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ABSTRACT: 

 
In forest inventories, the species information is crucial for economical, ecological and technical reasons. Species recognition is 
currently a bottleneck in practical remote sensing applications. Here, we examined species discrimination using tree-level LiDAR 
features in discrete-return data. The aim was to examine the robustness and explanatory power of the intensity and height 
distribution features. A dataset consisting of 13890 trees from 117 stands in southern Finland (61°50'N, 24°20'E) was used. The 
data of two LiDAR sensors was fused using intensity normalization in natural targets. Age dependency of first-return intensity was 
observed in spruce and birch trees, which needs to be considered in using LiDAR intensity metrics. Classification of Scots pine, 
Norway spruce and birch was tested and accuracy was 81−85%. Separation of pine and spruce was more accurate, 91−93%. We 
also present results for 15 rare conifer and broadleaved species. To enhance the classification accuracy of birch, we propose co-use 
of image features. 
 

1. INTRODUCTION 

1.1 LiDAR in forest inventories 

The conventional way of measuring trees is giving way to new 
applications, which combine in situ observations and remote 
sensing data. The introduction of airborne laser scanning was a 
breakthrough as it allows for accurate 3D probing of the 
vegetation and terrain (Næsset 2004, Packalén and Maltamo 
2007). Before LiDAR, automated 3D methods were never tried 
in practice although method development in image matching 
for canopy surface modeling and for 3D treetop positioning was 
active (Miller et al. 2000, Korpela 2004, 2007).   
  Since 2002−2006, in Scandinavia, LiDAR is has been applied 
by companies mainly for area-based but also for single-tree 
remote sensing (STRS). As the names imply, the two differ in 
the used unit of observation. Trees constitute distinct targets, 
but STRS requires a high sampling density and individual trees 
are not always detectable. The accuracy at tree level is res-
tricted by the imprecision of allometric relationships between 
the measurable tree dimensions and the variables of interest. 
For example, in Finnish trees, the best attainable RMS-
accuracy for stem diameter is 10% (Korpela and Tokola 2006) 
and tree positions have a planimetric accuracy of 0.2−0.4 m 
(Korpela et al. 2007b). In area-based remote sensing, the forest 
is characterized by features that are computed from the LiDAR 
point cloud. The features measure the vertical structure and 
density of the canopy and the species mixture and are 
correlated with forest parameters that are of interest to the 
foresters. A training set comprising of field samples, the 
reference plots, is used in the estimation of imputation models, 
which are applied in areas where in situ data is missing. As in 
supervised learning, the accuracy of the results depends on the 
quality of the training data and the dependencies between the 
forest parameters and the LiDAR features. If tree positions are 
not preferred and stand-level volume/biomass estimates are 
vital, the area-based technique may well be more cost-efficient 
in practical forest inventories. The accuracy of per-species data 
has improved recently with the co-use of LiDAR and images 
(Packalén and Maltamo 2007). 

 
1.2 Tree species identification in images and LiDAR 

  In forest inventories, the species information is crucial for 
economical, ecological and technical reasons. Errors made in 
the species can cause prominent bias in the estimates of tree 
biomass, because the allometric dependencies (canopy 
properties predict stems) that are modeled with the LiDAR 
features are species-specific.  
  In Finland, there are four commercially important species, 
which constitute over 98% of the stem volume. These are Scots 
pine (Pinus sylvestrs L.), Norway spruce (Picea abies (L.) H. 
Karst.), birch (Betula pubescens Ehrh.,Betula pendula Roth.) 
and aspen (Populus tremula L.). Aspen is a rare species of the 
best sites. In automated image-based species identification, the 
separation between pine and spruce has proven difficult 
(60−70% accuracy) because of the overlap of spectral features 
(Haara and Haarala 2002). Structure-based classification in 
which the branching patterns are used requires very-high 
resolution near-nadir data, which is accurate, but leads to high 
data costs (Brandtberg 1999). Korpela (2004) used 
photogrammetric 3D treetop positioning followed by image-
based crown modeling which allowed for the sampling of 
spectral values in several images. The features that 
characterized self-shading in a crown enhanced the iden-
tification accuracy of pine, spruce and birch to 85%. 
  LiDAR data offers a complement to optical data. Single-tree 
species recognition from 1−4-return LiDAR data was studied 
by Brandtberg et al. (2003), Holmgren and Persson (2004), 
Brandtberg (2007) and Ørka et al. (2007). Flying heights of 
100−750 m and footprint diameters 10−20 cm were reported. 
Both geometric and intensity features were tested. Holmgren 
and Persson (2004) extracted LiDAR points within a crown 
and computed 20 features. They achieved an accuracy of 95% 
in separating 562 samples of pine and spruce. Crown base 
height, variation of intensity and the mean intensity of returns 
near the estimated crown surface were the strongest features. 
Brandtberg (2007) provides an elaborate discussion of the 
LiDAR-crown interactions. He obtained an accuracy of 64% in 



