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b Université Paris-Est, LEESU, UMR-MA102 - AgroParisTech
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ABSTRACT:

It has been proven that roof runoff water plays an important role in the high metallic concentration levels in urban rainwater since
metallic elements are generated by corrosion of roof materials before being swept away by rainwater. The aim of TOITEAU project is
therefore to model this phenomenon, evaluating the metallic flows from roofs in rainwater. To achieve this goal, an important work has
already been done to model those flows at roof scale. But, it has now to be extrapolated to a whole drainage area, requiring knowledge
about the areas concerned by the different kinds of roof coverage, that is to say that a map of roof materials is needed. Such information
can be extracted from aerial (ortho-)images owing to (supervised) classification techniques. In the present situation, only six classes
corresponding to the following kinds of roofs were defined : zinc plates, slates, red tiles, brown tiles and flat roofs.
Nevertheless, classification results are limited because of several factors that have therefore to be dealt with.
First of all, some distinct classes have very similar radiometric distribution (such as for instance zinc and at light slates), making it
hard to distinguish between them. That’s why derived channels computed from initial red-green-blue channels of the ortho-image have
been used to improve the classification results. Texture channels have also been tested especially to discriminate zinc from other light
coloured roof materials. For the same reason and in order not to obtain a too ”noisy” result, per region classification algorithms have
been used : homogeneous regions will be classified instead of pixels. Secondly, roofs are the only interesting parts of the ortho-image
in this study. As a consequence, a building mask is first computed from digital topographic database BDTopo in order to classify only
roofs. However, several elements concerning data precision have to be taken into account at this step. For instance, the ortho-image
and the topographic database can obviously not have been captured at the same date and, as a consequence, buildings can have been
destroyed, modified or built between these two distinct capture times. In addition, as the used ortho-image is not a ”true ortho-image”,
building objects from digital topographic database and ortho-image roofs are not perfectly superposed. However, these topographic
database building objects can be registered to the ortho-image. Nevertheless, it must be said that these database objects often remain
caricatures of true buildings. Besides, most of the time, homogeneous regions to be classified do not directly correspond to database
buildings since those database objects can be groups of buildings or buildings of which the roof is composed of different materials.
Therefore, it is necessary to segment building areas (according to the topographic database) of the ortho-image into homogeneous
regions that are then classified.
Lastly, shadows can be quite important in roof areas because of the presence of roof superstructures or higher buildings in the neigh-
bourhood. That’s why an additional class ”shadow” is also defined in order to take into account shadow areas where radiometric
information is not sufficient to discriminate between the different kinds of materials.
Tests have been carried out on two distinct study areas with 50cm resolution orthophotos for the first one and 12cm resolution orthoim-
ages for the second one. The first study area was a dense urban centre, whereas the second could be divided into several parts : a
residential suburb consisting of houses, a dense urban centre with buildings having up to 4-5 levels and a mixed residential / service
area consisting of higher buildings.

1 INTRODUCTION

1.1 TOITEAU project

Zinc-based materials are largely used in urban areas, especially
for infrastructure, such as furniture or siding and roofing for build-
ings. Exposed to atmospheric conditions (environmental pollu-
tants, relative humidity, rain events...), these materials are pro-
gressively corroded. During a rain event, a part of the corrosion
products formed at their surface will be retained, and the other
part will be released and washed off.
Several research programs lead since the 1990’s have shown the
very high trace metal contamination of runoff from metallic or
partly metallic roofs (Forster, 1996), (Gromaire-Mertz et al.,
1999). In Paris, experiments conducted on a 42 ha urban catch-
ment have established that atmospheric corrosion of roofing ma-
terials could be a major source of zinc, cadmium, lead and copper

