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ABSTRACT: 

 

Riparian zones maintain water quality, support multiple geomorphic processes, contain significant biodiversity and also maintain the 

aesthetics of the landscape. Australian state and national government agencies responsible for managing riparian zones are planning 

missions for acquiring remotely sensed data covering the main streams in Victoria, New South Wales, and parts of Queensland and 

South Australia. The work presented in this paper provides proof-of-concept and operational specifications for using commercially 

available high spatial resolution satellite and airborne image datasets to map riparian condition indicators. The objectives of this 

paper are to: (1) assess the ability of different high spatial resolution image datasets for mapping the environmental condition of 

riparian zones in four distinct environments in Australia; and (2) provide specifications for capturing and analyzing the data most 

suited for riparian zone mapping at large spatial extents (> 1000 km of stream length). LiDAR derived digital elevation models, 

terrain slope, intensity, fractional cover counts and canopy height models were used to map riparian condition indicators using simple 

algorithms and more complex object-oriented image analysis. The results showed that LiDAR data are most suitable for mapping 

riparian condition indicators: water bodies; streambed width; bank-full width; riparian zone width; width of vegetation; plant 

projective cover; longitudinal continuity; vegetation height classes; large trees; vegetation overhang; and bank stability. Results of 

this work will contribute to future riparian zone mapping in Victoria, New South Wales, and parts of Queensland and South Australia. 

 

 

1. INTRODUCTION AND OBJECTIVES 

Riparian zones along rivers and creeks have long been 

identified as important elements of the landscape due to the 

flow of species, energy, and nutrients, and their provision of 

corridors creating an interface between terrestrial and aquatic 

ecosystems. Conventional field based approaches for assessing 

the environmental condition of riparian zones are site specific 

and cannot provide detailed and continuous spatial information 

for large areas, > 1000 km of streams (Johansen et al., 2007). 

High spatial resolution image data are required for assessment 

of riparian zones because of the limited width and the physical 

form and vegetation structural heterogeneity within riparian 

zones (Johansen et al., 2008a). This type of mapping has mostly 

been applied to riparian study areas of limited spatial extents (< 

100 km of stream length) by using high spatial resolution image 

data. The objectives of this paper are to: (1) assess the ability of 

different high spatial resolution image datasets for mapping the 

environmental condition of riparian zones in four distinct 

environments in Australia; and (2) provide specifications for 

capturing and analyzing the data most suited for riparian zone 

mapping at large spatial extents (> 1000 km of stream length). 

This paper brings together six years of riparian mapping 

research based on multiple datasets from seven study sites 

across Australia, which has used multi-spectral satellite SPOT-

5, Ikonos, and QuickBird image data and multi-spectral airborne 

optical (Vexcel UltraCam-D) and Light Detection and Ranging 

(LiDAR) data. Examples are provided from two main study 

areas in Central Queensland (Mimosa Creek and Dawson River) 

and Victoria (Werribee River, Lerderderg River, Parwan Creek, 

Pyrites Creek and Djerriwarrh Creek). Results from work 

conducted in Southeast and Central Queensland and the 

Northern Territory will also be presented. 

2. STUDY AREAS AND DATA 

The two main riparian study areas were located along Mimosa 

Creek and the Dawson River within a sub-tropical open 

woodland area in the Fitzroy Catchment, Central Queensland, 

and along the Werribee and Lerderderg Rivers and Pyrites, 

Djerriwarrh, and Parwan Creeks in the urbanized and cultivated 

temperate Werribee Catchment in Victoria (Table 1). Field data 

(28 May - 5 June 2007) were obtained around the time of image 

capture in the Fitzroy Catchment with a SPOT-5 image captured 

on 14 June 2007, two QuickBird images captured on 18 May 

and 11 August 2007, and LiDAR data captured on 15 July 2007. 

A field campaign was carried out in the Werribee Catchment 

between 31 March - 4 April 2008 with a SPOT-5 image 

captured on 20 April 2008, an Ikonos image captured on 25 

April 2008, and airborne multi-spectral UltraCam-D data 

captured with 0.25 m pixels from 19-23 April 2008. Existing 

LiDAR data captured between 7 and 9 May 2005 were also 

used. Field data acquisition was designed to match the spatial 

resolution of the image data. Field measurements were obtained 

along transects located perpendicular to the streams of the 

following parameters: (1) water bodies; (2) streambed, bank-

full, riparian zone, and vegetation widths; (3) plant projective 

cover (PPC); (4) ground cover; (5) vegetation height classes; 

and (6) bank stability (Johansen et al., 2008a). For calibration of 

the LiDAR based object-oriented mapping of streambed, bank-

full and riparian zone widths, field data were collected for the 

bank slope and the elevation difference between the streambed 

and the external perimeter of the riparian zone. Where possible, 

existing high spatial resolution optical image data were used to 

locate in-situ ground control points based on invariant features 

visible in both the field and image data to complement GPS 

points to precisely overlay field and image data. 



