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ABSTRACT: 
The application of three dimensional building models has become more and more important for urban planning, enhanced navigation 
and visualization of touristy or historic objects. 3D models can be used to describe complex urban scenes. The automatic generation 
of 3D models using elevation data is a challenge for actual research. Especially extracting planes edges and corners of man made 
objects is of great interest. This paper deals with the automatic classification of points by utilizing the eigenvalues of the covariance 
within the close neighbourhood. The method is based on the analysis of 3D point clouds derived from Laser scanner data. For each 
3D point additional structural features by considering the neighbourhood are calculated. Invariance with respect to position, scale 
and rotation is achieved by normalization of the features. For classification the derived features are compared with analytical 
calculated as well as trained feature values for typical object structures. For the generation of a training data set several point sets 
with different density and varying noise are generated and exploited. The result of the investigations is that the quality of the 
classification using the analytical eigenvalues as reference is not harmful in comparison to the trained data set for a small noise. 
Therefore for all structures presented here it is not necessary to use training data sets instead of an unsupervised classification based 
on the analytical eigenvalues. Weighting the calculated distances in the eigenvalue space dependent on the structure type improves 
the classification result. Due to this classification all points which may belong to a building edge are selected. Assembling these 
points to lines the 3D borders of the objects were achieved. The algorithm is tested for several urban scenes and the results are 
discussed. 
 

1. INTRODUCTION 

Three-dimensional building models have become important 
during the past for various applications like urban planning, 
enhanced navigation or visualization of touristy or historic 
objects. They can increase the understanding and explanation of 
complex scenes and support the decision process of operation 
planning. The benefit for several applications by utilizing 
LIDAR data was demonstrated for instance by Brenner et al. 
(2001). For decision support and operation planning the real 
urban environment should be available. In most cases the object 
models of interest are not obtainable and especially in time 
critical situations the 3D models must be generated as fast and 
accurate as possible. 

Different approaches to generate the 3D models of urban scenes 
are discussed in the literature (Shan & Toth, 2008). Building 
models are typically acquired by (semi-) automatic processing 
of Laser scanner elevation data or aerial imagery (Baillard et al., 
1999; Geibel & Stilla, 2000). LIDAR data can be utilized for 
large urban scenes (Gross & Thoennessen, 2005). The 
processing of raw full-waveform data to gain object structures 
of buildings was investigated by Jutzi et al. (2005) and the 
iterative processing to increase the set of 3D points of buildings 
by Kirchhof et al. (2008). Pollefeys (1999) uses projective 
geometry for a 3D reconstruction from image sequences. Fraser 
et al. (2002) use stereo approaches for 3D building 
reconstruction. Vosselman et al. (2004) describes a scan line 
segmentation method grouping points in a 3D proximity. 
Airborne systems are widely used but also terrestrial Laser 
scanners are increasingly available. The latter ones provide a 
much higher geometrical resolution and accuracy (mm vs. dm) 
and they are able to acquire fine building facade details which 
are an essential requirement for a realistic virtual visualization. 

In Section 2 the calculation of additional point features is 
described. The features are normalized with respect to 
translation, scale and rotation. In Section 3 typical 
constellations of points are discussed and discriminating 
features are presented. Examples for the combination of 
eigenvalues and structure tensor are shown. For typical 
situations analytical feature values are derived. For the 
classification procedure the results of the trained feature values 
are discussed in Section 4 and the trained values are compared 
with the analytical values. The generation of lines is described 
in Section 5. Points with the same eigenvectors are assembled 
and approximated by lines. The resulting 3D structures 
(boundaries) of objects are shown for the selected laser point 
cloud. In Section 6 the possibilities using additional features are 
summarized. Outstanding topics and aspects of the realized 
method are discussed. 

2. EIGENVALUE ESTIMATION TO GAIN OBJECT 
STRUCTURES 

A Laserscanning device delivers 3D point measurements in an 
Euclidian coordinate system. For airborne systems mostly the 
height information is stored in a raster grid with a predefined 
resolution. Image cells without a measurement are interpolated 
by considering their neighbourhood. 