during wet weather (Chebbo et al., 2001). Several researches on
speciation of metals from roofing materials have been carried out,
showing that zinc emissions are mainly in the labile form (Heijer-
ick et al., 2002), which is very bioavailable and therefore harmful
to aquatic organisms (both animals and plants).
Thus, in the actual context of the European Water Framework Di-
rective (2000/60 CE), whose aim is to obtain a good ecological
state of aquatic environments, it seems necessary to reduce the
production of pollutants at their sources. This implies to identify
sources and to quantify emissions.
TOITEAU project has begun in 2005, with the aim of developing
a methodology for the estimation of annual metallic flows from
roofs at the catchment area scale. This work implies on one hand
the estimation of metallic runoff rates from different roofing ma-
terials, and on the other hand the identification and the quantifica-
tion of the different roof surface areas, using aerial photographs



and image classification tools.
The first part leads to a large database of runoff rates, concern-
ing 12 materials and 13 metallic species. Complementary exper-
iments - focused on the effect of inclination and length of flow
- and carried out both at the test bed scale (see figure 1) and at
the roof scale in order to verify the transposition of runoff rates
at larger spatial scales, lead to the conclusion that projected areas
are sufficient to predict and model metal runoff from materials
(Robert-Sainte, 2009).

Figure 1: Experimental evaluation of the effect of inclination on
runoff rates

1.2 Measure roof material areas

As previously said in 1.1, work has been done to model metallic
runoff rates for roofing materials. To extrapolate these results to
whole drainage areas, knowledge about the areas concerned by
the different kinds of roof coverage is required : a map of roof-
ing materials is needed. Such information can be extracted from
aerial (ortho-)images through classification.
Roofing materials classification from aerial images has already
been studied. For instance, an approach using hyperspectral and
laser scanning data is presented in (Lemp and Weidner, 2004).
The method described in (Martinoty, 2005) uses Bidirectional
Reflectance Distribution Function (BRDF) of materials computed
from red-green-blue-near infrared aerial images and 3D data.
In the present case, only red-green-blue ortho-images (and a 2D
topographic database to focuse on buildings) are available. Fur-
thermore, as experiments have shown that projected areas are suf-
ficient to predict and model metal runoff from materials, ortho-
images can be used directly, without 3D information. Therefore,
the chosen method simply consists in classifying them (through a
supervised classification method) into the following classes zinc
plates, slates, red tiles, brown tiles and flat roofs. This approach is
very simple but it will have to face several limits and difficulties.

2 DIFFICULTIES AND LIMITS

2.1 Similar classes and radiometric variations inside classes

Some distinct roofing materials classes have very similar radio-
metric distributions (as it can be seen on image histogram repre-
sented on figure 2), making it often hard to distinguish between
them, even for a human operator. For instance, brown tiles and
slates often look like each other on the image.
Using associations of derived channels calculated from original
red-green-blue spectral bands of the ortho-image is a way to im-
prove classification results. The use of per region classification
algorithms can also improve results since it enables to take into
account the radiometric distribution of whole regions instead of

Figure 2: Image histogram for channel “red” for the different
classes

isolated pixels.
However, this problem is increased by the fact that the radiom-

etry can greatly vary inside a same class. These variations are
caused by several factors and can lead to misclassifications :

• Roof orientation linked to Sun illumination angle is the main
reason. Therefore, a same roofing material can appear very
different from one side of a roof to an other. This phe-
nomenon is particularly important for slates and zinc plates
as shown by figure 3: slates at light can appear as light as
zinc plates whereas zinc plates at shadow are sometimes as
dark as some slates... Misclassifications occurs also between
red and brown tiles because of differences of Sun illumina-
tion.

Figure 3: Example of important radiometric variations caused by
roof orientation linked to Sun illumination and making it very
difficult to distinguish between slates and zinc plates

• The colour of roofing materials obviously depends on their
age, because of corrosion.

• Objects of a same class can have different colours for differ-
ent reasons (painted zinc plates, tiles more red than others...)