Table 1. Riparian environments, study sites, their spatial extent, and the image data used. Gray rows indicate main study areas. 
 

Riparian environment Study site Spatial extent (km of 

stream length) 

Image data used 

Temperate climate, seasonal 

rain, hilly and flat terrain, 

river/creek, urbanized, 

cultivated and state forest 

Victoria: Werribee River, Lerderderg 

River, Parwan Creek, Pyrites Creek, 

Djerriwarrh Creek 

150 km 2 QuickBird images 

1 Ikonos image 

2 SPOT-5 images 

Airborne digital Ultracam-D data 

Airborne LiDAR data 

Northern Territory: Daly River 21 km 2 QuickBird images 

2 Landsat-5 TM images 

Scanned aerial photographs 

Tropical climate, wet/dry 

savanna environment, flat 

terrain, river/creek, moderately 

developed for grassing and 

national park 
Northern Territory: South Alligator 

River, Barramundie Creek 

30 km 1 QuickBird image 

2 Landsat-5 TM images 

Scanned aerial photographs 

Central Queensland: Keelbottom Creek 15 km 1 Ikonos image 

1 Landsat-7 ETM+ image 

Central Queensland: Mimosa Creek, 

Dawson River 

35 km 2 QuickBird images 

1 SPOT-5 image 

Airborne LiDAR data 

Scanned aerial photographs 

Sub-tropical climate, wet/dry 

savanna environment, flat 

terrain, river/creek, moderately 

developed for grassing 

Central Queensland: Isac River 10 km Airborne HyMap data 

Scanned aerial photographs 

Sub-tropical climate, seasonal 

rain, river/creek, coastal, 

urbanized and cultivated 

Southeast Queensland: Brisbane River, 

Bremer River, and adjacent creeks 

90 km 2 SPOT-5 images 

Scanned aerial photographs 

 

3. METHODS 

3.1 Mapping Riparian Zones from Optical Image Data 

All satellite image datasets were atmospherically corrected to 

at-surface reflectance with atmospheric parameters derived from 

the MODIS sensor and the Australian Bureau of Meteorology. 

The capacity to map a number of indicators of riparian zone 

condition was tested for each of the datasets: water bodies; bare 

ground; streambed width; bank-full width; riparian zone width; 

width of vegetation; PPC; longitudinal continuity; large trees; 

large in-stream wood; vegetation overhang; and bank stability. 

Riparian zone width, streambed width, canopy cover, bare 

ground and water bodies were mapped from object-oriented 

image classification for all optical datasets using Definiens 

Professional 5 and Developer 7 (Johansen et al., 2008a; 

Johansen et al., in review a). Regression analysis and/or 

randomForest classifications were used for predicting PPC and 

bank stability (Johansen et al., 2008a; Johansen et al., 2008b). 

Longitudinal continuity was derived from the PPC map 

products by defining canopy gaps as areas > 100 m2 with < 20% 

PPC. Mapping of large trees and in-stream wood required visual 

interpretation of the optical image datasets. As the use of the 

LiDAR data produced the best results, the remaining part of the 

methods section describes the approaches used to map the 

riparian condition indicators from the LiDAR data. 

 

3.2 Mapping Riparian Zones from LiDAR Data 

Parameters estimated from LiDAR data and used to derive 

information on riparian condition indicators were: digital 

elevation model (DEM), terrain slope, variance of terrain slope, 

fractional cover counts, canopy height model, and intensity 

(Figure 1). The output pixel size was set to minimize the pixel 

size and at the same time reduce the number of pixels without 

data, i.e. pixels without any returns, producing null values. With 

increased point density, a smaller pixel size could be achieved. 

 

 
 

Figure 1: (a) Ultracam-D subset, and corresponding LiDAR derived raster products, including (b) DEM, (c) fractional cover counts, 

(d) intensity, (e) terrain slope, and (f) canopy height model. Dark areas = low values and bright areas = high values. 