An example data set gathered by an airborne Laser scanner 
system (TopoSys®) as 3D points is shown in Figure 1a. The 
color corresponds to the height. A transformation to a raster 
image, selecting the highest value for each pixel and after filling 
missing pixels with a Median operation, yields to Figure 1b. 
Due to the filtering the image does not represent the original 3D 
information anymore. The horizontal position is slightly 
different and some of the height values are interpolated to fill 
the gaps even if there was no measured value available. 



 

Additionally, sometimes more than one measurement for a 
resolution cell exists considering first and last echo or 
combining data of several measurement campaigns. 

 

 a    b 

Figure 1.  Point clouds measured with TopoSys® Laser scanner 
a) colored by height, b) raster image based on point 
clouds with interpolated values. 

An example of data received by a terrestrial Laser scanner (Z+F 
sensor) for a dense point cloud colored by intensity is shown in 
Figure 2. 

In contrary to the airborne data the projection of terrestrial 
Laser data along any direction is not very reasonable. Especially 
the combination of airborne (Figure 1) and terrestrial (Figure 2) 
Laserscanning data requires directly the analysis in the 3D data. 

 

Figure 2.  Point clouds of a Z+F sensor colored by intensity. 

2.1 Calculation of the covariance matrix utilizing a 3D 
spherical volume cell  

A 3D spherical volume cell with radius R  is assigned to each 
point of the cloud. All points in a spherical cell will be 
analyzed. The 3D covariance matrix as described by Maas & 
Vosselman (1999) are discussed and further improved as 
described in Gross & Thoennessen (2006). 

In a continuous domain, moments are defined by: 
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where , , ∈ℕi j k , and i j k+ +  is the order of the moments 

integrated over a predefined volume weighted by ( ), ,f x y z . As 

weighting function the mass density can be used. It reduces to a 
constant value if homogeneous material is assumed. Another 
possibility is to use the measured intensity as weighting 
function as discussed in earlier works. To normalize the terms 
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Considering only surfaces of objects all moments have to be 
calculated with a constant but small thickness for the volume 
vanishing by the normalization. After discretization of the 
integrand and setting ( ), , 1    pointsf x y z = ∀ the integral is 

approximated by a sum. The mean values , ,x y z  and the 

moments of the second order 2i j k+ + =  have been calculated. 

The normalized and dimensionless moments of second order for 
discrete points are given by 

 
( ) ( ) ( )

1

N i j k

l l l
l

ijk i j k

x x y y z z
m

R N
=

+ +=
− − −∑

ɶ . (2) 

Neither the number of points nor the chosen physical unit for 
the coordinates, the radius and the weighting factor influences 
the values of the covariance matrix. 

For each point of the whole data set a symmetrical covariance 
matrix is calculated by 
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The calculation of the eigenvalues iλ  and eigenvectors 
�

ie  with 

i=1,2,3 delivers additional features for each point. The 
eigenvalues are invariant concerning translation, rotation, and 
scaling. 

2.2 Point distribution in 3D space 

In this section the influence of the measurement and the related 
point distribution on the investigated structures is described. 

 

Figure 3. Illustration of a point cloud captured by a terrestrial 
Laser scanner with typical scan pattern (color 
indicates the reflected intensity). 

Figure 3 shows as an example for the point distribution derived 
by a terrestrial Laser scanner (Zoller+Fröhlich). The point 
density depends on the distance of the object to the sensor and 
also on the incidence angle between laser beam and normal 
vector onto the object surface. For the airborne Laser scanner 
(TopoSys®) mounted on an aircraft the point density can be 
much higher in flight direction than perpendicular to the flight 
direction. In both cases there is no uniform distribution of the 
measured points. 

The investigations show that an inhomogeneous distribution 
does not influence the eigenvalues essentially as long as the 
radius of the neighbourhood is large enough. This means points 
inside a plane are characterized as plane points if the 
neighbourhood encloses at least five points in all directions and 
the rate of the point distances for any two different directions is 
smaller than 5:1. 

