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ABSTRACT:

We present a simple and effectient procedure for registration of video sequences onto high-resolution images for scenes with distinct
spatial depth. The high-resolution image could be a synthetic view of a 3D-object representing a piecewise continuous surface. The
key issue of the procedure is the inter-sensorial registration which contains 1. computing characteristic points in the video frame and
in the image, 2. establishing putative correspondences, 3.obtaining a relative orientation by computing fundamntal matrix, 4. image
rectification, 5. computing additional correspondences, and 6. retrieving the triangular maps. We visualize the algorithm and its main
applications by two examples and discuss the main advantages and drawbacks of our methods as well as directions of futureresearch.

1 INTRODUCTION AND PRELIMINARIES

Integration of images and videos into geo-referenced 2D- and 3D-
models given by high-resolution images or data-bases of differ-
ent kind is a very important task for many practical applications
of computer vision and image processing. Especially in the ar-
eas of surveillance, automatic navigation and defense research,
a considerable progress was made in development of fast algo-
rithms for geo-referencing. The key issue in many of these prob-
lems is to transform every single frame of the video sequenceinto
the coordinate system of the given model, a process calledinter-
sensorial registration. Geometrically, there are three main prob-
lems associated with this task: 1. a2D-2D registration, where
the depth of the scene is negligible and an image-to-image ho-
mography is a suitable model for registration, 2. a3D-3D regis-
tration, where point clouds recovered from image sequences can
be used to support the registration, and 3. a2D-3D registration,
where the depth between sensors is no longer negligible, however
due to time factor or a critical geometric configuration, a 3D-
reconstruction cannot be performed. Examples for the first kind
of registration can be found in (Solbrig et. al., 2008), (Krueger,
2001) (features-based-registration), (Xiao et. at., 2005) (segment-
based registration), and (Lin et. al., 2007) (registrationby mutual
information). In (Solbrig et. al., 2008), several examplesof ap-
plications, such as motion detection or annotation of objects from
data-bases in the video, are demonstrated. For the second kind of
problems, we refer to (Martinec et. al., 2006), where the keyidea
consists of computing 3D-Eucliedean reconstructions frompairs
of cameras and merging them into the same coordinate system.
Several examples of successful reconstruction of rather compli-
cated objects were presented in this paper. Another possibility of
fusing 3D data sets is given by object based methods, such as ICP
(Besl and McKay, 1992) and its modifications. The last kind of
geometric configurations is a border case since it is not broadly
investigated in the literature. Several segmentation-based meth-
ods (Xiao et. at., 2005) can perform segmentation of image into
planes (layers) without explicitly computing the 3D structure of
the scene. Also the efforts of (Schenk and Csathó, 2002) were
concentrated on a small number of pictures of rather good quality
and not the video sequence with (theoretically) unlimited number
of frames. However, integration of video data recorded by cam-
eras of average quality and without internal navigation into the
given model in a reasonable time and with a reasonable memory
load is particularly challenging.

In this work, we will present our procedure for referencing video
data into a high-resolution image. The algorithm will be de-
scribed in Section 2 and it will be a continuation of work in
(Solbrig et. al., 2008). The difference is that we will follow the
multi-homography procedure (based on triangular meshes and
described in (Bulatov et. al., 2009)) in order to establish apixel-
to-pixel correspondences. An example of annotation of objects
in the video will also be considered. The results from two similar
data-sets of varying difficulty are presented in Section 3. These
results intend to prove the principle of our method, even though
they do not include the improvements outlined in Section 4, which
also summarizes our work.

Figure 1: Principle of the geometric configuration. Depth in-
formation of every pixel of the synthetic view is assumed to be
given, so the key task is to establish relation between pixels of the
synthetic view and video frame

Before going into the details of the algorithm, we will describe
the data sets we are dealing with and the assumption we make
about the data. We assume that we are given a synthetic view of
the model. We denote this (high-resolution) image byJ . Behind
the image data, one can imagine 3D coordinates, as for example
in the case of range data or a digital terrain model. Figure 1 visu-
alize the principle of the described configuration. For the scope
of this paper, we will exclude this additional information from
consideration and concentrate our attention on registration of (al-
most) every pixel of the video sequence onto the high-resolution
image. We do not assume any additional properties of the video:
it can be made by a moving sensor or from a zooming/rotating
camera (such as no 3D-reconstruction is possible). To initialize



the process of registration, we need the approximate position of
the first frame in the video inJ ; in the case when no GPS data
is available, one can manually specify the bounding box of the
video frame in the imageJ .