The DEM was produced by inverse distance weighted 

interpolation of returns classified as ground hits. From the 

DEM, raster surfaces representing terrain slope, rate of change 

in horizontal and vertical directions from the center pixel of a 3 

x 3 moving window, and variance of the terrain slope, within a 

moving window of 3 x 3 pixels, were calculated. The map of 

fractional cover counts, defined as one minus the gap fraction 

probability, was calculated from the proportion of counts of first 

returns 2 m above ground level to correspond with the field 

measurements of PPC, which were derived above a height of 2 

m. The height of all first returns above the ground was 

calculated by subtracting the ground elevation from the first 

return elevation. The maximum height of first returns within 

each pixel was also calculated. The maximum height of first 

returns can be considered a representation of the top of the 

canopy in vegetated areas (Suarez et al., 2005). The intensity 

band was produced by inverse distance weighted interpolation.  

 

From the LiDAR raster products riparian condition indicators 

were either derived directly by using simple algorithms or 

object-oriented methods. Water bodies, streambed width, bank-

full width, riparian zone width, and width of vegetation were 

mapped using image segmentation and object-oriented image 

classification. Water bodies were mapped from the LiDAR data 

using the intensity, DEM, PPC, and terrain slope bands. A local 

extrema algorithm was first used to find minimum values from 

the DEM within a searching range of 15 pixels throughout the 

LiDAR data extent. Only extreme minimum DEM values with 

an intensity < 50, a PPC value of 0, and a terrain slope < 2.5% 

were considered. This result was then used to grow water bodies 

as long the neighbouring objects had intensity mean values of 

less than 100 and a terrain slope < 2.5%. The streambed, 

defined as the area between the toes of the banks, was mapped 

from the DEM, terrain slope, and the variance of terrain slope 

using object-oriented image analysis. The segmentation process 

was based on the DEM and variance of terrain slope, which 

produced objects lining up with the gradient of the terrain and 

producing separate objects for the streambed, stream bank and 

surrounding areas because of elevation differences. The object-

oriented classification of streambeds from the LiDAR data first 

identified the stream banks based on their steep slopes. Objects 

located in between steep slopes and with borders to objects with 

higher elevation were mapped as streambed. To map bank-full 

width the streambed map was expanded using a region growing 

algorithm to grow the streambed extent up to an elevation of 2 

m above the current streambed, but limited to a distance of the 

original streambed by 10 m. This expanded the original 

streambed to include areas belonging to the bank-full width. 

The next step assumed that the streambed had now been 

expanded to include at least a small part of the lower stream 

bank. To reach the top of the lowest bank, the expanded 

streambed extent was grown further as long as the bank slope 

was larger than 7%, but bounded by an elevation height of 4 m 

above the streambed to set an upper threshold above the 

streambed for riparian areas surrounded by steep terrain. For 

mapping the extent of riparian zones, the following input bands 

were used for the object-oriented image analysis: PPC, canopy 

height model, terrain slope, DEM, and the streambed 

classification. The classification of the streambed was used to 

identify the streamside perimeter of the riparian zone. The 

classification of the riparian zone was then based on the 

distance from the streambed, the slope of the stream banks, the 

PPC, and the height of trees, as an abrupt change in vegetation 

height, density and bank slope generally occur along the 

external perimeter of riparian zones (Land and Water Australia, 

2002). Unclassified objects within the riparian zone, i.e. riparian 

canopy gaps, enclosed by objects classified as streambed and 

riparian zones were also classified as part of the riparian zone. 

The merged riparian zone polygons were then re-segmented into 

objects of 4 x 4 pixels, and areas, classified as riparian 

vegetation, with an absolute difference in elevation of more than 

5 m in relation to the streambed objects, were omitted, as field 

data indicated that the top of banks was less than 5 m above the 

streambed. To map width of vegetation, the riparian zone width 

was merged with adjacent woody vegetation with PPC > 20%. 

Width of vegetation was defined as the perpendicular distance 

from the streambed to a non-riparian zone and non-woody 

vegetation pixel. 

 

PPC was estimated from the LiDAR based fractional cover 

counts. Using the same procedures as Armston et al. (in press) 

and Johansen et al. (2008b), fractional cover counts above a 

height of 2 m were converted to PPC using a power function. 