 

the classification of three broad-leaved species in West 
Virginia using height and intensity distribution metrics. Ørka 
et al. (2007) examined species identification in south Norway 
for 224 samples of Birch, aspen and Norway spruce. The 
LiDAR data was divided according the echo-type, first-only-
last, and the per-tree mean and standard deviation of intensity 
were computed for the three echo-types. The accuracy varied 
from 60 % to 74 % depending on the number of variables. 
Coniferous and deciduous trees differ in NIR-reflectance in 
optical but, Ørka et al. (2007) did not observe notable 
differences in the intensity of the LiDAR at λ=1064 nm. Co-
use of LiDAR intensity in species classification in young 
seedling stands was examined by Korpela et al. (2008). 
Intensity provided an aid in the detection of the competing 
vegetation, but the accuracy in the separation of coniferous and 
broad-leaved, 0−4-m-high trees was only moderate. In older 
trees, combination of optical data with LiDAR improved the 
species classification results (Heinzel et al. 2008, Persson et al. 
2004). 
  The use of full-waveform LiDAR for tree detection and 
species identification was examined by Reitberger et al. (2006, 
2008) and Höfle et al. (2008). Litkey et al. (2007) provide 
interesting examples of waveforms superimposed in terrestrial 
close-range images. Waveform data allows for a more detailed 
description of the echo. Also, an increase in point density is 
achieved by the decomposition of waveforms (Wagner et al. 
2006), which is beneficial in tree detection and increases the 
structural details that can be used for species determination 
(Reitberger 2008). Echo width and amplitude (~intensity) have 
been used to characterize tree species. Höfle et al. (2008) used 
calibrated full waveform data for species discrimination of 
European larch (Larix decidua Mill.), oaks (Quercus robur L., 
Q. petraea (Matt.) Liebl.) and Beech (Fagus sylvatica L.). 
Echo width separated larch from the broad-leaved trees, but 
oak and beech showed a similar response in backscatter cross-
section and echo width.  
  In addition to LiDAR systems parameters, the scanning range 
and the atmospheric losses, echo width and amplitude/intensity 
are affected by the illuminated area, the BRDF of the illu-
minated targets and the incidence angles i.e. the target 
geometry (Höfle et al. 2008). This means that retrieval of 
reflectance of tree canopies is ill-posed even in radiometrically 
calibrated data and the radiometric LiDAR parameters will 
exhibit substantial intraclass (tree/segment-level) variation. 
This in turn means that species determination has to be based 
on the analysis of distribution characteristics that are derived 
from a multitude of pulses that have interacted with the tree 
under investigation.  
 
1.3 Objectives 

Our aim was to study asses the usability of tree-level features 
in discrete-return LiDAR data for tree species classification 
and to examine factors that potentially influence the species-
specific intensity signatures and needs thus consideration in 
the use of LiDAR data for species determination. A substantial 
data set consisting of 13890 trees was compiled to allow the 
detection of these effects.     
 

2. METHODS 

2.1 Study area, reference trees and LiDAR 

The experiment was carried out near the Hyytiälä forest station 
in southern Finland (61°50'N, 24°20'E). Rotation ages are 
75−120 yrs and trees attain a height of 24−33 m. Scots pine 
and Norway spruce dominate and form both mixed and pure 
stands. Birch stands are all younger than 40 years, because of 
the past silviculture. Isolated birches occur in older coniferous 
stands. Mineral soils with gentle slopes prevail and the 
elevation is 135−198 m. Lakes, open mires, spruce mires and 
pine bogs cover the basins. The mires are largely drained. The 
study area extends 2×6 km, and encompass a multitude of 
permanent forest plots both in managed and pristine forests, on 
mineral soils and in both pristine and drained peatland. The 
area is covered by aerial photographs of 1946−2008 and four 
LiDAR campaigns in 2004−2008. We used LiDAR data from 
2006 and 2007 (Table 1). Both campaigns had a density of 6−8 
pulses per m2. 
 
Instrument ALTM3100 ALS50-II 
Date  July 25, 2006 July 4, 2007 
Pulse frequency 100 kHz 115.8 kHz 
Scan frequency 70 Hz 52 Hz 
Footprint 25−28 cm 17−18 cm 
Range 840−950 m 770−820 m 
Scan angle ± 14° ± 15° 
Air humidity, 2 m 48−52% 60−75% 
AGC - 8 bits 
Table 1. Characteristics of the LiDAR datasets. 
 