2.2 Shadows

Shadow areas can obviously be important in urban aeras. They
mostly concern streets but roofs can also be partly masked by
shadows caused by higher buildings or roof superstructures. If
nothing is done to deal with this phenomenon, shadow regions
are classified into the two “darkest classes” slates and brown tiles,
leading to an over estimation of the areas covered by these mate-
rials.
As a consequence, an additional class “shadow” is also defined
in order to take into account shadow areas where radiometric in-
formation is not sufficient to discriminate between the different
kinds of materials.



2.3 Building database

Roofs are the only interesting parts of the image for the classi-
fication. As a consequence, a mask is computed from building
objects of a topographic database to focuse on them. Neverthe-
less, several elements concerning data precision have to be taken
into account at this step.

• First of all, the ortho-image and the topographic database
can obviously not have been captured at the same date and,
as a consequence, buildings can have been destroyed, mod-
ified or built between these two distinct capture times.

• The used ortho-image is not a “true ortho-image”. As a con-
sequence, building objects from the topographic database
and roofs on the ortho-image are not perfectly superposed
(as it can be seen on figure 4). However, these buildings can
be registered to the ortho-image.

Figure 4: Building objects of the topographic database and roofs
on the ortho-image are not perfectly superposed

• Nevertheless, it must be said that building objects from the
database often remain caricatures of true buildings. There-
fore, they can sometimes be wider (containing other parts
of the image such as balconies, courtyards or even part of
streets) or on the contrary not contain the full roof.

• Besides, most of the time, homogeneous roof coverage re-
gions to be classified do not directly correspond to building
objects of the database since those objects can be groups
of buildings or even buildings of which the roof is covered
by several materials. Therefore, it is necessary to segment
building areas (according to the topographic database) of the
ortho-image into homogeneous roofing material regions that
will then be classified.

2.4 Non roof coverage elements

Roofs can sometimes be partly masked by higher elements such
as trees (as it can be seen on figure 5).
Moreover, non roof coverage elements can be present on the roof.
For instance, chimneys, glass roofs, balconies and even parts of
facades or small courtyards are non roofing materials elements
belonging to the roof mask on the orthoimage, as it can be seen
on figure 7. In addition, roof coverage can sometimes be covered
by vegetation (such as moss) and will therefore be misclassified.

Figure 5: Example of roof partly masked by a tree

3 METHOD

The proposed method consists in the following steps :

1. The image is segmented into homogeneous regions.

2. A building mask is computed from the topographic database
and registered to the segmentation of the image computed at
previous step.

3. Regions of the segmentation are classified owing to a per
region classification algorithm applied to an association of
derived channels obtained from initial red-green-blue bands
of the ortho-image.

3.1 Segmentation

First of all, the images have to be segmented into homogeneous
roofing material regions. This is achieved thanks to the multi-
scale segmentation method described in (Guigues et al., 2006)
and (Guigues, 2004). It enables to compute a pyramid of seg-
mentations of the image, each level of this pyramid corresponding
to an alternative between detail and generalization. This pyramid
is then cut at a level empirically chosen in order to obtain a suit-
able image partition (as for the example shown on figure 6). The
choice of this level is a compromise between detail and the size
of regions since on one hand, in an over segmentation, some re-
gions will be too small to have “meaning” and will be at risk to
be misclassified whereas on the other hand, in a too coarse seg-
mentation, wide regions will contain different roofing materials.

Figure 6: Example of segmentation

3.2 Building mask computation

A building mask is computed from a digital topographic database.
(In the present case, IGN’s digital geographic database BDTopo



is used.) Roofs and therefore buildings are indeed the only inter-
esting parts of the image. However, as previously explained in
2.3, database building objects and ortho-image roofs are not per-
fectly superposed.
Nevertheless, building objects from the topographic database can
be registered to the ortho-image. In the present case, building ob-
jects are in fact rasterized and then registered to the segmentation
(obtained at previous step) : a 2D rigid raster-raster registration
of rasterized buildings to the segmentation is processed for each
building object of the database using Insight ToolKit Registration
tools (Ibanez et al., 2005). It consists in computing the best pa-
rameters of a 2D rigid transform (a 2D similitude in this case)
minimizing a metric (based on mutual information here) between
the two images.
Obtained results are quite good (as it can be seen on figure 7),
except for the highest buildings for which the shift between the
roof on the orthoimage and the corresponding database building
object is sometimes too important.
It must also be said that methods to obtain a finer registration
exist (see for example (Trias-Sanz, 2006)), but don’t solve the
problems described in 2.4.