For mapping longitudinal continuity, canopy gaps were defined 

as an area with less than 20% PPC and a size of at least 10 m x 

10 m. The mapping of vegetation height classes was done in one 

step by dividing individual pixels into height categories based 

on the canopy height model. To avoid erroneously including 

agricultural fields and buildings, height categories were only 

obtained from those areas classified as riparian zones. Similarly, 

large trees were mapped as the area of the riparian canopy with 

trees above a height of 15 m. Vegetation overhang was mapped 

using the LiDAR derived streambed map and the pixel based 

PPC map as input bands. For areas to be classified as vegetation 

overhang, a minimum of 20% PPC was set as a threshold within 

areas classified as streambed. Bank stability was mapped from 

multiple regression analysis based on the relationship between 

field assessed bank stability and LiDAR derived PPC and 

terrain slope. PPC was used as tree roots from woody vegetation 

stabilize banks. High bank terrain slopes may indicate erosion 

and slumping and hence bank stability levels (Land and Water 

Australia, 2002). 

3.3 Accuracy Assessment 

The mapping accuracies of the riparian condition indicator maps 

were assessed using independent data from the same population 

wherever possible. In the cases, where only one field dataset 

was available, the data were randomly divided into calibration 

and validation data. For the maps consisting of continuous data 

values (e.g. PPC), R2 values, Root Mean Square Error (RMSE), 

and the minimum detectable difference were calculated 

(Johansen et al., 2008a). The minimum detectable difference 

represents the smallest difference or change that would be 

statistically significant when comparing different samples or 

areas within the same or different maps. For the thematic maps, 

field data were used to produce error matrices and calculate 

associated user’s, producer’s, overall, and kappa accuracies. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Comparison of Sensors and Associated Methods 

The results from all study sites showed that the use of LiDAR 

data enabled mapping of most of the riparian condition 

indicators and with the highest mapping accuracies and levels of 

detail compared to the optical high spatial resolution image 

datasets. In addition to the LiDAR raster products (DEM, 

terrain slope, fractional cover counts, canopy height model, and 

intensity), the following riparian condition indicators were 

mapped automatically: water bodies; streambed width; bank-full 

width; riparian zone width; width of vegetation; PPC; 

longitudinal continuity; vegetation height classes; large trees; 

vegetation overhang; and bank condition (Figure 2). 



 

 

Figure 2. (a) Ultracam-D image and associated LiDAR derived maps of (b) streambed and bank-full widths, (c) riparian zone and 

vegetation widths, (d) PPC, (e) longitudinal continuity, (f) vegetation height classes, (g) vegetation overhang, and (h) bank stability. 

 

Mapping accuracies of LiDAR based riparian condition 

indicator maps were derived from field data for the Victoria and 

Central Queensland study sites. Vegetation height classes and 

location of large trees were not validated because of the high 

vertical accuracy of the point clouds (< 0.20 m). Field 

measurements of streambed (RMSE = 3.3 m, n = 17), bank-full 

(RMSE = 6.1 m, n = 17) and riparian zone widths (RMSE = 7.0 

m, n = 17) were compared directly with the corresponding 

locations within the maps. PPC was validated against an 

independent field dataset and had a RMSE of 12% PPC (n = 

110). The mapping accuracies of vegetation overhang and 

longitudinal continuity were direct derivatives of the streambed 



and PPC maps. Compared against field data, LiDAR derived 

bank stability based on the terrain slope and PPC maps was 

mapped with an R2 = 0.40 using multiple regression analysis. In 

all cases, the LiDAR derived riparian condition indicator maps 

were more accurate than those produced from the high spatial 

resolution optical datasets. The airborne Ultracam-D image 

classification of water bodies produced similar high user’s and 

producer’s accuracies to those from the LiDAR data 

classification, but was unable to detect water bodies obstructed 

by canopy cover, which in particular was a problem for narrow 

streams. Overall, the LiDAR data required less intensive 

processing than the optical datasets, because of the inherent 

high precision and provision of 3-dimensional information and 

the smaller number of bands needed for the riparian condition 

indicator mapping. The Ultracam-D image data with 0.25 m 

pixels required very extensive and time-consuming processing, 

e.g. 18 days of constant processing to produce the PPC map for 

195 km2 using the randomForest algorithm. 