Both LiDAR datasets were normalized for the range. ALS50-
data was also compensated for the influence of the automatic 
gain control (Korpela 2008). In addition, the range and AGC-
normalized intensity values of ALS50 were further normalized 
to match the ALTM3100 data by a simple multiplication. 
Natural targets including gravel, asphalt, an oat field, grass, 
ground lichens and shrubs were used for finding the 
normalization parameters. It is possible that the AGC-
compensation in ALS50 was ineffective for some sites near 
forest-lake (low intensity − fluctuating reflections) or forest-
field (high intensity) margins, where the AGC-changes were 
abrupt. Also, due to the AGC, the ALS50 8-bit intensity data 
was saturated in some non-forest areas. In the analysis the data 
of the two sensors were fused.  
  Over 15000 reference trees have accumulated in field measu-
rement campaigns during 2002−2008 organized by the first 
author. Before 2006, a tacheometer was used for the mapping 
of trees. In 2006−2008, a photogrammetric-geodetic mapping 
procedure was applied (Korpela et al. 2007a). In it, the photo-
visible trees are first positioned using ray-intersection in 
multiple aerial images or by a monoplotting procedure that 
employs the LiDAR point cloud (Figure 1). The photo-trees 
serve a control points in the field and small trees are positioned 
using trilateration and triangulation. Trees in young stands 
with heights of below 6 m were mapped using Network RTK. 
All trees were recorded for species, stem diameter and crown 
status. The proportion of trees that were measured for the 
depth of the living crown and tree height has varied from 30% 
to 100%. All field plots are fixed-area plots, circular, 
rectangular or free in shape and 0.1−1.8 ha in size. In 2002, 
crown width was additionally measured in nearly 1000 trees. 
To study the response of rare tree species in LiDAR intensity, 



 

580 semi-urban trees were mapped in August 2007 near the 
Hyytiälä forest station (arboretum, forested farmland, garden 
forests, forest margins, lake shores, open grown trees) on 
fertile soil. Domestic and exotic species included alder (Alnus 

glutinosa (L.) Gaertner), grey alder (Alnus incana (L.) 
Moench), Goat willow (Salix caprea L.), Norway maple (Acer 

platanoides L.), Siberian larch (Larix sibirica Ledeb.), rowan 
(Sorbus aucuparia L.), Douglas fir (Pseudotsuga menziesii 
(Mirb.) Franco) and Siberian fir (Abies sibirica Ledeb.). 
  All trees were visually verified to exist at the time of the 
LiDAR campaigns using aerial images of August 2006 and 
June 2007, and the treetop position was re-measured using the 
monoplotting technique (Figure 1.) Some broken, fallen or cut 
trees were rejected. Trees that were discernible in the images 
and LiDAR data were included. Most trees with a relative 
height of below 50% were thus rejected because they were not 
seen in the images and the point cloud. The unseen trees 
constitute 0−10% of the stem volume and commercial value 
and this proportion depends on the height variation and density 
of the stand (Korpela 2004).  
 

 
Figure 1. Principle of the monoplotting method used for treetop 

positioning. The treetop is positioned in one image 
by the operator (usually the back-lit case) and the 
distance to the first LiDAR point intersected by the 
camera ray (width 0.5−1 m) is used for the treetop 
position. In fused LiDAR data with 12−18 pulses 
per m2, the mean underestimation of Z was 0.33 m 
in 465 trees measured in the field in 2007.  

 
2.2 Extraction of LiDAR features 

  Extraction of LiDAR data and features for the reference trees 
was automated using a crown modeling procedure. The 
objective was to, as accurately as possible; collect the LiDAR 
points that belong to each tree. In a dense forest where crowns 
are interlaced, this is an ill-posed task, and some noise will 
remain in the per tree data, especially in the lower part of the 
crown where the branches of neighboring trees overlap. Figure 
2 illustrates the problem. First, field measurements of crown 
width (n=871) were used for estimating regression models that 
predict the crown width using species, stem diameter and tree 
height as predictors. The regression estimate of crown width 

was increased 0−20%, depending on stand density, and this 
estimate provided an initial approximation for the maximal 
crown width. It was applied in an iterative adjustment of a 
crown model. A three-parameter curve of revolution was fitted 
to the LiDAR point cloud (Korpela et al. 2007b). Weighted 
least square adjustment was used in the parameter estimation. 
In it, LiDAR points, observations of crown radius, outside the 
crown envelope are weighted by a factor five as weighting 
improves the fit to the real crown extent. The length of the 
crown model was 40% down from the top. This is a coarse 
approximation. For example, young and open-grown spruce 
trees have deeper crowns. LiDAR points inside or near the 
modeled crown (within one RMSE), were included. In 2.5% of 
the cases the iteration failed and these trees were excluded. 
The features computed using the points are in Table 2. 
 