Figure 7: Example of building mask registration for 3 building
objects. (The situation before registration is shown by figure 4.)

3.3 Derived channels

The use of derived channels calculated from original bands of
the orthoimage can improve classification results. These chan-
nels can be radiometric channels computed as combinations of
the original bands (such as channels of an other colour space or
indices as the well known ndvi computed from red and near in-
frared bands to discriminate vegetation) or texture channels.
For instance, in the present tests, the following derived channels
have been used :
logrg = log(red) − log(green) (a log-opponent chromaticity
channel)
logrs = log(red)− log(red+ green+ blue)
Furthermore, these channels are used in association in the clas-
sification process. Therefore, the choice of good associations of
channels is important to obtain good classification results.

3.4 Classification

The regions of the segmentation are classified by the classifica-
tion tool described in (Trias-Sanz, 2006) and (Trias-Sanz and
Boldo, 2005). It works in two steps :

1. Model estimation from training data captured by an oper-
ator : First, for each class, the best parameters of several

statistical distributions (such as gaussian, laplacian laws but
also histograms (raw or obtained by kernel density estima-
tion)...) are computed to fit to the radiometric n-dimensional
histogram of the class (with n number of channels used for
the classification). Then the best model is selected thanks to
a Bayes Information Criterion enabling to choose an alter-
native between fit to data and model complexity.

2. Classification : The image can then be classified know-
ing the statistical model of the radiometry of the different
classes. Several per pixel and per region classification algo-
rithms are proposed in (Trias-Sanz, 2006) :

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML)
per region classification algorithms : The label co(R) given
to a region R is its most probable class according to the
model previously estimated (and to prior probabilities). Hence,
with the MAP algorithm, co(R) is the class c that maximizes
the following function : Pprior knowledge(c(R) = c)·(∏

pixel s∈R
Pmodel(I(s)|c(s) = c)

) 1
Card R

with I(s) standing for the radiometry vector of pixel s, c(z)
meaning region or pixel “z’s class” and P (c(z) = c) stand-
ing for the probability for pixel or region z to belong to class
c. Such a method enables to take easily into account external
information as prior probability.

• per region classification algorithms based on the compari-
son of distributions : The label given to a region is the class
with the most similar model to the distribution of pixel val-
ues in the region to be classified. (Instead of calculating
the probability that the pixels in a region come from a cer-
tain random variable, distributions of pixels values in the
region to be classified are compared to the probability func-
tion of the models previously estimated in order to find the
class with most similar distribution.) The χ2 statistic and the
Kullback-Leibler divergence (also called relative entropy)
are two possible dissymilarity coefficients to use to compare
these distributions.

4 TESTS AND RESULTS

The method has been tested on two distinct study areas (Le Marais
district in Paris and Noisy-le-Grand) with different urban infras-
tructures. Image resolution was different for the two study areas.
Several classification methods and associations of derived chan-
nels from original red-green-blue bands of the ortho-images have
been tested.
Results have been evaluated both visually on the whole image
and numerically, calculating confusion matrices on smaller parts
of the study area. Confusion matrices are computed from test data
captured by an operator and enable to calculate user and producer
accuracies. Nevertheless it must be said that it was sometimes
difficult even for a human operator to identify roofing materials
on the image.