2 REGISTRATION PROCEDURE AND APPLICATIONS

We denote byFk the fundamental matrix which establishes the
inter-sensorial registration, i. e. it assigns to a point in thek-th
frame of the video sequence (Ik) the epipolar line in the high-
resolved imageJ . For corresponding pointsxk ∈ Ik andX ∈

J in homogeneous coordinates, we have the relationXT Fkxk =
0. Thehomography H is the 2D image transformation between
two frames of the video sequence (intra-sensorial registration).
For corresponding pointsxk ∈ Ik andxk+n ∈ Ik+n, the rela-
tion xk+n = Hk,k+nxk holds and

Hk,k+n = Hk+n−1,k+n · ... · Hk,k+1. (1)

We will consider mostly homographies between neighboring fra-
mes (i.e. for smalln) in order to be able to neglect the baseline
and, consequently, the effects of depth. A detailed description of
intra-sensorial and inter-sensorial registration is given in Sections
2.1 and 2.2, respectively. For more information on multipleview
geometry, we refer to (Hartley and Zisserman, 2000).

2.1 Intra-sensorial registration

The intra-sensorial registration succeeds, similar to (Solbrig et. al.,
2008) by tracking characteristic points from frame to frameby
means of (Lucas and Kanade, 1981). In order to provide the inter-
sensorial registration (see Section 2.2) and to save computational
time needed for intra-sensorial registration, we use SIFT-points
(Lowe, 2004), even though they are not very suitable for track-
ing. The homography is computed by a modification of RANSAC
(Chum and Matas, 2004). Assuming that inter-sensorial registra-
tion is given by a fundamental matrixFk, the next inter-sensorial
registration is performed if one of following four conditions holds:
1. not all points of the convex hull of the initially detectedpoints
have been successfully tracked, which is a typical case for mov-
ing and rotating cameras, 2. the area of the polygon enclosedby
that convex hull has become significantly different with respect
to its initial value (typical for zooming cameras) 3. the num-
ber of inliers yielded by RANSAC is low, and 4. the number
of frames performed after the last inter-sensorial registration ex-
ceeds a fixed number, typically 4 in our experiments. The coarse
estimation of the fundamental matrix betweenIk+n andJ is
given byFk+n = Fk · H−1

k,k+n, with Hk,k+n as in Equation (1).

2.2 Inter-sensorial registration

The key issue of this section is to register a frameI of the se-
quence ontoJ . We assume that we can establish a number of
correspondences of SIFT-points with cost function given bythe
scalar product of their descriptors. This assumption usually holds
if J andI do not possess significant radiometric differences, i.e.
if J was taken under approximately the same light and weather
conditions. We assume that such an imageJ can be chosen from
a data-base. Additionally, we can precompute SIFT points inJ

in order to accelerate the procedure. From the putative corre-
spondences, we can obtain the relative orientation of two sen-
sors by the 7-point-algorithm (Hartley and Zisserman, 2000) and
RANSAC. In the next step, epipolar image rectification of a small
patch ofJI ⊆ J andI is performed. After this step, correspond-
ing pixels in transformed imagesJI and I have the samey-
coordinate and we can obtain a denser set of correspondencesei-
ther by computing disparity maps (e. g. by means of (Hirschm¨uller,

2005), a method which is relatively computationally efficient com-
pared to other global methods) or by establishing additional point
correspondences and then approximating disparity maps from tri-
angulations. We follow the method of (Bulatov et. al., 2009)here
because we assume that the synthetic view represents a piece-
wise continuous surface which can be approximated by triangles.
The mentioned method has several advantages: it is very fastand
less sensitive to differing radiometric information (since two pic-
tures were made by different sensors) than those global and semi-
global methods which estimate depths maps pixel per pixel. For
this reason, we also do not perform segmentation and computa-
tion of similarities of triangles. As indicated in (Bulatovet. al.,
2009), the disparity of the pointx = (x1, y1) in the triangle with
vertices(x1
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the second image. We denote the first two terms of Equation (2)
(independent onx) by v and store the three entries ofv for every
triangle in the given triangulation. It is thus possible to assign to
a pixel the number of triangle it belongs to and then its disparity
by means of Equation (2).