 

The Ultracam-D, Ikonos, and QuickBird image data could be 

used for mapping the following indicators for most study sites: 

water bodies; bare ground; PPC; longitudinal continuity; width 

of vegetation; and riparian zone width. However, riparian zone 

width was overestimated in areas with topographically complex 

terrain (e.g. RMSE = 38 m, n = 12) and with adjacent dense 

sub-tropical and tropical woodland and temperate state forests 

(e.g. RMSE = 45 m, n = 15). In contrast, LiDAR data could be 

used successfully in these areas using bank slope information 

and thresholds of the difference in elevation between the 

streambed and the external perimeter of riparian zones. The 

Ultracam-D image data were also found useful for visual 

calibration and validation of the LiDAR derived indicator maps 

of water bodies, streambed width, bank-full width, and riparian 

zone width. Large trees defined by their tree crown diameter (> 

15 m in any one direction) and large in-stream wood could in 

most cases be visually delineated from the Ultracam-D image 

data (0.25 m pixels) although tree crowns in densely vegetated 

areas could not be separated and large in-stream wood could 

only be identified in open areas. Automatic delineation of tree 

crowns was not possible, as the complex and densely vegetated 

riparian zone canopy structure did not fulfill the requirements of 

existing algorithms relying on a bright apex and shaded areas 

surrounding the crown perimeter (Johansen et al., 2006). 

 

One major limitation of the optical image datasets for riparian 

zone mapping was the requirement of a very accurate image 

classification for mapping water bodies, bare ground, PPC and 

longitudinal continuity. Water bodies were difficult to map 

accurately because of obstruction and shadows from tree crowns 

along the stream edge. The algorithms used to map PPC and the 

longitudinal continuity derivative cannot distinguish between 

woody and non-woody vegetation such as agricultural and grass 

cover. Therefore, accurate image classification of woody and 

non-woody vegetation is required to produce a mask. High 

spatial resolution image data are generally difficult to accurately 

classify into land-cover classes because of the large reflectance 

variation of individual features at these spatial resolutions. 

Object-oriented image classification is the only suitable means 

to achieve accurate image classification results, but currently no 

suitable rule sets are available for multi-site use, i.e. riparian 

zones occurring in for example urban, cultivated, woodland, 

rangeland, and forest environments. 

 

The spatial dimensions of the river-riparian zone system 

affected the accuracies of the mapping results of the optical 

image datasets, as the mapping accuracies relied on the 

interaction of spatial resolution with the spatial scale of features 

in the riparian environment being imaged. For example, the 

spatial resolution of the QuickBird image data was more 

suitable for mapping large river-riparian zone systems (e.g. the 

Daly River, river width > 40 m and riparian zone width 50 – 

100 m) than those in the Werribee Catchment (e.g. the Werribee 

River, river width < 20 m and riparian zone width 10 – 30 m). 

The distinct vegetation zonation and the large sections of bank 

slumping along the Daly River enabled more accurate mapping 

with the QuickBird image data of e.g. PPC and bank stability 

than along the Werribee River. The SPOT-5 image data were 

not suitable for mapping riparian condition indicators, because 

of the limited spatial resolution in relation to the streams and 

associated riparian zones mapped.  

 

In the temperate study site in Victoria, it was found important to 

map riparian zones in the leaf-on season, as the amount of 

canopy cover will significantly affect a large number of riparian 

condition indicators. In riparian environments dominated by 

evergreen and semi-deciduous tree species, it was found less 

important to capture LiDAR data in any particular season. 

However, optical image data should be captured in the dry 

season to reduce effects from understorey vegetation and to 

accurately map riparian zone width (Johansen et al., 2008a).  

 

4.2 Specifications for LiDAR Data Acquisition and Analysis 

LiDAR sensors designed for corridor mapping, such as the 

Toposys Harrier 56/G3 Riegl LMS-Q560, were considered most 

appropriate for cost-effectively and consistently mapping 

riparian condition indicators for areas > 1000 km of stream 

length. These systems also enable capture of coincident very 

high spatial resolution image data on an opportunistic basis 

when weather conditions permits optical data capture. A low-

cost coincident optical image dataset would be very suitable for 

calibration and validation of LiDAR derived riparian condition 

indicator maps and for visual interpretation of large in-stream 

wood. The use of LiDAR data also proved more cost-effective 

at these spatial scales compared to satellite and airborne optical 

image datasets (Johansen et al., in review b). The LiDAR data 

were found more appropriate for acquisition and analysis than 

the optical image datasets because of consistent scan angles, 

ability to capture data in cloudy conditions, and capacity for 

mapping automation. The acquisition of airborne LiDAR data is 

possible over a shorter period of time than that for optical image 

datasets, as LiDAR data acquisition is less weather dependent 

and can be captured day and night if required. LiDAR 

specifications deemed most suitable for riparian mapping 

applications based on the experiences gained for the study sites 

in Victoria and Central Queensland and the literature (Goodwin 

et al., 2006; Armston et al., in press) are presented in Table 2. 