2.3 Analytical eigenvalues for object structures 

For specific object structures analytical eigenvalues can be 
determined. Table 1 show some typical object structures with 
their corresponding eigenvalues, where all values are 
determined by utilizing all required integrations of formula (1). 



 

Eigenvalues

Structure 
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Isolated 
point 

0 0 0 

 

End of a  
line 

1
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Line 1
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Half plane 1
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1

4  
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0 

 
Two planes 1
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1
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6
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6
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6

3 2

1 2 2
1 0.03

6 3

 + − = π π   

 

Two planes 
30° 

0.25 0.1875 0.01747 

Table 1.  Eigenvalues for some selected object structures. 

For all possible values of the roof slope the eigenvalues are 
drawn in Figure 4. The greatest eigenvalue is 0.25 and constant. 
The second eigenvalue starts from 0.125 and increases with 
increasing slope until 0.25. The smallest eigenvalue decreases 
from 0.03 to zero. For a slope of 30° the eigenvalues reaches the 
mean values for a flat roof and a plane. Therefore an own class 
for this structure is defined. 

                

 

Figure 4. Eigenvalues of the eave points for different roof 
slopes (0°, 30°, and 90°); the colored arrows visualize 
the direction of the eigenvectors. 

3. MONTE CARLO SIMULATION 

The analytical calculated values in Table 1 do not correspond to 
the statistical averages, which can be expected for the relevant 
structures of real data. Usually, for an example, the smallest 
eigenvalue of points belonging to a plane do not converge to 

3 0λ = . Already very small deviations of points from a flat 

surface yield to 
3 0λ > . Therefore for all the structures in 

Table 1 inside a spherical neighbourhood with radius R points 

with the different distances, normalized by the radius of the 
sphere { }0.03,0.1,0.2,0.3,0.4∈dx R  are generated. Each 

coordinate of the position of the points is modified by a 
Gaussian distributed noise with the normalized standard 
deviation { }0.0,0.01,0.02,0.03,0.04Rσ ∈ . 

For each parameter combination and structure 1000 point 
clouds have been generated by random 3D points. The mean 
value and the standard deviation of every 3 eigenvalues were 
determined. The histograms of one test set for each structure are 
drawn in Figure 5. The distribution of the eigenvalues seems to 
be Gaussian with center near by the analytical values. 

 

    

Figure 5. Histograms of the eigenvalues and comparison with 
the analytical values (dashed lines) for 0.4dx R=  and 

0.04Rσ =  for all structures (red: first, green: 
second, blue: third eigenvalue). 
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Figure 6.  Eigenvalue point cloud projection along the axis of 
the smallest eigenvalue. 

In the next steps the 3 eigenvalues are considered as a point of a 
3D space. For a small standard deviation σ the point cloud of 
eigenvalues results in a small accumulation of points. If σ is 
increasing the clusters are extending and nearby clusters may 
overlap. Figure 6 shows the 2D-projection along the axis of the 
eigenvalue 

3λ . Projections along the two other eigenvalues 

demonstrate the separability of the cluster for each structure. 

 

  

Figure 7.  Distances of the eigenvalue points to all classes. 

The eigenvalues of the points for each structure define a 
training record from which the three mean values 
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∈
 as well as the associated eigenvalue-covariance-

matrix ( )( )T

S p p
p S

C λ λ λ λ
∈

= − −∑  can be calculated, where N  is the 

number of eigenvalue-points of the structure. The distance of 
any test point λ  of the eigenvalue space is determined by using 

the Mahalanobis-distance ( ) ( ) ( )1,
T

S S Sd S Cλ λ λ λ λ−= − − . This 

measure gives a distance for any test eigenvalue-point to the 
different structures. These eight distances of every point against 
their own and all other structures (except for isolated point) are 
listed in the Figure 7. The points of a structure are plotted and 
colored in accordance to their membership S and drawn in the 
interval [ 1, ]−S S  (horizontal axis). The vertical axis represents 
the logarithm of the distance of each eigenvalue point to each 
structure. In the 1st picture the distances between the 
eigenvectors of all test records of all structures against the 
structure "End of line" are drawn. The remaining pictures show 
the respective distance of all test points to the other structures. 
The green line mark the value of the Chi-square tests 2

0.01,2χ . The 

percentage number of points of each structure with a smaller 
distance has been indicated. With increasing noise the distance 
of a point of a structure to a different structure decreases. 
Therefore false classification increases. 