 
Figure 2. Map of LiDAR pulses that have echoed from a height 

of below 20 m have been back-projected to a 
mapping surface 20 m above the DEM. The map is 
from a 25−30-m-high spruce stand. The large 
openings in the periphery are caused by big pine 
and birch crowns. The green dots represent 
ALTM3100 and blue dots are ALS50 'echoes'. Data 
from 6 strips is seen. The XY-match is reasonable. 

  
Feature Description 
im, isd Mean and SD of intensity 
imsurf, isdsurf As above, but <0.3 m from the envelope  
id1−id10 Deciles of the intensity distribution 
hd1−hd10 Deciles of the relative height distribution 
iMin Minimum intensity (id10 = IMax) 
iq1−iq4 Mean intensity 0−10%, 10−20%, 20−30%, 

30−40% down the top 
iq12, iq13, iq14 Transformations iq1/iq2, iq1/iq3, iq1/iq4 
Table 2. Features derived from the LiDAR data assigned to a 

tree. Intensity features were computed using first-
return data only. hd features make use of all points. 

 
2.3 Classification method 

The non-parametric k-NN method was applied with leave-one-
out cross-validation. Feature selection was based on visual 
assessment of Box-Whisker plots, correlation analysis and 
ANOVA of the individual features. Performance measures 
were the overall classification accuracy and the simple Kappa.  



 

 
3. RESULTS 

3.1 Examination of individual features  

There were differences in the mean intensity of first-return 
points in 20−135-yr-old pine, birch and birch trees (Table 3).  
 

 Pine, 
n=5007 

Spruce, 
n=6120 

Birch,  
n=1979 

im 37.3 5.1 45.5 5.9 52.6 10.1 
isd 16.0 2.2 19.1 2.2 20.2 3.6 

Table 3. Mean and SD of features im and isd. Living pine, 
spruce and birch trees.  

 
The LiDAR features imsurf and isdsurf that were derived using 
the crown surface points showed very high correlation with 
features im and imsurf. Given the errors in the crown model 
estimation and the planimetric imprecision of the LiDAR (~0.2 
m), this analysis was unable to detect horizontal intensity 
differences.   

 
Figure 3. Mean intensity values at relative heights of 0−10%, 

10−20%, 20−30% and 30−40% down from the top 
for 20−135-yr-old pine, spruce and birch trees. 

 
Figure 4. Height deciles, hd1−hd10 for living pine, spruce and 

birch trees.  
 
In the first-return data, intensity values were highest near the 
tree top and decreased downwards (Figure 3). The most 
probable explanation is that the leaf/needle density in shoots 
decreases downwards as the light environment worsens for the 
shaded shoots in a tree. However, it cannot be excluded that 
dampening of intensity is due to transmission losses in the 
canopy, which attenuate the signal. It was interesting to note 
that the response in im was different for trees of varying age 
(Figs. 5−7). It can be explained by changes in the crown 
architecture, in the foliage/needle density and/or changes in the 

reflectance of the LiDAR-illuminated scatterers. Birch and 
spruce showed an age-dependency in the mean intensity. In 
20−30-m-high birches, the intensity was 20−30% lower 
compared to young trees. The foliage mass and its vertical and 
horizontal distribution in an individual tree are influenced by 
many factors that include tree spacing, site fertility, 
fertilization, insect damages, age and growth rate. For 
example, the branching pattern, even the shape of needles in 
old pine and spruce trees differs notably from the young and 
vigorous trees (Stenberg et al. 1999). This may explain as to 
why the intensity was higher in the old, 25−33-m-high pines 
with a round-shaped crown. In old pines, the top branches get 
thicker and the crown becomes more of a level surface than a 
cone. The bare, thick, densely packed branches can probably 
result in a higher intensity. In less-light conditions, down the 
canopy, the needles tend to be broad and flat, whereas the so-
called sun-needles are more cylindrical in shape (Stenberg et 
al. 1999). Also, needle density is lower in the bottom of canopy 
(Cermák et al. 1998), and shoots tend to be more vertical than 
in the top part (Stenberg et al. 1994). Birch trees have 
widespread crowns and the foliage-density per unit area, or the 
depth of the leaf-layer possibly diminishes for older trees.  