 

Table 2: Some suggested LiDAR data acquisition specifications 

for riparian mapping applications. 
 

Parameters Value 

Scan angle < 15 degrees 

Maximum scan angle 45 degrees 

LiDAR overlap between runs 30% 

Point spacing 0.50 m along/across track 

Point density 4 points/m 

Spot footprint 0.30 m 

Sensor settings to be reported Maximum scan angle; pulse rate; 

scan frequency; X,Y, and Z 

uncertainty 

Format Las 1.1 to store geo-referenced 

information without any 

approximations 

Return intensity Radiometrically calibrated 

Point cloud classification Into ground and non-ground 



As the intrinsic attributes of riparian features being mapped will 

vary depending on location and the feature being assessed, the 

extrinsic specifications of the LiDAR data acquisition will need 

to suit a wide range of requirements. The canopy gap size 

distribution affects the dynamic range of estimates of cover as 

the LiDAR beam is “blind” to gaps smaller than its cross-

sectional area. Previous work over a range of vegetation types 

has indicated that an average point spacing of < 1 m and a 

maximum beam cross-sectional diameter < 30 cm will provide 

good mapping precision up to approximately 90% foliage cover 

(Armston et al., in press). The scan angle should be minimized 

(at least < 15º) to limit the effects of leaf angle distribution and 

ground slope on spatial variation in cover profile estimates in 

order to avoid more advanced modeling (Goodwin et al., 2006). 

To obtain information on riparian forest structure at a spatial 

scale suitable for dense vegetation as well as smaller streams 

with narrow riparian zones (< 20 m wide), the point density 

should be at least 4 points / m2 (> 0.5 m point spacing). With a 

set laser beam divergence at 0.5 mrad, a flying height of ≤ 600 

m is required to achieve a footprint size of ≤ 30 cm diameter. It 

is recommended that an area of at least 100 m beyond the 

external perimeter of the riparian zone on each side of the 

stream is covered. A total swath width of 500 m would be 

sufficient for the majority of streams and associated riparian 

zones in Australia. To achieve a swath width of 500 m with a 

scan angle < 15° and a footprint size ≤ 30 cm diameter, two 

parallel strips with 30% overlap will need to be flown. Scan 

frequency and platform speed are to be determined to optimize 

point density, the altitude of the platform, the maximum scan 

angle, and the beam divergence, which, in combination with 

altitude, dictates the ground footprint size (Goodwin et al., 

2006). Metadata are required to provide detailed and complete 

documentation of the acquisition as well as independent 

accuracy assessment using field data obtained at the time of 

LiDAR data acquisition. It is also important that specific 

processing documentation is developed to the extent, where the 

processing routines can be precisely repeated. This is important 

for successful future monitoring of streams and riparian zones.  

 

 

5. CONCLUSIONS AND FUTURE WORK 

Our findings show that high spatial resolution passive and 

active image data can be used for mapping riparian zone 

properties over large spatial extents. LiDAR data, if captured 

with suitable specifications, are more appropriate and cost-

effective than SPOT-5, QuickBird, and Ikonos satellite image 

data and airborne multi-spectral UltraCam-D image data for 

mapping riparian condition indicators. Although the use of the 

UltraCam-D dataset enabled mapping of more riparian 

condition indicators than the other assessed optical image 

datasets, the Ultracam-D image data were not suited for 

mapping riparian condition over large spatial extents from a 

cost-benefit perspective due to the large file size, requiring 

extensive and very time-consuming data processing for 

automated procedures. LiDAR data could be used to accurately 

map the largest number of riparian condition indicators: water 

bodies; streambed width; bank-full width; riparian zone width; 

width of vegetation; PPC; longitudinal continuity; vegetation 

height classes; large trees; vegetation overhang; and bank 

condition. Overall, the LiDAR data required less intensive 

processing than the optical datasets. The LiDAR data were 

found most appropriate for acquisition for large regions because 

of consistent scan angles, ability to capture data over shorter 

time frames, and capacity for mapping automation. Future work 

will focus on mapping applications at the state level in Australia 

for > 100,000 km of stream length. 
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