4.1 Le Marais - Paris

The first test area is a dense urban centre located in Le Marais
district in Paris. 50cm resolution orthophotos (with red-green-
blue bands) from the IGN’s national orthoimages database were
available there (see figure 8).
Results obtained with the different per region classification meth-
ods are quite similar. The best results (see figure 9 and table 1)
have been obtained for several associations of derived channels.
For instance, the associations of channels red/logrs, red/logrg and



Figure 8: 50cm resolution ortho-image on Paris - Le Marais

even red/blue give almost 77 % pixels well classified, which can
be considered as a good result taking into account the quality of
the processed data. Most misclassifications occur between slates
and zinc at shadow and between slates and brown tiles. Misclas-
sifications between red tiles and flat roofs sometimes happen too.

Figure 9: Example of results obtained in Le Marais for MAP per
region classification algorithm applied to red/logrg channels as-
sociation. (red tiles in light red, brown tiles in dark red, slates in
blue, zinc plates in light grey, flat roofs in green, shadows in dark
grey)

4.2 Noisy-le-Grand

The second test area is the town of Noisy-le-Grand. It can be
divided into several parts :

• a residential suburb consisting of houses,

• a dense urban centre with buildings having up to 4-5 levels

• a mixed residential / service area consisting of higher build-
ings.

12cm resolution red-green-blue orthoimages have been used (see
for example figures 3, 4 or 5). Such resolution could enable the
use of texture information especially to distinguish zinc plates
from other materials. (Zinc roofing coverage has indeed a partic-
ular and regular texture, whereas other materials present a homo-
geneous texture.) Nevertheless, there has been no real improve-
ments since this texture is often not really visible on the used im-
ages because of roof orientation linked to Sun illumination angle.
Furthermore, there is no real texture for some small zinc areas on
the top of roofs or of roof windows.
As for the first test area, results obtained by the different per re-
gion classification algorithms are quite similar. The best results
with almost 82% well classified pixels have been obtained for
several channels associations as for example red/logrs or red/blue/logrs
(see table 1 and figures 10 and 11).
Misclassifications mostly concern slates and zinc plates, which
are sometimes difficult to distinguish from each other even for an
operator. Other misclassifications often occur between flat roofs
and other themes, but it must be said that those errors could be
avoided by the use of information from a 3D city model. Fur-
thermore, some buildings present important roof balconies with
plants, leading to misclassification.

Table 1: User (us acc) and producer (pr acc) accuracies (in %)
obtained in Le Marais for MAP per region classification algo-
rithm applied to red/logrs channels association and in Noisy-
le-Grand for chi2 per region classification algorithm applied to
red/blue/logrs channels association

Paris - Le Marais Noisy-le-Grand
Class us acc pr acc us acc pr acc
Red tiles 99.3 30.0 95.9 89.4
Brown tiles 62.8 63.7 65.3 77.9
Slates 63.0 63.1 76.3 80.6
Zinc plates 89.8 89.2 64.3 77.3
Flat Roofs 15.8 64.3 90.6 80.4
Well classified pixels 76.7 82.3

5 CONCLUSION

The method proves to be quite powerful and relatively easy to use
for areas where orthophotos are available. The results obtained
are promising, with about 75 to 80% of surface areas well classi-
fied. The image quality contributes to determine the performance
of the classification - shooting limits (shadows, correct contrast,
resolution enabling the use of texture channels).
The main source of error is confusion between similar radiome-
try. Nevertheless, if some (red tiles / brown tiles, brown tiles /
slates) remain insignificant in the context of the use made for the
evaluation of metal flows from roofs, others are more problematic
(slates/zinc).
Such a tool is essential for the evaluation of metal roof surfaces
throughout a watershed. Anyway, the use of the described clas-
sification method alone does not give a sufficiently detailed esti-
mate of all the metal surfaces implemented: if the performance is
good to evaluate the ramp surfaces, the individual little elements
can not be taken into account in this review, these elements are
generally not visible on the aerial photograph. These metallic
elements can be numerous and cumulatively represent important
areas, efforts should be made to estimate them too.



Figure 10: Example of result obtained in Noisy-le-Grand for
MAP per region classification algorithm applied to red/blue/logrs
channels association. (with the same legend as for figure 9)
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