on location of single points having larger 
discrepancies. A direct comparison of the matched data showed 
only negligible differences below 0.2 pixels in the x-parallax on 
flat parts as open ground and flat roof tops. Differences between 
the methods are mostly visible at the facades. 
In general it can thus be stated, that for all three methods the 
height accuracy is in the range of one pixel GSD or 1.0m, 
corresponding to 0.6 pixels x-parallax given the h/b ratio of 1.7. 
This value includes not only the matching accuracy, but also the 
accuracy of manual measurement. Thus, the accuracy of the 
automatic matching is better than 1.0m in height. 
 
 

5. CONCLUSION 
 
The generation of digital surface models in urban areas based 
on IKONOS stereo pairs has reached a high level of accuracy. 
The three investigated methods show differences in detail and 
shape, the overall geometric accuracy is rather similar. 
The area based least squares matching is not able to generate 
clear building outlines and strongly depends on occlusions. 
Dynamic programming requires post-processing across the 

Figure 10: DSM generated by SGM, San Diego test site 



 

epipolar lines to reduce streaking while this is not required for 
semiglobal matching.  
These findings should be seen as a first result of our study on 
comparing different matching methods applied to urban areas. 
In future work we will investigate larger test sites, look at the 
occurrence and the elimination of blunders and also take 
performance issues into account. 
Furthermore, the impact of the different dissimilarity measures 
will be studied. In order to combine the advantages of both 
methods we plan to investigate the SGM approach based on the 
dissimilarity measure suggested by Birchfield and Tomasi and 
used in our DP experiments. 
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