Figure 8 shows the mean value and the standard deviation of the 
eigenvalues of the training set for a plane dependent on the 
point density and the noise. The mean values approximate the 
analytical eigenvalues with a very small standard deviation. 

 

Figure 8. Mean value and standard deviation of the three 
eigenvalues of the training set for a plane. 

A comparison between the mean value of the eigenvalues of the 
training set for a plane and the analytical values is shown in 
Figure 9. The differences depend on the point density and the 
noise. A high point density delivers nearly the analytical 
eigenvalues. The non monotonic behaviour of the curve for 

2λ  

may be caused by the approximation of a plane by nearly 
equidistant points (discretization effects). The mean value of the 
third eigenvalues is positive but very small. 

 

Figure 9. Differences between the mean value of the eigen-
values of the training set for a plane and the  
analytical values. 

For the same points the Euclidean distances in the eigenvalue 
space against the analytical eigenvalues were calculated. Within 
the tested mean point intervals and the investigated noise all the 
points were assigned to the correct structure. Based on this 
investigation the classification of elevation points can be 
realized by nearest neighbour classification in the eigenvalue 
space of the structures of Table 1. This is possible as far the 
noise is lower than 4% of the radius of the neighbourhood 
environment. 



 

4. NEAREST NEIGHBOUR CLASSIFICATION OF 3D 
POINTS 

After calculating the covariance matrix for each point in the 
data set by considering the local environment defined by a 
sphere additional features for each point are derived. These 
features are the centre of gravity, the geometrical distance 
between centre of gravity to the point, the eigenvectors, the 
eigenvalues and the number of points inside the sphere. The 
same features can be used to determinate the object 
characteristics. 

Table 1 shows the eigenvalues of the covariance matrix of some 
special point configurations. The first six rows present 2D and 
the last three rows 3D object structures. The eigenvalues for the 
typical object structures are calculated analytically. For an ideal 
line two eigenvalues are zero and one of it is greater than zero. 
If test points inside a plane are of interest their eigenvalues have 
to be compared with the analytical eigenvalues 

1 2 30.25      0λ = λ = ∧ λ =  for a correct plane. 

The eigenvalues in Table 1 are considered as reference points in 
the 3D eigenvalue space for each structure. The classification of 
any test point by the nearest neighbour method was performed, 
were all distances were measured in the eigenvalue space. 

For the following steps we define the dimensionality ( )dim S  

for each structure, which means the dimension of all points 
belonging to the same structure of a contiguous object. The 
dimensionalities for each structure are given in Table 2. Corner 
like points have the dimensionality 0, edge like points 1 and 
plane like points 2. 

Structure Dimensionality 

Isolated point 0 

End of a line 0 

Line 1 

Half plane 1 

Plane 2 

Quarter plane 0 

Two planes 1 

Three planes 0 

Two planes 30° 1 

Table 2. Dimensionality for each structure. 

By utilizing the empirically derived weighting factors 

( ) ( )( )1 1 dimw S S= +  for the distance ( )d S  between the test 

point and the analytically calculated eigenvalues of structure S  
the classification result was refined. This weighting of the 
distances between test and reference points introduces non-
planar separation surfaces defined by 

( ) ( ) ( ) ( )i i j jd S w S d S w S=  between two structures. Ignoring 

the influence of all other structures, the separation surface 
between the structures i  and j  is given by the constant ratio of 

both distances ( ) ( ) ( ) ( )i j j i jid S d S w S w S w= = . For 1jiw =  

we get the intermediate plane between both structures as 
separation surface. For 1jiw ≠  the separation is described by a 

sphere. Radius and centre point depend only on jiw  and the 

distance between the two structures in the 3D eigenvalue space. 