Remark: We rectify the imagesJI andI by calculating two ho-
mographies (T1 andT2) according to the method of Zhang (Loop
and Zhang, 1999). This is possible if and only if the epipoles
(center of second camera projected by the first camera and vice
versa) are bounded away from the domain of images. But even
if the epipoles are within the image domain, our triangulation
and multi-homography registration (unfortunately not thealgo-
rithm of Hirschmüller in its original implementation!) will suc-
ceed. The disadvantages in this case are difficulties in setting
bounds for disparity ranges for enriching the point correspon-
dences which we will explicate in the next paragraph as well as
inner constraints for the eight entries of every local homography
(HF T + FHT = 0, compare (Hartley and Zisserman, 2000),
chapter 13) instead of three entries ofv in Equation (2).

The process ofenriching (also called guided matching) needed
for increasing the number of point correspondences in two recti-
fied images, works similar to (Bulatov et. al., 2009). We specify
for a point in the first image a rectangle in which the correspon-
dent point is expected. The width of the rectangle is specified
by the disparity ranges of the correspondences obtained in the
previous step as well as the bounds provided by edges of the
given triangulation. The height of the rectangle is 3, because we
only allow a deviation of 1 pixel from the corresponding epipolar
lines. The only difference to the mentioned work is the matching
cost function. Beside the calculation of normalized cross corre-
lation for points near characteristic edges in the image, weexper-
imented with SIFT points for which we selected putative corre-
spondences in the rectangle mentioned above and then computed
scalar products with all putative correspondences. The matches
with the highest score were added into the list of correspondences
if this score exceeded a fixed threshold (0.75 in our experiments).
Both approaches gave results of similar quality. After guided
matching, we perform theDelaunay-triangulation of points in
the video frame and compute the approximation of disparity map
according to (2).

In the last paragraph of this subsection we describe the initial-
ization for the next inter-sensorial registration. LetSk, Sk+n be
the translation matrices for coordinates of pointsX of J into the



patchesJIk
,JIk+n

. Then, we can map the key-points ofIk+n

andJIk+n
by the homographiesT2H

−1

k,k+n andT1SkS−1

k+n, re-
spectively, into the rectified images of the previous inter-sensorial
registration and thus narrow the search window for putativecor-
respondences needed for the fundamental matrix estimation.

2.3 Main applications

Similar to Section 3 of (Solbrig et. al., 2008), we discuss the ap-
plications of motion detection as well as object annotationin the
triangulation-based geo-referencing of videos. While moving ob-
ject can be detected from frame to frame of the video sequence,
computing their exact position in the high-resolution image is
not a trivial task. Geometrically, one can not obtain the depth
of the moving object from one single image (since in the next
image, it will already change its position), therefore model- and
segmentation-based approaches will be needed to solve the prob-
lem. Still, the disparity information can be used in order toper-
form motion analysis, e. g. detect false alarms. On the other hand,
annotation of objects of the high-resolution photo (for example:
windows) in a video frame can be carried out similarly to (Sol-
brig et. al., 2008). We can assign the depths of these objectswith
respect to the video frame where inter-sensorial registration was
performed for the last time and then use homographiesHk,k+n to
compute the coordinates of these objects in the current frame. In
the case of moving sensor,Hk,k+n are not always feasible, there-
fore segmentation methods or a computation of disparity maps
betweenIk andIk+n could significantly refine the results.

3 RESULTS

We present a video sequence from a rotating and zooming camera
recorded from a tower in Ettlingen, Germany. A high-resolution
photo was made from approximately, although not exactly, the
same position (Figure 2, top). The order of magnitude in the dis-
parity rangedR in the rectified images is computed according to:

dR ∼ fcs ·

„

1
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«

, (3)

wheres is the scaling factor for rectification homographies (any
value close to 1),f ≈ 1000 pixel is the estimation of the fo-
cal length,c ≈ 1 m is the distance between the cameras,zmin

and zmax are furthest and closest point to the camera, respec-
tively. According to the scene depicted in Figure 2, we can as-
sumezmin = 50 m andzmax = ∞. Then, Equation (3) yields
a disparity range of about 20 pixels. This makes the registration
with homographies analytically impossible. This fact is also con-
firmed by the right picture in the middle row of Figure 2. Here
we detected points at the frontal wall of the nearest house and
matched them by a homography. But since the points – in the
background or in the foreground, on the trees – are situated far
away from the plane spanned by the frontal wall of the house, the
mosaicking is not successful. After matching with our method,
there are almost no significant deviations, and the small number
of visible deviations is of local origin and is mainly due to the lack
of accuracy of the triangular mesh obtained after the last step of
guided matching as well as with the fact that transparency levels
of objects (especially: trees) were not considered in this work.