 
Figure 5. im × tree height in 20−135-yr-old birches (n=1979). 

 
Figure 6. im × tree height in 20−135-yr-old spruces (n=6120). 

 
Figure 7. im × tree height in 20−135-yr-old pines (n=5007). 



 

3.2 Classification of pine, spruce and birch 

Using a set of 12933, 20-135-yr-old trees from diverse site 
conditions, and ten explanatory variables {im, isd, iq1, iq12, 

iq2 iq13, iq3, iq4, hd2/hd8, hd5} with leave-one-out cross-
validation in k-NN, an overall classification accuracy of 81% 
was achieved (Table 4) for pine (89%), spruce (78%) and birch 
(72%).  

 Pine Spruce Birch All 

Pine 4429  403 165 4997 
Spruce 349 4671 1003 6023 
Birch 100 434 1379 1913 

All 4878 5508 2547 12933 

Table 4. Confusion matrix of k-NN classification. Kappa=0.69. 
 
If birch was excluded, the accuracy was 92% (κ=0.84) for pine 
and spruce. In young trees, height of below 18 m (n=7307), the 
accuracy improved to 82% and 93% (κ=0.86) for the 3-class 
and binary cases, respectively. In the old trees, the accuracies 
were 85% and 91%. Birch and spruce were confused in 
20−25% of the cases. Separation of was more reliable in the 
older stands. The discrimination of pine and spruce was very 
reliable, with accuracies above 90%.  
 
3.3 Rare and exotic species 

Norway maple has large leaves that form a relatively shallow 
layer on the crown envelope. The mean intensity (im) was 
highest in maple (Table 5). The shoot structure of goat willow 
gives raise to high intensity. The leaf normal is upright and the 
leaves form surfaces that cover the shoot. Siberian fir had the 
highest intensity in conifers, which is also explained the 
structure of the shoots and needles that form dense planar 
mats. In the family of Birch trees, alder had the highest 
intensity. Again, the leaf inclination angle of alders (Alnus sp.) 
and birch (Betula sp.) is different. The semi-urban pines and 
spruce trees did not show any difference in intensity and aspen 
mixes with birch (Table 5). 
 

Species n Mean  SD 

Norway Maple 30 72.1 11.0 
Goat willow 66 66.5 11.2 

Rowan 32 66.0 13.8 
Siberian fir 45 64.5 9.2 

Small-leaved lime 9 59.5 8.1 
Alder 89 57.2 11.1 

Siberian larch 17 56.9 9.6 
Grey alder 16 53.9 11.0 
Douglas fir 2 53.4 3.3 
Wych elm 7 52.3 7.3 

Cembra pine 9 51.4 5.1 
Aspen 64 49.9 11.3 
Birch 100 45.3 10.9 

Spruce 32 44.3 5.8 
Pine 38 43.9 6.3 

Contorta pine 2 37.9 4.9 
Table 5. Mean intensity (im) in trees in the vicinity of the 

Hyytiälä forest station. 50% of birch and all maple 
samples represent open-grown trees.  

 

 
4. DISCUSSION 

The potential use of intensity and height distribution variables 
in small-footprint discrete-return LiDAR data for tree species 
discrimination were tried with 13890 trees from 117 forests 
stands. The results apply to 20−135-yr-old, intermediate, co-
dominant and dominant trees. Suppressed trees, with relative 
height of below 50% were not included here.   
 
LiDAR data of two sensors were fused in the analyses by 
normalizing the intensities. The imperfections of the fusion 
probably caused additional noise in the intensity data and 
impaired the results.  
 
The analysis omitted factors such as the site fertility and 
treatment history, which may affect foliage patterns in trees. 
These we will examined in the future, since they may exercise 
an effect on the species-specific signatures and need to be 
observed in the selection of training data and imputation 
models.  
 
Here, the LiDAR echoes belonging to a particular tree were 
carefully selected using field measurements that predicted 
crown dimensions. We will further analyze if the errors of 
species classification can be explained by the relative size of 
the tree and by the spatial pattern of the neighbors, because the 
labeling of the LiDAR echoes in a dense canopy is ill-posed. 
 
The accuracy of above 90% for the separation of pine and 
spruce is promising, and the results were obtained with 11000 
trees representing a wide range of growing conditions. 
Separation of birch from spruce most likely requires the use of 
optical data. With LiDAR only, the accuracy was restricted to 
80−85%. We will test the co-use of image features derived 
from UltraCAM D and ADS40-SH52 data for the trees used 
here. Optical data will be an aid in the classification of 
dominant and co-dominant trees that are seen in direct light.  
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