 

Figure 10.Equipotential surface between line and plane in the 
eigenvalue space. 

As an example Figure 10 illustrates the situation between the 
structures line and plane with weighted distances. All test 
points with eigenvalues inside the red region are classified as 
line points meanwhile all points in the grey region are classified 
as points belonging to a plane. Without weighting the cyan 
marked horizontal line (hyper plane) separates the two classes. 
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   b 

 

   c 

Figure 11.Classified object points. a) All points colored by their 
classification, b) Points identified as plane points 
(colored by their height), c) Points with one high and 
two small eigenvalues representing edges of objects. 

By utilizing the weighted distance calculation during the 
classification procedure for all points the derived results are 
shown in Figure 11a. Figure 11b shows all points with 
eigenvalues fulfilling the criteria for planes. The color indicates 
the object height. In Figure 11c only the edge points are 
depicted corresponding to Table 1 rows 3, 4, and 7. 

For the introduced classification further results are shown for 
comparison purposes of a more complex building. The results 
are depicted in Figure 12 with an oblique view to demonstrate 
the geometrical relation of the 3D points. 



 

 

 a    b 

Figure 12.Classification result of a laser point cloud for a 
complex urban building. a) with all points, b) without 
points inside a plane. 

5. LINE GENERATION 

All points marked as edge point may belong to a line. These 
points are assembled to lines by a grouping process (Gross & 
Thoennessen, 2006). Therefore the greatest eigenvalue and its 
eigenvector are considered. Consecutive points with a similar 
eigenvector, lying inside a small cylinder are grouped together 
and approximated by a line.  

The procedure starts with any arbitrary point of the point cloud 
classified as edge-like point (line, halfplane, two_planes). This 
trigger point is compared with all points which have nearly the 
same or opposite eigenvector of the largest eigenvalue. 
Furthermore only points with very small distance to the straight 
line defined by the trigger point and its first eigenvector are 
included in the next consideration. Finally it is focused on the 
first two gaps starting from the trigger point going along the 
first eigenvector and also its opposite direction. Only points 
inside these gaps and fulfilling all those conditions are selected 
and used to determine a regression line and its endpoints. 

The same procedure is repeated for all points not assigned to a 
line until each point belongs to a line or can not generate an 
acceptable line. 

Figure 13 shows the results of the line generation for the data 
set shown in figure 1. The color indicates the length of the lines. 
The eaves as well as the ground plan of the buildings are 
approximated by lines. For the detection of the ridge of the 
saddle roof a readjustment of the thresholds for the eigenvalues 
might be recommended to improve the results especially for 
roofs with small inclination. 

 

Figure 13.Lines generated by using the classified laser elevation 
points. 

6. CONCLUSION AND OUTLOOK 

For exploiting Laser scanning data the processing of the 
original 3D point clouds is proposed. Additional features for 
each point of the cloud can be calculated from the covariance 
matrix including all neighbour points. The neighbourhood can 
be investigated by considering a sphere. The quality of the 
resulting eigenvalues and the eigenvectors of the matrix 
strongly depend on the spatial resolution and the number of 
points inside the sphere. The new features are invariant with 
respect to position, rotation and scale. 

The additional features are appropriate for classification of the 
points as edge, corner, plane or tree points. For some typical 
situations analytically determined eigenvalues are opposed to 
calculated eigenvalues of real data for comparison. The greatest 
eigenvalue can be used for filtering edge like points. 

The described method for generation of lines combines 
consecutive points with the same eigenvector inside a small 
cylinder without any gap. The presented results are promising.  

Further investigations are planned concerning the fusion of the 
data on basis of the point clouds and/or on a higher level of 
lines. Especially the construction of planes assembling plane 
like points should be investigated in future.  
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