The video sequence and the image of Figure 2 were recorded on
the same day. The top of Figure 3 presents a photo taken several
weeksafter the video sequence was recorded. Note the clear dif-
ferences in the vegetation, since the video sequence (on theleft
of the middle row of Figure 2) was recorded in summer while
the high-resolution frame was taken in fall. Despite these radio-
metric differences, it was possible to register some 25 frames of

the video sequence onto the image using our approach. For some
interesting objects in the orthophoto (such as windows in the big
church, denoted by blue crosses), we successfully obtainedtheir
positions in the frames using disparity information, as canbe seen
in the left picture of the middle row and in the bottom row of Fig-
ure 3. In order to visualize the quality of the registration,we
compared the squared norms of the gradients:
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where·x, ·y are image gradients approximated by the Sobel-filter
andÎ is the frame of the sequence transformed by Equation (2)
into the coordinate system ofJ . By representing∆ from Equa-
tion (4), we visualize the distances between the corresponding
characteristic edges in both images and we notice that they usu-
ally do not exceed an (acceptable) value of 5-10 pixels. The mo-
saic of 25 frames (total number of frames is 100 and every 4th
frame was considered for registration) integrated intoJ is de-
picted in the bottom row of Figure 3.

4 CONCLUSIONS AND FUTURE WORK

We presented a fast and simple registration algorithm for ref-
erencing videos from scenes with a distinct 3D-structure. The
spectrum of geometric configurations which can be handled is
thus much wider than in the work (Solbrig et. al., 2008) where
only 2D-2D situations were of interest. Our method allows re-
liable determining 3D coordinate of a pixel in a video frame (if
the 3D-coordinates for pixels of the synthetic view are available
and the triangulation approximates the surface well), evenif no
Euclidean reconstruction can be carried out from the video se-
quence. The results presented in this paper indicate that the trian-
gular meshes created from enriched sets of correspondencespro-
vide, in many cases, an acceptable approximation of the surface.
The computing time of the mesh does not depend on the disparity
range and is less dependent on the image size than other state-
of-the-art local and global algorithms for calculation of disparity
maps since a lower point density not necessarily means worsere-
sults. In the first implementation of the algorithm, the calculation
of SIFT-features in the video frame takes the bigger part of the
computation time, computation times needed to calculate funda-
mental matrices, transformations of images, and enriched sets of
correspondences are approximately the same, around 1 sec.

The main draw-back of the algorithm consists in the accuracyof
and the outliers among the sampling points. The current imple-
mentation of the algorithm is usually not able to filter out wrong
putative correspondences if they satisfy epipolar equation. Since
the dense set of correspondences is spanned from triangles,the
complete regions around these points will be given wrong dis-
parities. It has been shown that using redundant information
from more than two images (see, for instance, (Stewart and Dyer,
1988)) can significantly improve the performance; therefore we
will concentrate our future efforts on integration of fusedmeshes
into our triangulation networks. For example, one could calculate
disparity maps from several frames of the video sequence to the
image by the procedure described in Section 2 and then take the
medians of depth values for overlapping regions. Another inter-
esting aspect consists of taking into account the 3D-information
from the synthetic views and calibrated cameras. To achievethis
goal, the consideration of robust state-of-the-art methods for sur-
face reconstruction beside image-based methods will be needed.
As soon as the relation between a point in a video frame and the
3D-coordinate of the corresponding point in the synthetic view
is established, new methods of quality control are made possible.
Furthermore, our future work also includes a detailed consider-
ation of applications such as change detection, motion analysis



and annotation of objects in the case of (geo-referenced) scenes
with spatial depth.
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Figure 2: Top row: a high resolution image. Middle row left: aframe from the video sequence, right: Registration with onesingle
homography fails. Bottom row: triangulated meshes from 4 key frames were successfully integrated into the image



Figure 3: Top row: a high resolution image. Middle row left: aframe from the video sequence with convex hull of enriched correspon-
dences to be integrated into the image. Right: quality control of registration by means of difference of squared norms ofgradients for
a small patch of frame; the distance between corresponding edges is negligibly low. Bottom row: triangulated meshes from 25 frames
were successfully integrated into the image. Annotated objects (windows) are denoted by blue crosses on the left image of the middle
row as well as the small fragment in the bottom row


